1
|
Singh KD, Unal H, Desnoyer R, Karnik SS. Mechanism of Hormone Peptide Activation of a GPCR: Angiotensin II Activated State of AT 1R Initiated by van der Waals Attraction. J Chem Inf Model 2019; 59:373-385. [PMID: 30608150 DOI: 10.1021/acs.jcim.8b00583] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
We present a succession of structural changes involved in hormone peptide activation of a prototypical GPCR. Microsecond molecular dynamics simulation generated conformational ensembles reveal propagation of structural changes through key "microswitches" within human AT1R bound to native hormone. The endocrine octa-peptide angiotensin II (AngII) activates AT1R signaling in our bodies which maintains physiological blood pressure, electrolyte balance, and cardiovascular homeostasis. Excessive AT1R activation is associated with pathogenesis of hypertension and cardiovascular diseases which are treated by sartan drugs. The mechanism of AT1R inhibition by sartans has been elucidated by 2.8 Å X-ray structures, mutagenesis, and computational analyses. Yet, the mechanism of AT1R activation by AngII is unclear. The current study delineates an activation scheme initiated by AngII binding. A van der Waals "grasp" interaction between Phe8AngII with Ile2887.39 in AT1R induced mechanical strain pulling Tyr2927.43 and breakage of critical interhelical H-bonds, first between Tyr2927.43 and Val1083.32 and second between Asn1113.35 and Asn2957.46. Subsequently changes are observed in conserved microswitches DRYTM3, Yx7K(R)TM5, CWxPTM6, and NPxxYTM7 in AT1R. Activating the microswitches in the intracellular region of AT1R may trigger formation of the G-protein binding pocket as well as exposure of helix-8 to cytoplasm. Thus, the active-like conformation of AT1R is initiated by the van der Waals interaction of Phe8AngII with Ile2887.39, followed by systematic reorganization of critical interhelical H-bonds and activation of microswitches.
Collapse
Affiliation(s)
- Khuraijam Dhanachandra Singh
- Department of Molecular Cardiology, Lerner Research Institute , Cleveland Clinic Foundation , Cleveland , Ohio 44195 , United States
| | - Hamiyet Unal
- Department of Molecular Cardiology, Lerner Research Institute , Cleveland Clinic Foundation , Cleveland , Ohio 44195 , United States
| | - Russell Desnoyer
- Department of Molecular Cardiology, Lerner Research Institute , Cleveland Clinic Foundation , Cleveland , Ohio 44195 , United States
| | - Sadashiva S Karnik
- Department of Molecular Cardiology, Lerner Research Institute , Cleveland Clinic Foundation , Cleveland , Ohio 44195 , United States
| |
Collapse
|
2
|
Singh KD, Unal H, Desnoyer R, Karnik SS. Divergent Spatiotemporal Interaction of Angiotensin Receptor Blocking Drugs with Angiotensin Type 1 Receptor. J Chem Inf Model 2017; 58:182-193. [PMID: 29195045 DOI: 10.1021/acs.jcim.7b00424] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Crystal structures of the human angiotensin II type 1 receptor (AT1R) complex with the antihypertensive agent ZD7155 (PDB id: 4YAY ) and the blood pressure medication Benicar (PDB id: 4ZUD ) showed that binding poses of both antagonists are similar. This finding implies that clinically used angiotensin receptor blocking (ARB) drugs may interact in a similar fashion. However, clinically observed differences in pharmacological and therapeutic efficacies of ARBs lead to the question of whether the dynamic interactions of AT1R with ARBs vary. To address this, we performed induced-fit docking (IFD) of eight clinically used ARBs to AT1R followed by 200 ns molecular dynamic (MD) simulation. The experimental Ki values for ARBs correlated remarkably well with calculated free energy with R2 = 0.95 and 0.70 for AT1R-ARB models generated respectively by IFD and MD simulation. The eight ARB-AT1R complexes share a common set of binding residues. In addition, MD simulation results validated by mutagenesis data discovered distinctive spatiotemporal interactions that display unique bonding between an individual ARB and AT1R. These findings provide a reasonably broader picture reconciling the structure-based observations with clinical studies reporting efficacy variations for ARBs. The unique differences unraveled for ARBs in this study will be useful for structure-based design of the next generation of more potent and selective ARBs.
Collapse
Affiliation(s)
- Khuraijam Dhanachandra Singh
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic Foundation , Cleveland, Ohio 44195, United States
| | - Hamiyet Unal
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic Foundation , Cleveland, Ohio 44195, United States
| | - Russell Desnoyer
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic Foundation , Cleveland, Ohio 44195, United States
| | - Sadashiva S Karnik
- Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic Foundation , Cleveland, Ohio 44195, United States
| |
Collapse
|
3
|
Varsano D, Caprasecca S, Coccia E. Theoretical description of protein field effects on electronic excitations of biological chromophores. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2017; 29:013002. [PMID: 27830666 DOI: 10.1088/0953-8984/29/1/013002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Photoinitiated phenomena play a crucial role in many living organisms. Plants, algae, and bacteria absorb sunlight to perform photosynthesis, and convert water and carbon dioxide into molecular oxygen and carbohydrates, thus forming the basis for life on Earth. The vision of vertebrates is accomplished in the eye by a protein called rhodopsin, which upon photon absorption performs an ultrafast isomerisation of the retinal chromophore, triggering the signal cascade. Many other biological functions start with the photoexcitation of a protein-embedded pigment, followed by complex processes comprising, for example, electron or excitation energy transfer in photosynthetic complexes. The optical properties of chromophores in living systems are strongly dependent on the interaction with the surrounding environment (nearby protein residues, membrane, water), and the complexity of such interplay is, in most cases, at the origin of the functional diversity of the photoactive proteins. The specific interactions with the environment often lead to a significant shift of the chromophore excitation energies, compared with their absorption in solution or gas phase. The investigation of the optical response of chromophores is generally not straightforward, from both experimental and theoretical standpoints; this is due to the difficulty in understanding diverse behaviours and effects, occurring at different scales, with a single technique. In particular, the role played by ab initio calculations in assisting and guiding experiments, as well as in understanding the physics of photoactive proteins, is fundamental. At the same time, owing to the large size of the systems, more approximate strategies which take into account the environmental effects on the absorption spectra are also of paramount importance. Here we review the recent advances in the first-principle description of electronic and optical properties of biological chromophores embedded in a protein environment. We show their applications on paradigmatic systems, such as the light-harvesting complexes, rhodopsin and green fluorescent protein, emphasising the theoretical frameworks which are of common use in solid state physics, and emerging as promising tools for biomolecular systems.
Collapse
Affiliation(s)
- Daniele Varsano
- S3 Center, CNR Institute of Nanoscience, Via Campi 213/A, 41125 Modena, Italy
| | | | | |
Collapse
|
4
|
Tutone M, Chinnici A, Almerico AM, Perricone U, Sutera FM, De Caro V. Design, synthesis and preliminary evaluation of dopamine-amino acid conjugates as potential D1 dopaminergic modulators. Eur J Med Chem 2016; 124:435-444. [PMID: 27597419 DOI: 10.1016/j.ejmech.2016.08.051] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 08/09/2016] [Accepted: 08/22/2016] [Indexed: 12/31/2022]
Abstract
The dopamine-amino acid conjugate DA-Phen was firstly designed to obtain a useful prodrug for the therapy of Parkinson's disease, but experimental evidence shows that it effectively interacts with D1 dopamine receptors (D1DRs), leading to an enhancement in cognitive flexibility and to the development of adaptive strategies in aversive mazes, together with a decrease in despair-like behavior. In this paper, homology modelling, molecular dynamics, and site mapping of D1 receptor were carried out with the aim of further performing docking studies on other dopamine conjugates compared with D1 agonists, in the attempt to identify new compounds with potential dopaminergic activity. Two new conjugates (DA-Trp 2C, and DA-Leu 3C) have been identified as the most promising candidates, and consequently synthesized. Preliminary evaluation in terms of distribution coefficient (DpH7.4), stability in rat brain homogenate, and in human plasma confirmed that DA-Trp (2C), and DA-Leu (3C) could be considered as very valuable candidates for further in vivo studies as new dopaminergic drugs.
Collapse
Affiliation(s)
- Marco Tutone
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Via Archirafi 32, 90123, Palermo, Italy.
| | - Aurora Chinnici
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Via Archirafi 32, 90123, Palermo, Italy; Humanitas Clinical and Research Center, Via Manzoni 113, 20089, Rozzano, MI, Italy
| | - Anna Maria Almerico
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Ugo Perricone
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Flavia Maria Sutera
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Via Archirafi 32, 90123, Palermo, Italy; SiSaf Ltd, Innovation Centre, Northern Ireland Science Park, Queen's Island, Belfast, BT3 9DT, UK
| | - Viviana De Caro
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Via Archirafi 32, 90123, Palermo, Italy
| |
Collapse
|
5
|
Busato M, Giorgetti A. Structural modeling of G-protein coupled receptors: An overview on automatic web-servers. Int J Biochem Cell Biol 2016; 77:264-74. [PMID: 27102413 DOI: 10.1016/j.biocel.2016.04.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 04/09/2016] [Accepted: 04/15/2016] [Indexed: 12/27/2022]
Abstract
Despite the significant efforts and discoveries during the last few years in G protein-coupled receptor (GPCR) expression and crystallization, the receptors with known structures to date are limited only to a small fraction of human GPCRs. The lack of experimental three-dimensional structures of the receptors represents a strong limitation that hampers a deep understanding of their function. Computational techniques are thus a valid alternative strategy to model three-dimensional structures. Indeed, recent advances in the field, together with extraordinary developments in crystallography, in particular due to its ability to capture GPCRs in different activation states, have led to encouraging results in the generation of accurate models. This, prompted the community of modelers to render their methods publicly available through dedicated databases and web-servers. Here, we present an extensive overview on these services, focusing on their advantages, drawbacks and their role in successful applications. Future challenges in the field of GPCR modeling, such as the predictions of long loop regions and the modeling of receptor activation states are presented as well.
Collapse
Affiliation(s)
- Mirko Busato
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy.
| | - Alejandro Giorgetti
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy; Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Computational Biomedicine, Institute of Neuroscience and Medicine INM-9, Forschungszentrum Jülich, Germany.
| |
Collapse
|
6
|
Singh KD, Muthusamy K. Molecular modeling, quantum polarized ligand docking and structure-based 3D-QSAR analysis of the imidazole series as dual AT(1) and ET(A) receptor antagonists. Acta Pharmacol Sin 2013; 34:1592-606. [PMID: 24304920 PMCID: PMC4002566 DOI: 10.1038/aps.2013.129] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 08/16/2013] [Indexed: 01/20/2023] Open
Abstract
AIM Both endothelin ETA receptor antagonists and angiotensin AT1 receptor antagonists lower blood pressure in hypertensive patients. A dual AT1 and ETA receptor antagonist may be more efficacious antihypertensive drug. In this study we identified the mode and mechanism of binding of imidazole series of compounds as dual AT1 and ETA receptor antagonists. METHODS Molecular modeling approach combining quantum-polarized ligand docking (QPLD), MM/GBSA free-energy calculation and 3D-QSAR analysis was used to evaluate 24 compounds as dual AT1 and ETA receptor antagonists and to reveal their binding modes and structural basis of the inhibitory activity. Pharmacophore-based virtual screening and docking studies were performed to identify more potent dual antagonists. RESULTS 3D-QSAR models of the imidazole compounds were developed from the conformer generated by QPLD, and the resulting models showed a good correlation between the predicted and experimental activity. The visualization of the 3D-QSAR model in the context of the compounds under study revealed the details of the structure-activity relationship: substitution of methoxymethyl and cyclooctanone might increase the activity against AT1 receptor, while substitution of cyclohexone and trimethylpyrrolidinone was important for the activity against ETA receptor; addition of a trimethylpyrrolidinone to compound 9 significantly reduced its activity against AT1 receptor but significantly increased its activity against ETA receptor, which was likely due to the larger size and higher intensities of the H-bond donor and acceptor regions in the active site of ETA receptor. Pharmacophore-based virtual screening followed by subsequent Glide SP, XP, QPLD and MM/GBSA calculation identified 5 potential lead compounds that might act as dual AT1 and ETA receptor antagonists. CONCLUSION This study may provide some insights into the development of novel potent dual ETA and AT1 receptor antagonists. As a result, five compounds are found to be the best dual antagonists against AT1R and ETA receptors.
Collapse
Affiliation(s)
| | - Karthikeyan Muthusamy
- Department of Bioinformatics, Alagappa University, Karaikudi – 630 004, Tamil Nadu, India
| |
Collapse
|
7
|
Novikov GV, Sivozhelezov VS, Shaitan KV. Investigation of the conformational dynamics of the A2A adenosine receptor by molecular dynamics simulation. Biophysics (Nagoya-shi) 2013. [DOI: 10.1134/s0006350913040131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
|
8
|
Cordomí A, Perez JJ. Structural Rearrangements of Rhodopsin Subunits in a Dimer Complex: a Molecular Dynamics Simulation Study. J Biomol Struct Dyn 2012; 27:127-47. [DOI: 10.1080/07391102.2009.10507303] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Arnau Cordomí
- a Dept d'Enginyeria Química , Technical University of Catalonia (UPC), ETS d'Enginyeria Industrial , Av. Diagonal 647, 08028 , Barcelona , Spain
| | - Juan J. Perez
- a Dept d'Enginyeria Química , Technical University of Catalonia (UPC), ETS d'Enginyeria Industrial , Av. Diagonal 647, 08028 , Barcelona , Spain
| |
Collapse
|
9
|
Lai PC, Crasto CJ. Beyond modeling: all-atom olfactory receptor model simulations. Front Genet 2012; 3:61. [PMID: 22563330 PMCID: PMC3342527 DOI: 10.3389/fgene.2012.00061] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 03/30/2012] [Indexed: 11/27/2022] Open
Abstract
Olfactory receptors (ORs) are a type of GTP-binding protein-coupled receptor (GPCR). These receptors are responsible for mediating the sense of smell through their interaction with odor ligands. OR-odorant interactions marks the first step in the process that leads to olfaction. Computational studies on model OR structures can generate focused and novel hypotheses for further bench investigation by providing a view of these interactions at the molecular level beyond inferences that are drawn merely from static docking. Here we have shown the specific advantages of simulating the dynamic environment associated with OR-odorant interactions. We present a rigorous protocol which ranges from the creation of a computationally derived model of an olfactory receptor to simulating the interactions between an OR and an odorant molecule. Given the ubiquitous occurrence of GPCRs in the membranes of cells, we anticipate that our OR-developed methodology will serve as a model for the computational structural biology of all GPCRs.
Collapse
Affiliation(s)
- Peter C Lai
- Division of Research, Department of Genetics, University of Alabama at Birmingham Birmingham, AL, USA
| | | |
Collapse
|
10
|
Heifetz A, Morris GB, Biggin PC, Barker O, Fryatt T, Bentley J, Hallett D, Manikowski D, Pal S, Reifegerste R, Slack M, Law R. Study of Human Orexin-1 and -2 G-Protein-Coupled Receptors with Novel and Published Antagonists by Modeling, Molecular Dynamics Simulations, and Site-Directed Mutagenesis. Biochemistry 2012; 51:3178-97. [DOI: 10.1021/bi300136h] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Alexander Heifetz
- Evotec (U.K.) Ltd., 114 Milton Park, Abingdon, Oxfordshire OX14 4SA, United Kingdom
| | - G. Benjamin Morris
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Philip C. Biggin
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom
| | - Oliver Barker
- Evotec (U.K.) Ltd., 114 Milton Park, Abingdon, Oxfordshire OX14 4SA, United Kingdom
| | - Tara Fryatt
- Evotec (U.K.) Ltd., 114 Milton Park, Abingdon, Oxfordshire OX14 4SA, United Kingdom
| | - Jonathan Bentley
- Evotec (U.K.) Ltd., 114 Milton Park, Abingdon, Oxfordshire OX14 4SA, United Kingdom
| | - David Hallett
- Evotec (U.K.) Ltd., 114 Milton Park, Abingdon, Oxfordshire OX14 4SA, United Kingdom
| | | | - Sandeep Pal
- Evotec (U.K.) Ltd., 114 Milton Park, Abingdon, Oxfordshire OX14 4SA, United Kingdom
| | - Rita Reifegerste
- Evotec AG, Manfred Eigen Campus, Essener Bogen 7, 22419 Hamburg, Germany
| | - Mark Slack
- Evotec AG, Manfred Eigen Campus, Essener Bogen 7, 22419 Hamburg, Germany
| | - Richard Law
- Evotec (U.K.) Ltd., 114 Milton Park, Abingdon, Oxfordshire OX14 4SA, United Kingdom
| |
Collapse
|
11
|
Molecular modeling and computational simulation of the photosystem-II reaction center to address isoproturon resistance in Phalaris minor. J Mol Model 2012; 18:3903-13. [DOI: 10.1007/s00894-012-1386-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 02/15/2012] [Indexed: 10/28/2022]
|
12
|
Molecular modeling of the M3 acetylcholine muscarinic receptor and its binding site. J Biomed Biotechnol 2012; 2012:789741. [PMID: 22500107 PMCID: PMC3303834 DOI: 10.1155/2012/789741] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 11/08/2011] [Indexed: 11/21/2022] Open
Abstract
The present study reports the results of a combined computational and site mutagenesis study designed to provide new insights into the orthosteric binding site of the human M3 muscarinic acetylcholine receptor. For this purpose a three-dimensional structure of the receptor at atomic resolution was built by homology modeling, using the crystallographic structure of bovine rhodopsin as a template. Then, the antagonist N-methylscopolamine was docked in the model and subsequently embedded in a lipid bilayer for its refinement using molecular dynamics simulations. Two different lipid bilayer compositions were studied: one component palmitoyl-oleyl phosphatidylcholine (POPC) and two-component palmitoyl-oleyl phosphatidylcholine/palmitoyl-oleyl phosphatidylserine (POPC-POPS). Analysis of the results suggested that residues F222 and T235 may contribute to the ligand-receptor recognition. Accordingly, alanine mutants at positions 222 and 235 were constructed, expressed, and their binding properties determined. The results confirmed the role of these residues in modulating the binding affinity of the ligand.
Collapse
|
13
|
Serohijos AWR, Yin S, Ding F, Gauthier J, Gibson DG, Maixner W, Dokholyan NV, Diatchenko L. Structural basis for μ-opioid receptor binding and activation. Structure 2011; 19:1683-90. [PMID: 22078567 PMCID: PMC3217204 DOI: 10.1016/j.str.2011.08.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 07/13/2011] [Accepted: 08/04/2011] [Indexed: 10/15/2022]
Abstract
Opioids that stimulate the μ-opioid receptor (MOR1) are the most frequently prescribed and effective analgesics. Here we present a structural model of MOR1. Molecular dynamics simulations show a ligand-dependent increase in the conformational flexibility of the third intracellular loop that couples with the G protein complex. These simulations likewise identified residues that form frequent contacts with ligands. We validated the binding residues using site-directed mutagenesis coupled with radioligand binding and functional assays. The model was used to blindly screen a library of ∼1.2 million compounds. From the 34 compounds predicted to be strong binders, the top three candidates were examined using biochemical assays. One compound showed high efficacy and potency. Post hoc testing revealed this compound to be nalmefene, a potent clinically used antagonist, thus further validating the model. In summary, the MOR1 model provides a tool for elucidating the structural mechanism of ligand-initiated cell signaling and for screening novel analgesics.
Collapse
MESH Headings
- Amino Acid Substitution
- Animals
- Binding Sites
- Binding, Competitive
- Cattle
- Cyclic AMP/chemistry
- Cyclic AMP/metabolism
- Cyclic AMP/pharmacology
- Databases, Factual
- Decapodiformes
- Diprenorphine/chemistry
- Diprenorphine/pharmacology
- Dose-Response Relationship, Drug
- HEK293 Cells
- Humans
- Molecular Dynamics Simulation
- Morphine/chemistry
- Morphine/pharmacology
- Mutagenesis, Site-Directed
- Naltrexone/analogs & derivatives
- Naltrexone/chemistry
- Naltrexone/pharmacology
- Protein Binding
- Radioligand Assay
- Receptors, Opioid, mu/chemistry
- Receptors, Opioid, mu/genetics
- Receptors, Opioid, mu/metabolism
- Small Molecule Libraries
Collapse
Affiliation(s)
- Adrian W. R. Serohijos
- Biochemistry and Biophysics Department, University of North Carolina at Chapel Hill
- Center for Neurosensory Disorders, University of North Carolina at Chapel Hill
| | - Shuangye Yin
- Biochemistry and Biophysics Department, University of North Carolina at Chapel Hill
| | - Feng Ding
- Biochemistry and Biophysics Department, University of North Carolina at Chapel Hill
| | - Josee Gauthier
- Center for Neurosensory Disorders, University of North Carolina at Chapel Hill
| | - Dustin G. Gibson
- Center for Neurosensory Disorders, University of North Carolina at Chapel Hill
| | - William Maixner
- Center for Neurosensory Disorders, University of North Carolina at Chapel Hill
| | - Nikolay V. Dokholyan
- Biochemistry and Biophysics Department, University of North Carolina at Chapel Hill
| | - Luda Diatchenko
- Center for Neurosensory Disorders, University of North Carolina at Chapel Hill
| |
Collapse
|
14
|
Nygaard R, Valentin-Hansen L, Mokrosinski J, Frimurer TM, Schwartz TW. Conserved water-mediated hydrogen bond network between TM-I, -II, -VI, and -VII in 7TM receptor activation. J Biol Chem 2010; 285:19625-36. [PMID: 20395291 DOI: 10.1074/jbc.m110.106021] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Five highly conserved polar residues connected by a number of structural water molecules together with two rotamer micro-switches, TrpVI:13 and TyrVII:20, constitute an extended hydrogen bond network between the intracellular segments of TM-I, -II, -VI, and -VII of 7TM receptors. Molecular dynamics simulations showed that, although the fewer water molecules in rhodopsin were relatively movable, the hydrogen bond network of the beta2-adrenergic receptor was fully loaded with water molecules that were surprisingly immobilized between the two rotamer switches, both apparently being in their closed conformation. Manipulations of the rotamer state of TyrVII:20 and TrpVI:13 demonstrated that these residues served as gates for the water molecules at the intracellular and extracellular ends of the hydrogen bond network, respectively. TrpVI:13 at the bottom of the main ligand-binding pocket was shown to apparently function as a catching trap for water molecules. Mutational analysis of the beta2-adrenergic receptor demonstrated that the highly conserved polar residues of the hydrogen bond network were all important for receptor signaling but served different functions, some dampening constitutive activity (AsnI:18, AspII:10, and AsnVII:13), whereas others (AsnVII:12 and AsnVII:16) located one helical turn apart and sharing a water molecule were shown to be essential for agonist-induced signaling. It is concluded that the conserved water hydrogen bond network of 7TM receptors constitutes an extended allosteric interface between the transmembrane segments being of crucial importance for receptor signaling and that part of the function of the rotamer micro-switches, TyrVII:20 and TrpVI:13, is to gate or trap the water molecules.
Collapse
Affiliation(s)
- Rie Nygaard
- Laboratory for Molecular Pharmacology, Institute of Neuroscience and Pharmacology, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen, Denmark
| | | | | | | | | |
Collapse
|
15
|
Homology modelling of the human adenosine A2B receptor based on X-ray structures of bovine rhodopsin, the beta2-adrenergic receptor and the human adenosine A2A receptor. J Comput Aided Mol Des 2010; 23:807-28. [PMID: 19757091 DOI: 10.1007/s10822-009-9299-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Accepted: 08/12/2009] [Indexed: 10/20/2022]
Abstract
A three-dimensional model of the human adenosine A2B receptor was generated by means of homology modelling, using the crystal structures of bovine rhodopsin, the beta2-adrenergic receptor, and the human adenosine A2A receptor as templates. In order to compare the three resulting models, the binding modes of the adenosine A2B receptor antagonists theophylline, ZM241385, MRS1706, and PSB601 were investigated. The A2A-based model was much better able to stabilize the ligands in the binding site than the other models reflecting the high degree of similarity between A2A and A2B receptors: while the A2B receptor shares about 21% of the residues with rhodopsin, and 31% with the beta2-adrenergic receptor, it is 56% identical to the adenosine A2A receptor. The A2A-based model was used for further studies. The model included the transmembrane domains, the extracellular and the intracellular hydrophilic loops as well as the terminal domains. In order to validate the usefulness of this model, a docking analysis of several selective and nonselective agonists and antagonists was carried out including a study of binding affinities and selectivities of these ligands with respect to the adenosine A2A and A2B receptors. A common binding site is proposed for antagonists and agonists based on homology modelling combined with site-directed mutagenesis and a comparison between experimental and calculated affinity data. The new, validated A2B receptor model may serve as a basis for developing more potent and selective drugs.
Collapse
|
16
|
Thirumuruganandham SP, Urbassek HM. Low-frequency vibrational modes and infrared absorbance of red, blue and green opsin. J Mol Model 2009; 15:959-69. [DOI: 10.1007/s00894-008-0446-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Accepted: 12/23/2008] [Indexed: 11/25/2022]
|
17
|
Wolf S, Freier E, Gerwert K. How does a membrane protein achieve a vectorial proton transfer via water molecules? Chemphyschem 2009; 9:2772-8. [PMID: 19072873 DOI: 10.1002/cphc.200800703] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We present a detailed mechanism for the proton transfer from a protein-bound protonated water cluster to the bulk water directed by protein side chains in the membrane protein bacteriorhodopsin. We use a combined approach of time-resolved Fourier transform infrared spectroscopy, molecular dynamics simulations, and X-ray structure analysis to elucidate the functional role of a hydrogen bond between Ser193 and Glu204. These two residues seal the internal protonated water cluster from the bulk water and the protein surface. During the photocycle of bacteriorhodopsin, a transient protonation of Glu204 leads to a breaking of this hydrogen bond. This breaking opens the gate to the extracellular bulk water, leading to a subsequent proton release from the protonated water cluster. We show in detail how the protein achieves vectorial proton transfer via protonated water clusters in contrast to random proton transfer in liquid water.
Collapse
Affiliation(s)
- Steffen Wolf
- Department of Biophysics, ND 04 North, Ruhr-University BochumD-44780 Bochum, Germany
| | | | | |
Collapse
|
18
|
Wolf S, Böckmann M, Höweler U, Schlitter J, Gerwert K. Simulations of a G protein-coupled receptor homology model predict dynamic features and a ligand binding site. FEBS Lett 2008; 582:3335-42. [DOI: 10.1016/j.febslet.2008.08.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2008] [Revised: 07/07/2008] [Accepted: 08/24/2008] [Indexed: 02/08/2023]
|
19
|
Tikhonova IG, Best RB, Engel S, Gershengorn MC, Hummer G, Costanzi S. Atomistic insights into rhodopsin activation from a dynamic model. J Am Chem Soc 2008; 130:10141-9. [PMID: 18620390 DOI: 10.1021/ja0765520] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Rhodopsin, the light sensitive receptor responsible for blue-green vision, serves as a prototypical G protein-coupled receptor (GPCR). Upon light absorption, it undergoes a series of conformational changes that lead to the active form, metarhodopsin II (META II), initiating a signaling cascade through binding to the G protein transducin (G(t)). Here, we first develop a structural model of META II by applying experimental distance restraints to the structure of lumi-rhodopsin (LUMI), an earlier intermediate. The restraints are imposed by using a combination of biased molecular dynamics simulations and perturbations to an elastic network model. We characterize the motions of the transmembrane helices in the LUMI-to-META II transition and the rearrangement of interhelical hydrogen bonds. We then simulate rhodopsin activation in a dynamic model to study the path leading from LUMI to our META II model for wild-type rhodopsin and a series of mutants. The simulations show a strong correlation between the transition dynamics and the pharmacological phenotypes of the mutants. These results help identify the molecular mechanisms of activation in both wild type and mutant rhodopsin. While static models can provide insights into the mechanisms of ligand recognition and predict ligand affinity, a dynamic model of activation could be applicable to study the pharmacology of other GPCRs and their ligands, offering a key to predictions of basal activity and ligand efficacy.
Collapse
Affiliation(s)
- Irina G Tikhonova
- Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
20
|
Kiss R, Viskolcz B, Keserű GM. Activation Mechanism of the Human Histamine H4 Receptor - An Explicit Membrane Molecular Dynamics Simulation Study. J Chem Inf Model 2008; 48:1199-210. [DOI: 10.1021/ci700450w] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Róbert Kiss
- Department of Chemistry and Chemical Informatics, Faculty of Education, University of Szeged, Boldogasszony sgt. 6., H-6725 Szeged, Hungary, Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Eötvös u. 6., H-6720 Szeged, Hungary, Department of Pharmaceutical Chemistry, Semmelweis University, Hõgyes Endre u. 9., H-1092 Budapest, Hungary, Gedeon Richter Plc, Gyömrõi út 19-21., H-1103 Budapest, Hungary, and Department of General and Analytical Chemistry, Budapest
| | - Béla Viskolcz
- Department of Chemistry and Chemical Informatics, Faculty of Education, University of Szeged, Boldogasszony sgt. 6., H-6725 Szeged, Hungary, Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Eötvös u. 6., H-6720 Szeged, Hungary, Department of Pharmaceutical Chemistry, Semmelweis University, Hõgyes Endre u. 9., H-1092 Budapest, Hungary, Gedeon Richter Plc, Gyömrõi út 19-21., H-1103 Budapest, Hungary, and Department of General and Analytical Chemistry, Budapest
| | - György M. Keserű
- Department of Chemistry and Chemical Informatics, Faculty of Education, University of Szeged, Boldogasszony sgt. 6., H-6725 Szeged, Hungary, Department of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Eötvös u. 6., H-6720 Szeged, Hungary, Department of Pharmaceutical Chemistry, Semmelweis University, Hõgyes Endre u. 9., H-1092 Budapest, Hungary, Gedeon Richter Plc, Gyömrõi út 19-21., H-1103 Budapest, Hungary, and Department of General and Analytical Chemistry, Budapest
| |
Collapse
|
21
|
Cordomí A, Ramon E, Garriga P, Perez JJ. Molecular Dynamics Simulations of Rhodopsin Point Mutants at the Cytoplasmic Side of Helices 3 and 6. J Biomol Struct Dyn 2008; 25:573-87. [DOI: 10.1080/07391102.2008.10507204] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
22
|
Mobarec JC, Filizola M. Advances in the Development and Application of Computational Methodologies for Structural Modeling of G-Protein Coupled Receptors. Expert Opin Drug Discov 2008; 3:343-355. [PMID: 19672320 DOI: 10.1517/17460441.3.3.343] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND: Despite the large amount of experimental data accumulated in the past decade on G-protein coupled receptor (GPCR) structure and function, understanding of the molecular mechanisms underlying GPCR signaling is still far from being complete, thus impairing the design of effective and selective pharmaceuticals. OBJECTIVE: Understanding of GPCR function has been challenged even further by more recent experimental evidence that several of these receptors are organized in the cell membrane as homo- or hetero-oligomers, and that they may exhibit unique pharmacological properties. Given the complexity of these new signaling systems, researcher's efforts are turning increasingly to molecular modeling, bioinformatics and computational simulations for mechanistic insights of GPCR functional plasticity. METHODS: We review here current advances in the development and application of computational approaches to improve prediction of GPCR structure and dynamics, thus enhancing current understanding of GPCR signaling. RESULTS/CONCLUSIONS: Models resulting from use of these computational approaches further supported by experiments are expected to help elucidate the complex allosterism that propagates through GPCR complexes, ultimately aiming at successful structure-based rational drug design.
Collapse
Affiliation(s)
- Juan Carlos Mobarec
- Department of Structural and Chemical Biology, Mount Sinai School of Medicine, Icahn Medical Institute Building, 1425 Madison Avenue, Box 1677, New York, NY 10029-6574, Tel: 212-241-8634
| | | |
Collapse
|
23
|
Schlegel B, Laggner C, Meier R, Langer T, Schnell D, Seifert R, Stark H, Höltje HD, Sippl W. Generation of a homology model of the human histamine H3 receptor for ligand docking and pharmacophore-based screening. J Comput Aided Mol Des 2007; 21:437-53. [PMID: 17668276 DOI: 10.1007/s10822-007-9127-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Accepted: 06/29/2007] [Indexed: 10/23/2022]
Abstract
The human histamine H(3) receptor (hH(3)R) is a G-protein coupled receptor (GPCR), which modulates the release of various neurotransmitters in the central and peripheral nervous system and therefore is a potential target in the therapy of numerous diseases. Although ligands addressing this receptor are already known, the discovery of alternative lead structures represents an important goal in drug design. The goal of this work was to study the hH(3)R and its antagonists by means of molecular modelling tools. For this purpose, a strategy was pursued in which a homology model of the hH(3)R based on the crystal structure of bovine rhodopsin was generated and refined by molecular dynamics simulations in a dipalmitoylphosphatidylcholine (DPPC)/water membrane mimic before the resulting binding pocket was used for high-throughput docking using the program GOLD. Alternatively, a pharmacophore-based procedure was carried out where the alleged bioactive conformations of three different potent hH(3)R antagonists were used as templates for the generation of pharmacophore models. A pharmacophore-based screening was then carried out using the program Catalyst. Based upon a database of 418 validated hH(3)R antagonists both strategies could be validated in respect of their performance. Seven hits obtained during this screening procedure were commercially purchased, and experimentally tested in a [(3)H]N(alpha)-methylhistamine binding assay. The compounds tested showed affinities at hH(3)R with K ( i ) values ranging from 0.079 to 6.3 muM.
Collapse
Affiliation(s)
- Birgit Schlegel
- Institute of Pharmaceutical Chemistry, Heinrich-Heine-Universität Düsseldorf, Universitätsstr 1, 40197, Dusseldorf, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Crozier PS, Stevens MJ, Woolf TB. How a small change in retinal leads to G-protein activation: initial events suggested by molecular dynamics calculations. Proteins 2007; 66:559-74. [PMID: 17109408 PMCID: PMC2848121 DOI: 10.1002/prot.21175] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Rhodopsin is the prototypical G-protein coupled receptor, coupling light activation with high efficiency to signaling molecules. The dark-state X-ray structures of the protein provide a starting point for consideration of the relaxation from initial light activation to conformational changes that may lead to signaling. In this study we create an energetically unstable retinal in the light activated state and then use molecular dynamics simulations to examine the types of compensation, relaxation, and conformational changes that occur following the cis-trans light activation. The results suggest that changes occur throughout the protein, with changes in the orientation of Helices 5 and 6, a closer interaction between Ala 169 on Helix 4 and retinal, and a shift in the Schiff base counterion that also reflects changes in sidechain interactions with the retinal. Taken together, the simulation is suggestive of the types of changes that lead from local conformational change to light-activated signaling in this prototypical system.
Collapse
Affiliation(s)
- Paul S Crozier
- Sandia National Laboratories, MS 1322, Albuquerque, New Mexico 87185-1322, USA.
| | | | | |
Collapse
|
25
|
Interaction of chromophore, 11-cis-retinal, with amino acid residues of the visual pigment rhodopsin in the region of protonated Schiff base: A molecular dynamics study. Russ Chem Bull 2007. [DOI: 10.1007/s11172-007-0004-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Cordomí A, Edholm O, Perez JJ. Effect of different treatments of long-range interactions and sampling conditions in molecular dynamic simulations of rhodopsin embedded in a dipalmitoyl phosphatidylcholine bilayer. J Comput Chem 2007; 28:1017-30. [PMID: 17269123 DOI: 10.1002/jcc.20579] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The present study analyzes the effect of the simulation conditions on the results of molecular dynamics simulations of G-protein coupled receptors (GPCRs) performed with an explicit lipid bilayer. Accordingly, the present work reports the analysis of different simulations of bovine rhodopsin embedded in a dipalmitoyl phosphatidylcholine (DPPC) lipid bilayer using two different sampling conditions and two different approaches for the treatment of long-range electrostatic interactions. Specifically, sampling was carried out either by using the statistical ensembles NVT or NPT (constant number of atoms, a pressure of 1 atm in all directions and fixed temperature), and the electrostatic interactions were treated either by using a twin-cutoff, or the particle mesh Ewald summation method (PME). The results of the present study suggest that the use of the NPT ensemble in combination with the PME method provide more realistic simulations. The use of NPT during the equilibration avoids the need of an a priori estimation of the box dimensions, giving the correct area per lipid. However, once the system is equilibrated, the simulations are irrespective of the sampling conditions used. The use of an electrostatic cutoff induces artifacts on both lipid thickness and the ion distribution, but has no direct effect on the protein and water molecules.
Collapse
Affiliation(s)
- Arnau Cordomí
- Dept d'Enginyeria Química, Technical University of Catalonia (UPC), Av. Diagonal 647, 08028 Barcelona, Spain.
| | | | | |
Collapse
|
27
|
Filizola M, Wang SX, Weinstein H. Dynamic models of G-protein coupled receptor dimers: indications of asymmetry in the rhodopsin dimer from molecular dynamics simulations in a POPC bilayer. J Comput Aided Mol Des 2006; 20:405-16. [PMID: 17089205 PMCID: PMC4076291 DOI: 10.1007/s10822-006-9053-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Accepted: 06/26/2006] [Indexed: 10/24/2022]
Abstract
Based on the growing evidence that G-protein coupled receptors (GPCRs) form homo- and hetero-oligomers, models of GPCR signaling are now considering macromolecular assemblies rather than monomers, with the homo-dimer regarded as the minimal oligomeric arrangement required for functional coupling to the G-protein. The dynamic mechanisms of such signaling assemblies are unknown. To gain some insight into properties of GPCR dimers that may be relevant to functional mechanisms, we study their current structural prototype, rhodopsin. We have carried out nanosecond time-scale molecular dynamics (MD) simulations of a rhodopsin dimer and compared the results to the monomer simulated in the same type of bilayer membrane model composed of an equilibrated unit cell of hydrated palmitoyl-oleoyl-phosphatidyl choline (POPC). The dynamic representation of the homo-dimer reveals the location of structural changes in several regions of the monomeric subunits. These changes appear to be more pronounced at the dimerization interface that had been shown to be involved in the activation process [Proc Natl Acad Sci USA 102:17495, 2005]. The results are consistent with a model of GPCR activation that involves allosteric modulation through a single GPCR subunit per dimer.
Collapse
Affiliation(s)
- Marta Filizola
- Department of Physiology & Biophysics, Weill Medical College of Cornell University, 1300 York Ave, New York, NY 10021, USA
| | - Simon X. Wang
- Department of Physiology & Biophysics, Weill Medical College of Cornell University, 1300 York Ave, New York, NY 10021, USA
| | - Harel Weinstein
- Department of Physiology & Biophysics, Weill Medical College of Cornell University, 1300 York Ave, New York, NY 10021, USA. HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Medical College of Cornell University, 1300 York Ave, New York, NY 10021, USA
| |
Collapse
|
28
|
Prilla S, Schrobang J, Ellis J, Höltje HD, Mohr K. Allosteric Interactions with Muscarinic Acetylcholine Receptors: Complex Role of the Conserved Tryptophan M2422Trp in a Critical Cluster of Amino Acids for Baseline Affinity, Subtype Selectivity, and Cooperativity. Mol Pharmacol 2006; 70:181-93. [PMID: 16641315 DOI: 10.1124/mol.106.023481] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In general, the M2 subtype of muscarinic acetylcholine receptors has the highest sensitivity for allosteric modulators and the M5 subtype the lowest. The M2/M5 selectivity of some structurally diverse allosteric agents is known to be completely explained by M2 177Tyr and M2 423Thr in receptors whose orthosteric site is occupied by the conventional ligand N-methylscopolamine (NMS). This study explored the role of the conserved M2 422Trp and the adjacent M2 423Thr in the binding of alkane-bisammonio type modulators, gallamine, and diallylcaracurine V. Experiments were performed with human M2 or M5 receptors or mutants thereof. It was found that M2 422Trp and M2 423Thr independently influenced allosteric agent binding. The presence of M2 423Thr may enhance the affinity of binding, depending on the allosteric agent, either directly or indirectly (by avoiding sterical hindrance through its M5 counterpart 478His). Replacement of M2 422Trp and of the corresponding M5 477Trp by alanine revealed a pronounced contribution of these epitopes to subtype independent baseline affinity in NMS-bound and NMS-free receptors for all agents except diallylcaracurine V. In a few instances, this tryptophan also influenced cooperativity and subtype selectivity. Docking simulations using a three-dimensional M2 receptor model revealed that the aromatic rings of M2 177Tyr and M2 422Trp, in a concerted action, might fix one of the aromatic moieties of alkane-bisammonio compounds between them. Thus, M2 422Trp and the spatially adjacent M2 177Tyr, as well as M2 423Thr, form a cluster of amino acids within the allosteric binding cleft that is pivotal for both M2/M5 subtype selectivity and baseline affinity of allosteric agents.
Collapse
Affiliation(s)
- Stefanie Prilla
- Department of Pharmacology and Toxicology, Institute of Pharmacy, University of Bonn, 53121 Bonn (Germany)
| | | | | | | | | |
Collapse
|