1
|
WANG H, WANG L, FAN K, PAN G. Tetracycline natural products: discovery, biosynthesis and engineering. Chin J Nat Med 2022; 20:773-794. [DOI: 10.1016/s1875-5364(22)60224-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Indexed: 11/03/2022]
|
2
|
Inhibition of aggregation of amyloid-β through covalent modification with benzylpenicillin; potential relevance to Alzheimer's disease. Biochem Biophys Rep 2021; 26:100943. [PMID: 33778168 PMCID: PMC7985693 DOI: 10.1016/j.bbrep.2021.100943] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 01/10/2021] [Accepted: 01/31/2021] [Indexed: 12/28/2022] Open
Abstract
The pathogenesis of Alzheimer's disease (AD) is correlated with the misfolding and aggregation of amyloid-beta protein (Aβ). Here we report that the antibiotic benzylpenicillin (BP) can specifically bind to Aβ, modulate the process of aggregation and supress its cytotoxic effect, initially via a reversible binding interaction, followed by covalent bonding between specific functional groups (nucleophiles) within the Aβ peptide and the beta-lactam ring. Mass spectrometry and computational docking supported covalent modification of Aβ by BP. BP was found to inhibit aggregation of Aβ as revealed by the Thioflavin T (ThT) fluorescence assay and atomic force microscopy (AFM). In addition, BP treatment was found to have a cytoprotective activity against Aβ-induced cell cytotoxicity as shown by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cell toxicity assay. The specific interaction of BP with Aβ suggests the possibility of structure-based drug design, leading to the identification of new drug candidates against AD. Moreover, good pharmacokinetics of beta-lactam antibiotics and safety on long-time use make them valuable candidates for drug repurposing towards neurological disorders such as AD.
Collapse
|
3
|
Andrei F, Zăvoianu R, Marcu IC. Complex Catalytic Materials Based on the Perovskite-Type Structure for Energy and Environmental Applications. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E5555. [PMID: 33291516 PMCID: PMC7730792 DOI: 10.3390/ma13235555] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 12/27/2022]
Abstract
This review paper focuses on perovskite-type materials as (photo)catalysts for energy and environmental applications. After a short introduction and the description of the structure of inorganic and hybrid organic-inorganic perovskites, the methods of preparation of inorganic perovskites both as powders via chemical routes and as thin films via laser-based techniques are tackled with, for the first, an analysis of the influence of the preparation method on the specific surface area of the material obtained. Then, the (photo)catalytic applications of the perovskites in energy production either in the form of hydrogen via water photodecomposition or by methane combustion, and in the removal of organic pollutants from waste waters, are reviewed.
Collapse
Affiliation(s)
- Florin Andrei
- Laboratory of Chemical Technology & Catalysis, Department of Organic Chemistry, Biochemistry & Catalysis, Faculty of Chemistry, University of Bucharest, 4-12, Blv. Regina Elisabeta, 030018 Bucharest, Romania;
- Interdisciplinary Innovation Center of Photonics and Plasma for Eco-Nano Technologies and Advanced Materials, National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Street, 077125 Magurele, Romania
| | - Rodica Zăvoianu
- Laboratory of Chemical Technology & Catalysis, Department of Organic Chemistry, Biochemistry & Catalysis, Faculty of Chemistry, University of Bucharest, 4-12, Blv. Regina Elisabeta, 030018 Bucharest, Romania;
- Research Center for Catalysts and Catalytic Processes, Faculty of Chemistry, University of Bucharest, 4-12 Blv Regina Elisabeta, 030018 Bucharest, Romania
| | - Ioan-Cezar Marcu
- Laboratory of Chemical Technology & Catalysis, Department of Organic Chemistry, Biochemistry & Catalysis, Faculty of Chemistry, University of Bucharest, 4-12, Blv. Regina Elisabeta, 030018 Bucharest, Romania;
- Research Center for Catalysts and Catalytic Processes, Faculty of Chemistry, University of Bucharest, 4-12 Blv Regina Elisabeta, 030018 Bucharest, Romania
| |
Collapse
|
4
|
Di Fede G, Giaccone G, Salmona M, Tagliavini F. Translational Research in Alzheimer's and Prion Diseases. J Alzheimers Dis 2019; 62:1247-1259. [PMID: 29172000 PMCID: PMC5869996 DOI: 10.3233/jad-170770] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Translational neuroscience integrates the knowledge derived by basic neuroscience with the development of new diagnostic and therapeutic tools that may be applied to clinical practice in neurological diseases. This information can be used to improve clinical trial designs and outcomes that will accelerate drug development, and to discover novel biomarkers which can be efficiently employed to early recognize neurological disorders and provide information regarding the effects of drugs on the underlying disease biology. Alzheimer’s disease (AD) and prion disease are two classes of neurodegenerative disorders characterized by incomplete knowledge of the molecular mechanisms underlying their occurrence and the lack of valid biomarkers and effective treatments. For these reasons, the design of therapies that prevent or delay the onset, slow the progression, or improve the symptoms associated to these disorders is urgently needed. During the last few decades, translational research provided a framework for advancing development of new diagnostic devices and promising disease-modifying therapies for patients with prion encephalopathies and AD. In this review, we provide present evidence of how supportive can be the translational approach to the study of dementias and show some results of our preclinical studies which have been translated to the clinical application following the ‘bed-to-bench-and-back’ research model.
Collapse
Affiliation(s)
- Giuseppe Di Fede
- IRCCS Foundation "Carlo Besta" Neurological Institute, Milan, Italy
| | - Giorgio Giaccone
- IRCCS Foundation "Carlo Besta" Neurological Institute, Milan, Italy
| | - Mario Salmona
- IRCCS Istituto di Ricerche Farmacologiche "Mario Negri", Milan, Italy
| | | |
Collapse
|
5
|
Amigoni L, Airoldi C, Natalello A, Romeo M, Diomede L, Tortora P, Regonesi ME. Methacycline displays a strong efficacy in reducing toxicity in a SCA3 Caenorhabditis elegans model. Biochim Biophys Acta Gen Subj 2019; 1863:279-290. [DOI: 10.1016/j.bbagen.2018.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 10/10/2018] [Accepted: 10/12/2018] [Indexed: 11/28/2022]
|
6
|
Makhouri FR, Ghasemi JB. In Silico Studies in Drug Research Against Neurodegenerative Diseases. Curr Neuropharmacol 2018; 16:664-725. [PMID: 28831921 PMCID: PMC6080098 DOI: 10.2174/1570159x15666170823095628] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 07/24/2017] [Accepted: 08/16/2017] [Indexed: 01/14/2023] Open
Abstract
Background Neurodegenerative diseases such as Alzheimer's disease (AD), amyotrophic lateral sclerosis, Parkinson's disease (PD), spinal cerebellar ataxias, and spinal and bulbar muscular atrophy are described by slow and selective degeneration of neurons and axons in the central nervous system (CNS) and constitute one of the major challenges of modern medicine. Computer-aided or in silico drug design methods have matured into powerful tools for reducing the number of ligands that should be screened in experimental assays. Methods In the present review, the authors provide a basic background about neurodegenerative diseases and in silico techniques in the drug research. Furthermore, they review the various in silico studies reported against various targets in neurodegenerative diseases, including homology modeling, molecular docking, virtual high-throughput screening, quantitative structure activity relationship (QSAR), hologram quantitative structure activity relationship (HQSAR), 3D pharmacophore mapping, proteochemometrics modeling (PCM), fingerprints, fragment-based drug discovery, Monte Carlo simulation, molecular dynamic (MD) simulation, quantum-mechanical methods for drug design, support vector machines, and machine learning approaches. Results Detailed analysis of the recently reported case studies revealed that the majority of them use a sequential combination of ligand and structure-based virtual screening techniques, with particular focus on pharmacophore models and the docking approach. Conclusion Neurodegenerative diseases have a multifactorial pathoetiological origin, so scientists have become persuaded that a multi-target therapeutic strategy aimed at the simultaneous targeting of multiple proteins (and therefore etiologies) involved in the development of a disease is recommended in future.
Collapse
Affiliation(s)
| | - Jahan B Ghasemi
- Chemistry Department, Faculty of Sciences, University of Tehran, Tehran, Iran
| |
Collapse
|
7
|
Socias SB, González-Lizárraga F, Avila CL, Vera C, Acuña L, Sepulveda-Diaz JE, Del-Bel E, Raisman-Vozari R, Chehin RN. Exploiting the therapeutic potential of ready-to-use drugs: Repurposing antibiotics against amyloid aggregation in neurodegenerative diseases. Prog Neurobiol 2017; 162:17-36. [PMID: 29241812 DOI: 10.1016/j.pneurobio.2017.12.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 12/07/2017] [Accepted: 12/07/2017] [Indexed: 01/02/2023]
Abstract
Neurodegenerative diseases are chronic and progressive disorders that affect specific regions of the brain, causing gradual disability and suffering that results in a complete inability of patients to perform daily functions. Amyloid aggregation of specific proteins is the most common biological event that is responsible for neuronal death and neurodegeneration in various neurodegenerative diseases. Therapeutic agents capable of interfering with the abnormal aggregation are required, but traditional drug discovery has fallen short. The exploration of new uses for approved drugs provides a useful alternative to fill the gap between the increasing incidence of neurodegenerative diseases and the long-term assessment of classical drug discovery technologies. Drug re-profiling is currently the quickest possible transition from bench to bedside. In this way, experimental evidence shows that some antibiotic compounds exert neuroprotective action through anti-aggregating activity on disease-associated proteins. The finding that many antibiotics can cross the blood-brain barrier and have been used for several decades without serious toxic effects makes them excellent candidates for therapeutic switching towards neurological disorders. The present review is, to our knowledge, the first extensive evaluation and analysis of the anti-amyloidogenic effect of different antibiotics on well-known disease-associated proteins. In addition, we propose a common structural signature derived from the antiaggregant antibiotic molecules that could be relevant to rational drug discovery.
Collapse
Affiliation(s)
- Sergio B Socias
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI, San Miguel de Tucumán, Argentina, Argentina
| | - Florencia González-Lizárraga
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI, San Miguel de Tucumán, Argentina, Argentina
| | - Cesar L Avila
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI, San Miguel de Tucumán, Argentina, Argentina
| | - Cecilia Vera
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI, San Miguel de Tucumán, Argentina, Argentina
| | - Leonardo Acuña
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI, San Miguel de Tucumán, Argentina, Argentina; Sorbonne Universite, UPMC Univ Paris 06, INSERM, CNRS, UM75, U1127, UMR 7225, Institut du Cerveau et de la Moelle Epinière, Paris, France
| | - Julia E Sepulveda-Diaz
- Sorbonne Universite, UPMC Univ Paris 06, INSERM, CNRS, UM75, U1127, UMR 7225, Institut du Cerveau et de la Moelle Epinière, Paris, France
| | - Elaine Del-Bel
- Department of Morphology, Physiology and Stomatology, Faculty of Odontology of Ribeirão Preto, University of São Paulo, Brazil; Center of Interdisciplinary Research on Applied Neurosciences (NAPNA), University of São Paulo, Brazil
| | - Rita Raisman-Vozari
- Sorbonne Universite, UPMC Univ Paris 06, INSERM, CNRS, UM75, U1127, UMR 7225, Institut du Cerveau et de la Moelle Epinière, Paris, France.
| | - Rosana N Chehin
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, and Instituto de Química Biológica "Dr. Bernabé Bloj", Facultad de Bioquímica, Química y Farmacia, UNT. Chacabuco 461, T4000ILI, San Miguel de Tucumán, Argentina, Argentina.
| |
Collapse
|
8
|
Pagadala NS, Syed K, Bhat R. In silico strategies on prion pathogenic conversion and inhibition from PrPC–PrPSc. Expert Opin Drug Discov 2017; 12:241-248. [DOI: 10.1080/17460441.2017.1287171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Nataraj S. Pagadala
- Department of Medical Microbiology and Immunology, 6-020 Katz Group Centre, University of Alberta, Edmonton, Canada
| | - Khajamohiddin Syed
- Unit for Drug Discovery Research, Department of Health Sciences, Faculty of Health and Environmental Sciences, Central University of Technology, Bloemfontein, South Africa
| | - Rakesh Bhat
- Department of Medical Microbiology and Immunology, 6-020 Katz Group Centre, University of Alberta, Edmonton, Canada
| |
Collapse
|
9
|
Schmitz M, Cramm M, Llorens F, Candelise N, Müller-Cramm D, Varges D, Schulz-Schaeffer WJ, Zafar S, Zerr I. Application of an in vitro-amplification assay as a novel pre-screening test for compounds inhibiting the aggregation of prion protein scrapie. Sci Rep 2016; 6:28711. [PMID: 27385410 PMCID: PMC4935936 DOI: 10.1038/srep28711] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 06/07/2016] [Indexed: 11/09/2022] Open
Abstract
In vitro amplification assays, such as real-time quaking-induced conversion (RT-QuIC) are used to detect aggregation activity of misfolded prion protein (PrP) in brain, cerebrospinal fluid (CSF) and urine samples from patients with a prion disease. We believe that the method also has a much broader application spectrum. In the present study, we applied RT-QuIC as a pre-screening test for substances that potentially inhibit the aggregation process of the cellular PrP (PrP(C)) to proteinase (PK)-resistant PrP(res). We chose doxycycline as the test substance as it has been tested successfully in animal models and proposed in clinical studies as a therapeutic for prion diseases. The RT-QuIC-reaction was seeded with brain tissue or CSF from sCJD patients and doxycycline was then added in different concentrations as well as at different time points. In both experiments, we observed a dose- and time-dependent inhibition of the RT-QuIC seeding response and a decrease of PK resistant PrP(res) when doxycycline was added. In contrast, ampicillin or sucrose had no effect on the RT-QuIC seeding response. Our study is the first to apply RT-QuIC as a pre-screening assay for compounds inhibiting the PrP aggregation in vitro and confirms that doxycycline is an efficient inhibitor of the PrP aggregation process in RT-QuIC analysis.
Collapse
Affiliation(s)
- Matthias Schmitz
- Department of Neurology, University Medical Center Göttingen and German Center for Neurodegenerative Diseases (DZNE)-Göttingen campus, Göttingen, Germany
| | - Maria Cramm
- Department of Neurology, University Medical Center Göttingen and German Center for Neurodegenerative Diseases (DZNE)-Göttingen campus, Göttingen, Germany
| | - Franc Llorens
- Department of Neurology, University Medical Center Göttingen and German Center for Neurodegenerative Diseases (DZNE)-Göttingen campus, Göttingen, Germany
| | - Niccolò Candelise
- Department of Neurology, University Medical Center Göttingen and German Center for Neurodegenerative Diseases (DZNE)-Göttingen campus, Göttingen, Germany
| | - Dominik Müller-Cramm
- Department of Neurology, University Medical Center Göttingen and German Center for Neurodegenerative Diseases (DZNE)-Göttingen campus, Göttingen, Germany
| | - Daniela Varges
- Department of Neurology, University Medical Center Göttingen and German Center for Neurodegenerative Diseases (DZNE)-Göttingen campus, Göttingen, Germany
| | | | - Saima Zafar
- Department of Neurology, University Medical Center Göttingen and German Center for Neurodegenerative Diseases (DZNE)-Göttingen campus, Göttingen, Germany
| | - Inga Zerr
- Department of Neurology, University Medical Center Göttingen and German Center for Neurodegenerative Diseases (DZNE)-Göttingen campus, Göttingen, Germany
| |
Collapse
|
10
|
Wang X, Cui M, Zhao C, He L, Zhu D, Wang B, Du W. Regulation of aggregation behavior and neurotoxicity of prion neuropeptides by platinum complexes. Inorg Chem 2014; 53:5044-54. [PMID: 24787240 DOI: 10.1021/ic500092t] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Prion diseases belong to a group of infectious, fatal neurodegenerative disorders. The conformational conversion of a cellular prion protein (PrP(C)) into an abnormal misfolded isoform (PrP(Sc)) is the key event in prion disease pathology. PrP106-126 resembles PrP(Sc) in some physicochemical and biological characteristics, such as apoptosis induction in neurons, fibrillar formation, and mediation of the conversion of native cellular PrP(C) to PrP(Sc). Numerous studies have been conducted to explore the inhibiting methods on the aggregation and neurotoxicity of prion neuropeptide PrP106-126. We showed that PrP106-126 aggregation, as assessed by fluorescence assay and atomic force microscopy, is inhibited by platinum complexes cisplatin, carboplatin, and Pt(bpy)Cl2. ESI-MS and NMR assessments of PrP106-126 and its mutant peptides demonstrate that platinum complexes bind to the peptides in coordination and nonbonded interactions, which rely on the ligand properties and the peptide sequence. In peptides, methionine residue is preferred as a potent binding site over histidine residue for the studied platinum complexes, implying a typical thiophile characteristic of platinum. The neurotoxicity induced by PrP106-126 is better inhibited by Pt(bpy)Cl2 and cisplatin. Furthermore, the ligand configuration contributes to both the binding affinity and the inhibition of peptide aggregation. The pursuit of novel platinum candidates that selectively target prion neuropeptide is noteworthy for medicinal inorganic chemistry and chemical biology.
Collapse
Affiliation(s)
- Xuesong Wang
- Department of Chemistry, Renmin University of China , Beijing 100872, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
11
|
Zhao C, Wang X, He L, Zhu D, Wang B, Du W. Influence of gold–bipyridyl derivants on aggregation and disaggregation of the prion neuropeptide PrP106–126. Metallomics 2014; 6:2117-25. [DOI: 10.1039/c4mt00219a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gold–bipyridyl derivants affect aggregation and disaggregation of a prion neuropeptide PrP106–126.
Collapse
Affiliation(s)
- Cong Zhao
- Department of Chemistry
- Renmin University of China
- Beijing, China
| | - Xuesong Wang
- Department of Chemistry
- Renmin University of China
- Beijing, China
| | - Lei He
- Department of Chemistry
- Renmin University of China
- Beijing, China
| | - Dengsen Zhu
- Department of Chemistry
- Renmin University of China
- Beijing, China
| | - Baohuai Wang
- College of Chemistry and Molecular Engineering
- Peking University
- Beijing, China
| | - Weihong Du
- Department of Chemistry
- Renmin University of China
- Beijing, China
| |
Collapse
|
12
|
Stoilova T, Colombo L, Forloni G, Tagliavini F, Salmona M. A new face for old antibiotics: tetracyclines in treatment of amyloidoses. J Med Chem 2013; 56:5987-6006. [PMID: 23611039 DOI: 10.1021/jm400161p] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The use of tetracyclines has declined because of the appearance of resistant bacterial strains. However, the indications of nonantimicrobial activities of these drugs have considerably raised interest and triggered clinical trials for a number of different pathologies. About 10 years ago we first reported that tetracyclines inhibited the aggregation of prion protein fragments and Alzheimer's β peptides, destabilizing their aggregates and promoting their degradation by proteases. On the basis of these observations, the antiamyloidogenic effects of tetracyclines on a variety of amyloidogenic proteins were studied and confirmed by independent research groups. In this review we comment on the data available on their antiamyloidogenic activity in preclinical and clinical studies. We also put forward that the beneficial effects of these drugs are a result of a peculiar pleiotropic action, comprising their interaction with oligomers and disruption of fibrils, as well as their antioxidant, anti-inflammatory, antiapoptotic, and matrix metalloproteinase inhibitory activities.
Collapse
Affiliation(s)
- Tatiana Stoilova
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Via Giuseppe La Masa 19, 20156 Milano, Italy
| | | | | | | | | |
Collapse
|
13
|
Fuoco D. Classification Framework and Chemical Biology of Tetracycline-Structure-Based Drugs. Antibiotics (Basel) 2012; 1:1-13. [PMID: 27029415 PMCID: PMC4790241 DOI: 10.3390/antibiotics1010001] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 05/21/2012] [Accepted: 06/08/2012] [Indexed: 12/27/2022] Open
Abstract
By studying the literature about tetracyclines (TCs), it becomes clearly evident that TCs are very dynamic molecules. In some cases, their structure-activity-relationship (SAR) are well known, especially against bacteria, while against other targets, they are virtually unknown. In other diverse fields of research-such as neurology, oncology and virology-the utility and activity of the tetracyclines are being discovered and are also emerging as new technological fronts. The first aim of this paper is to classify the compounds already used in therapy and prepare the schematic structure that includes the next generation of TCs. The second aim of this work is to introduce a new framework for the classification of old and new TCs, using a medicinal chemistry approach to the structure of those drugs. A fully documented Structure-Activity-Relationship (SAR) is presented with the analysis data of antibacterial and nonantibacterial (antifungal, antiviral and anticancer) tetracyclines. The lipophilicity and the conformational interchangeability of the functional groups are employed to develop the rules for TC biological activity.
Collapse
Affiliation(s)
- Domenico Fuoco
- Italian National Board of Chemists and Italian Chemical Society, Rome, 00187, Italy.
- McGill Nutrition and Performance Laboratory, Department of Oncology, School of Medicine, McGill University, 5252 Maisonneuve Street, Montreal, QC, H4A3S5, Canada.
| |
Collapse
|
14
|
Amat A, Fantacci S, De Angelis F, Carlotti B, Elisei F. DFT/TDDFT investigation of the stepwise deprotonation in tetracycline: pKa assignment and UV–vis spectroscopy. Theor Chem Acc 2012. [DOI: 10.1007/s00214-012-1218-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Carlotti B, Fuoco D, Elisei F. Fast and ultrafast spectroscopic investigation of tetracycline derivatives in organic and aqueous media. Phys Chem Chem Phys 2010; 12:15580-91. [PMID: 20661497 DOI: 10.1039/c0cp00044b] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The photophysical properties of seven tetracycline derivatives (tetracycline, oxytetracycline, demeclocycline, chlortetracycline, doxycycline, minocycline and meclocycline) in organic solvents and aqueous solution were studied using steady-state absorption and fluorescence techniques and transient absorption spectroscopies with nanosecond and femtosecond time resolution. The molecular structure, solvent and pH effects on the optical properties of this class of pharmaceutically interesting compounds were investigated in detail. The investigation furnished a complete description of the nature, the spectral and kinetic properties of the excited states formed upon irradiation. All the tetracycline derivatives exhibited a similar behaviour, and the photophysics of these molecules is different in organic solvents and in aqueous medium, where they exhibit a significant pH dependence. In water, compared to organic solvents, these compounds showed a blue-shifted bathochromic absorption band, a red-shifted emission spectrum, an increased Stokes shift and a decreased fluorescence quantum yield. These findings, together with the overall investigated solvent effect, suggested that in aqueous solvent additional fast and non-radiative deactivation processes, responsible for the large Stokes Shift and for the reduced fluorescence efficiency, are present. In fact, in organic media just two transients were observed during the ultrafast time-resolved investigation: the vibrationally hot S(1) state which was quickly stabilized by solvent reorganization to the relaxed S(1) state. This state showed lifetimes of tens of picoseconds and relaxed by fluorescence and internal conversion. No longer-lived transients were detected. In aqueous solution the excited-state deactivation of tetracyclines was found to be more complicated. Different protonated and tautomeric forms of the S(1) state were detected: a component which showed decay times of tens of picoseconds and a component which was longer-lived. A significant pH effect on the nature and number of these components was found. In fact, a remarkable change in the Stokes shift and in the fluorescence efficiency was also observed on going from acidic to basic aqueous solutions. The most important variations in the absorption properties were found in the pH range in which the second acid-base equilibrium takes place. The tetracycline lowest excited triplet state was observed as a 'rest absorption' during the femtosecond-resolved measurements in aqueous solution; through the nanosecond-resolved laser flash photolysis study, lower-energy radical species were detected, characterized by lifetimes of tens of microseconds. The formation of these species may be involved in the observed phototoxicity of the tetracycline drugs.
Collapse
Affiliation(s)
- Benedetta Carlotti
- Chemistry Department, and Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, via Elce di Sotto 8, 06123 Perugia, Italy
| | | | | |
Collapse
|
16
|
Zhang J. Optimal molecular structures of prion AGAAAAGA amyloid fibrils formatted by simulated annealing. J Mol Model 2010; 17:173-9. [PMID: 20411399 DOI: 10.1007/s00894-010-0691-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 02/11/2010] [Indexed: 02/04/2023]
Abstract
To date, there is little structural data available on the AGAAAAGA palindrome in the hydrophobic region (113-120) of prion proteins, although many experimental studies have shown that this region has amyloid fibril forming properties. This region belongs to the N-terminal unstructured region (1-123) of prions, the structure of which has proved hard to determine using NMR or X-ray crystallography. This paper reports the successful construction of three amyloid fibril models for this region. The models were formatted by standard simulated annealing using suitable templates from the Protein Data Bank, and were refined using several traditional optimization methods within AMBER. Because the NMR or X-ray structure of the hydrophobic region AGAAAAGA of prion proteins has not yet been determined, these models can be used as a reference for experimental studies on this region. The results presented here confirm standard simulated annealing as an effective tool in molecular modeling. The three constructed models for amyloid fibrils may be useful in furthering the goals of medicinal chemistry in this field.
Collapse
Affiliation(s)
- Jiapu Zhang
- Victorian Life Sciences Computation Initiative, The University of Melbourne, 1-3 Hull Road, Croydon, Victoria, VIC 3136, Australia.
| |
Collapse
|