1
|
Benghanem S, Mesli F, Fatima Zohra HA, Nacereddine C, Hadjer C, Abdellatif M. Discovery of novel and highly potential inhibitors of glycogen synthase kinase 3-beta (GSK-3β) through structure-based pharmacophore modeling, virtual computational screening, docking and in silico ADMET analysis. J Biomol Struct Dyn 2024; 42:7091-7106. [PMID: 37498130 DOI: 10.1080/07391102.2023.2238062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023]
Abstract
The protein Glycogen Synthase Kinase 3-Beta (GSK-3β), is a promising therapeutic target for treating various diseases such as neurodegenerative disorders, diabetes, inflammation and cancer. This study aims to investigate the potential of compounds targeting inflammation or carbohydrate metabolism to selectively inhibit GSK3β by binding to its ATP site. To achieve this goal, we filtered a database of 49367 molecules involved in carbohydrate metabolism or targeting inflammation using various computational analyses, including pharmacophore modeling, molecular docking, dynamic simulation, prime MM-GBSA calculation, and in silico ADME studies. We generated a pharmacophore model (hypo S: AADDHRR) using two different crystallographic complexes of GSK3β and evaluated the model's performance in identifying hits using various parameters, including EF, GH, ROC, AUC and BEDROC. Subsequently, we performed various dockings (HTVS, SP, XP and IFD) for the retrieved hits and found that, 5 out of the top 10 ranked compounds had the scaffold of pyrazolidine 3,5-dione, which has never been reported to inhibit kinases. We also conducted ADMET studies to and concluded that compound N6 exhibited the best pharmacokinetic profile passing the blood-brain barrier, possessing high lipophilicity and a high coefficient of skin permeability in the intestines, along with good bioavailability and low toxicity risk assessment. Dynamic simulation were also performed indicating that compounds N6 derived from pyrazolidine 3,5-dione demonstrated better binding potential for GSK3β during the simulation period. Therefore, we propose that compounds derived from pyrazolidine-3,5-dione, which modulate the activity of lysosomal alpha-glucosidase could serve as a novel scaffold for the selective inhibition of GSK-3β.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Soumia Benghanem
- Faculty of Medicine, Laboratory of Therapeutic Chemistry, Tlemcen University, Tlemcen, Algeria
| | - Fouzia Mesli
- Faculty of Science, Laboratory of Natural and Bio-Actives Substances, Tlemcen University, Tlemcen, Algeria
| | - Hadjadj Aoul Fatima Zohra
- Faculty of Pharmacy, Laboratory of Therapeutic Chemistry, Benyoucef Benkhadda University, Tlemcen, Algeria
| | - Chaida Nacereddine
- Faculty of Medicine, Laboratory of Therapeutic Chemistry, Tlemcen University, Tlemcen, Algeria
| | - Chenaffa Hadjer
- Faculty of Medicine, Laboratory of Therapeutic Chemistry, Tlemcen University, Tlemcen, Algeria
| | | |
Collapse
|
2
|
Giridhara Prema S, Chandrasekaran J, Kanekar S, George M, Prasad TSK, Raju R, Dagamajalu S, Balaya RDA. Cisplatin and Procaterol Combination in Gastric Cancer? Targeting Checkpoint Kinase 1 for Cancer Drug Discovery and Repurposing by an Integrated Computational and Experimental Approach. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2024; 28:8-23. [PMID: 38190280 DOI: 10.1089/omi.2023.0163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Checkpoint kinase 1 (CHK1), a serine/threonine kinase, plays a crucial role in cell cycle arrest and is a promising therapeutic target for drug development against cancers. CHK1 coordinates cell cycle checkpoints in response to DNA damage, facilitating repair of single-strand breaks, and maintains the genome integrity in response to replication stress. In this study, we employed an integrated computational and experimental approach to drug discovery and repurposing, aiming to identify a potent CHK1 inhibitor among existing drugs. An e-pharmacophore model was developed based on the three-dimensional crystal structure of the CHK1 protein in complex with CCT245737. This model, characterized by seven key molecular features, guided the screening of a library of drugs through molecular docking. The top 10% of scored ligands were further examined, with procaterol emerging as the leading candidate. Procaterol demonstrated interaction patterns with the CHK1 active site similar to CHK1 inhibitor (CCT245737), as shown by molecular dynamics analysis. Subsequent in vitro assays, including cell proliferation, colony formation, and cell cycle analysis, were conducted on gastric adenocarcinoma cells treated with procaterol, both as a monotherapy and in combination with cisplatin. Procaterol, in synergy with cisplatin, significantly inhibited cell growth, suggesting a potentiated therapeutic effect. Thus, we propose the combined application of cisplatin and procaterol as a novel potential therapeutic strategy against human gastric cancer. The findings also highlight the relevance of CHK1 kinase as a drug target for enhancing the sensitivity of cytotoxic agents in cancer.
Collapse
Affiliation(s)
- Suchitha Giridhara Prema
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | - Jaikanth Chandrasekaran
- Sri Ramachandra Faculty of Pharmacy, Sri Ramachandra Institute of Higher Education and Research (Deemed to be University), Chennai, India
| | - Saptami Kanekar
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to be University), Mangalore, India
| | - Mejo George
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to be University), Mangalore, India
| | | | - Rajesh Raju
- Centre for Integrative Omics Data Science, Yenepoya (Deemed to be University), Mangalore, India
| | - Shobha Dagamajalu
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, India
| | | |
Collapse
|
3
|
Zaki I, Masoud RE, Hamoud MM, Ali OAA, Abualnaja M, Fayad E, Almaaty AHA, Elnaghia LK. Design, synthesis and cytotoxicity screening of new synthesized pyrimidine-5-carbonitrile derivatives showing marked apoptotic effect. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
4
|
Shetve VV, Bhowmick S, Alissa SA, Alothman ZA, Wabaidu SM, Asmary FA, Alhajri HM, Islam MA. Identification of selective Lyn inhibitors from the chemical databases through integrated molecular modelling approaches. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2021; 32:1-27. [PMID: 33161767 DOI: 10.1080/1062936x.2020.1799433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/19/2020] [Indexed: 06/11/2023]
Abstract
In the current study, the Asinex and ChEBI databases were virtually screened for the identification of potential Lyn protein inhibitors. Therefore, a multi-steps molecular docking study was carried out using the VSW utility tool embedded in Maestro user interface of the Schrödinger suite. On initial screening, molecules having a higher XP-docking score and binding free energy compared to Staurosporin were considered for further assessment. Based on in silico pharmacokinetic analysis and a common-feature pharmacophore mapping model developed from the Staurosporin, four molecules were proposed as promising Lyn inhibitors. The binding interactions of all proposed Lyn inhibitors revealed strong ligand efficiency in terms of energy score obtained in molecular modelling analyses. Furthermore, the dynamic behaviour of each molecule in association with the Lyn protein-bound state was assessed through an all-atoms molecular dynamics (MD) simulation study. MD simulation analyses were confirmed with notable intermolecular interactions and consistent stability for the Lyn protein-ligand complexes throughout the simulation. High negative binding free energy of identified four compounds calculated through MM-PBSA approach demonstrated a strong binding affinity towards the Lyn protein. Hence, the proposed compounds might be taken forward as potential next-generation Lyn kinase inhibitors for managing numerous Lyn associated diseases or health complications after experimental validation.
Collapse
Affiliation(s)
- V V Shetve
- Department of Bioinformatics, Rajiv Gandhi Institute of IT and Biotechnology, Bharati Vidyapeeth Deemed University , Pune, India
| | - S Bhowmick
- Department of Chemical Technology, University of Calcutta , Kolkata, India
| | - S A Alissa
- Chemistry Department, College of Science, Princess Nourah Bint Abdulrahman University , Riyadh, Saudi Arabia
| | - Z A Alothman
- Department of Chemistry, College of Science, King Saud University , Riyadh, Saudi Arabia
| | - S M Wabaidu
- Department of Chemistry, College of Science, King Saud University , Riyadh, Saudi Arabia
| | - F A Asmary
- Department of Chemistry, College of Science, King Saud University , Riyadh, Saudi Arabia
| | - H M Alhajri
- Department of Chemistry, College of Science, King Saud University , Riyadh, Saudi Arabia
| | - M A Islam
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester , Manchester, UK
- School of Health Sciences, University of Kwazulu-Natal , Durban, South Africa
- Department of Chemical Pathology, Faculty of Health Sciences, University of Pretoria and National Health Laboratory Service Tshwane Academic Division , Pretoria, South Africa
| |
Collapse
|
5
|
Hu Y, Feng J, Wu F. The Multiplicity of Polypeptide GalNAc-Transferase: Assays, Inhibitors, and Structures. Chembiochem 2018; 19:2503-2521. [PMID: 30152088 DOI: 10.1002/cbic.201800303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 08/27/2018] [Indexed: 12/18/2022]
Abstract
Mucin-type O-glycosylation is the dominant form of glycosylation in eukaryotes and plays an important role in various physiological processes. The polypeptide GalNAc-transferase (GalNAc-T) catalyzes the first step in the attachment of mucin-type O-glycosylation. GalNAc-T was recently uncovered to be linked with cancer, atherogenic dyslipidemia, and X-linked hypophosphatemic rickets. Therefore, it has attracted increasing interest as a new target for exploring the underlying mechanism and developing new treatments for related diseases. Decades of studies on GalNAc-T have laid a stable foundation for understanding the catalytic mechanism, determining atom-resolution three-dimensional structures, and developing various types of biochemical assays as well as small-molecule inhibitor leads. Here, we systematically summarize this invaluable knowledge on GalNAc-T and cultivate new perspectives to foster breakthrough points for mucin-type O-glycosylation.
Collapse
Affiliation(s)
- Youtian Hu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Juan Feng
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fang Wu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
6
|
AbdElhameid MK, Labib MB, Negmeldin AT, Al-Shorbagy M, Mohammed MR. Design, synthesis, and screening of ortho-amino thiophene carboxamide derivatives on hepatocellular carcinomaas VEGFR-2Inhibitors. J Enzyme Inhib Med Chem 2018; 33:1472-1493. [PMID: 30191744 PMCID: PMC6136361 DOI: 10.1080/14756366.2018.1503654] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/21/2018] [Accepted: 07/16/2018] [Indexed: 12/26/2022] Open
Abstract
In this work, design, synthesis, and screening of thiophene carboxamides 4-13 and 16-23 as dual vascular endothelial growth factor receptors (VEGFRs) and mitotic inhibitors was reported. All compounds were screened against two gastrointestinal solid cancer cells, HepG-2 and HCT-116 cell lines. The most active cytotoxic derivatives 5 and 21 displayed 2.3- and 1.7-fold higher cytotoxicity than Sorafenib against HepG-2 cells. Cell cycle and apoptosis analyses for compounds 5 and 21 showed cells accumulation in the sub-G1 phase, and cell cycle arrest at G2/M phase. The apoptotic inducing activities of compounds 5 and 21were correlated to the elevation of p53, increase in Bax/Bcl-2 ratio, and increase in caspase-3/7.Compounds 5 and 21 showed potent inhibition againstVEGFR-2 (IC50 = 0.59 and 1.29 μM) and β-tubulin polymerization (73% and 86% inhibition at their IC50 values).Molecular docking was performed with VEGFR-2 and tubulin binding sites to explain the displayed inhibitory activities.
Collapse
Affiliation(s)
- Mohammed K. AbdElhameid
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Madlen B. Labib
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Ahmed T. Negmeldin
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Department of Pharmaceutical Sciences College of Pharmacy, Gulf Medical University, Gulf Medical University, Ajman, UAE
| | - Muhammad Al-Shorbagy
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Pharmacology and Toxicology Department, School of Pharmacy, NewGiza University, Egypt
| | - Manal R. Mohammed
- Department of Radiation Biology, National Center for Radiation Research and Technology, Cairo, Egypt
| |
Collapse
|
7
|
Pan Z, Chen Y, Liu J, Jiang Q, Yang S, Guo L, He G. Design, synthesis, and biological evaluation of polo-like kinase 1/eukaryotic elongation factor 2 kinase (PLK1/EEF2K) dual inhibitors for regulating breast cancer cells apoptosis and autophagy. Eur J Med Chem 2018; 144:517-528. [PMID: 29288948 DOI: 10.1016/j.ejmech.2017.12.046] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 12/06/2017] [Accepted: 12/13/2017] [Indexed: 01/09/2023]
Abstract
Both PLK1 and EEF2K are serine⁄threonine kinases that play important roles in the proliferation and programmed cell death of various types of cancer. They are highly expressed in breast cancer tissues. Based on the multiple-complexes generated pharmacophore models of PLK1 and homology models of EEF2K, the integrated virtual screening is performed to discover novel PLK1/EEF2K dual inhibitors. The top ten hit compounds are selected and tested in vitro, and five of them display PLK1 and EEF2K inhibition in vitro. Based on the docking modes of the most potent hit compound, a series of derivatives are synthesized, characterized and biological assayed on the PLK1, EEF2K as well as breast cancer cell proliferation models. Compound 18i with satisfied inhibitory potency are shifted to molecular mechanism studies contained molecular dynamics simulations, cell cycles, apoptosis and autophagy assays. Our results suggested that these novel PLK1/EEF2K dual inhibitors can be used as lead compounds for further development breast cancer chemotherapy.
Collapse
Affiliation(s)
- Zhaoping Pan
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China; State Key Laboratory of Biotherapy and Department of Breast Surgery, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Yujuan Chen
- State Key Laboratory of Biotherapy and Department of Breast Surgery, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Jingyan Liu
- State Key Laboratory of Biotherapy and Department of Breast Surgery, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Qinglin Jiang
- State Key Laboratory of Biotherapy and Department of Breast Surgery, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China; School of Pharmacy and Sichuan Province College Key Laboratory of Structure-Specific Small Molecule Drugs, Chengdu Medical College, Chengdu 610500, China.
| | - Shengyong Yang
- State Key Laboratory of Biotherapy and Department of Breast Surgery, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Li Guo
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Gu He
- Key Laboratory of Drug-Targeting of Education Ministry and Department of Medicinal Chemistry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China; State Key Laboratory of Biotherapy and Department of Breast Surgery, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China.
| |
Collapse
|
8
|
Identification of novel inhibitors of human Chk1 using pharmacophore-based virtual screening and their evaluation as potential anti-cancer agents. J Comput Aided Mol Des 2014; 28:1247-56. [DOI: 10.1007/s10822-014-9800-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 10/03/2014] [Indexed: 12/22/2022]
|
9
|
Sohn YS, Park C, Lee Y, Kim S, Thangapandian S, Kim Y, Kim HH, Suh JK, Lee KW. Multi-conformation dynamic pharmacophore modeling of the peroxisome proliferator-activated receptor γ for the discovery of novel agonists. J Mol Graph Model 2013; 46:1-9. [PMID: 24104184 DOI: 10.1016/j.jmgm.2013.08.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 08/09/2013] [Accepted: 08/12/2013] [Indexed: 11/18/2022]
Abstract
Activation of the peroxisome proliferator-activated receptor γ (PPARγ) is important for the treatment of type 2 diabetes and obesity through the regulation of glucose metabolism and fatty acid accumulation. Hence, the discovery of novel PPARγ agonists is necessary to overcome these diseases. In this study, a newly developed approach, multi-conformation dynamic pharmacophore modeling (MCDPM), was used for screening candidate compounds that can properly bind PPARγ. Highly populated structures obtained from molecular dynamics (MD) simulations were selected by clustering analysis. Based on these structures, pharmacophore models were generated from the ligand-binding pocket and then validated to check the rationality. Consequently, two hits were retrieved as final candidates by utilizing virtual screening and molecular docking simulations. These compounds can be used in the design of novel PPARγ agonists.
Collapse
Affiliation(s)
- Young-sik Sohn
- Division of Applied Life Science (BK21 Program), Systems and Synthetic Agrobiotech Center (SSAC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), 501 Jinju-daero, Gazha-dong, Jinju 660-701, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Ambre PK, Pissurlenkar RRS, Coutinho EC, Iyer RP. Identification of new checkpoint kinase-1 (Chk1) inhibitors by docking, 3D-QSAR, and pharmacophore-modeling methods. CAN J CHEM 2012. [DOI: 10.1139/v2012-047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Inhibition of checkpoint kinase-1 (Chk1) by small molecules is of great therapeutic interest in the field of oncology and for understanding cell-cycle regulations. This paper presents a model with elements from docking, pharmacophore mapping, the 3D-QSAR approaches CoMFA, CoMSIA and CoRIA, and virtual screening to identify novel hits against Chk1. Docking, 3D-QSAR (CoRIA, CoMFA and CoMSIA), and pharmacophore studies delineate crucial site points on the Chk1 inhibitors, which can be modified to improve activity. The docking analysis showed residues in the proximity of the ligands that are involved in ligand–receptor interactions, whereas CoRIA models were able to derive the magnitude of these interactions that impact the activity. The ligand-based 3D-QSAR methods (CoMFA and CoMSIA) highlight key areas on the molecules that are beneficial and (or) detrimental for activity. The docking studies and 3D-QSAR models are in excellent agreement in terms of binding-site interactions. The pharmacophore hypotheses validated using sensitivity, selectivity, and specificity parameters is a four-point model, characterized by a hydrogen-bond acceptor (A), hydrogen-bond donor (D), and two hydrophobes (H). This map was used to screen a database of 2.7 million druglike compounds, which were pruned to a small set of potential inhibitors by CoRIA, CoMFA, and CoMSIA models with predicted activity in the range of 8.5–10.5 log units.
Collapse
Affiliation(s)
- Premlata K. Ambre
- Molecular Simulations Group, Department of Pharmaceutical Chemistry, Bombay College of Pharmacy, Kalina, Santacruz (East), Mumbai 400 098 India
| | - Raghuvir R. S. Pissurlenkar
- Molecular Simulations Group, Department of Pharmaceutical Chemistry, Bombay College of Pharmacy, Kalina, Santacruz (East), Mumbai 400 098 India
| | - Evans C. Coutinho
- Molecular Simulations Group, Department of Pharmaceutical Chemistry, Bombay College of Pharmacy, Kalina, Santacruz (East), Mumbai 400 098 India
| | | |
Collapse
|
11
|
Lu S, Sun SL, Liu HC, Chen YD, Yuan HL, Gao YP, Yang P, Lu T. Identification of novel polo-like kinase 1 inhibitors by a hybrid virtual screening. Chem Biol Drug Des 2012; 80:328-39. [PMID: 22583481 DOI: 10.1111/j.1747-0285.2012.01412.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Polo-like kinase 1 is an important and attractive oncological target that plays a key role in mitosis and cytokinesis. A combined pharmacophore- and docking-based virtual screening was performed to identify novel polo-like kinase 1 inhibitors. A total of 34 hit compounds were selected and tested in vitro, and some compounds showed inhibition of polo-like kinase 1 and human tumor cell growth. The most potent compound (66) inhibited polo-like kinase 1 with an IC(50) value of 6.99 μm. The docked binding models of two hit compounds were discussed in detail. These compounds contained novel chemical scaffolds and may be used as foundations for the development of novel classes of polo-like kinase 1 inhibitors.
Collapse
Affiliation(s)
- Shuai Lu
- Laboratory of Molecular Design and Drug Discovery, China Pharmaceutical University, Nanjing 211198, China
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Sanders MPA, Barbosa AJM, Zarzycka B, Nicolaes GA, Klomp JP, de Vlieg J, Del Rio A. Comparative Analysis of Pharmacophore Screening Tools. J Chem Inf Model 2012; 52:1607-20. [DOI: 10.1021/ci2005274] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Marijn P. A. Sanders
- Computational Drug Discovery
Group, CMBI, Radboud University Nijmegen, Geert Grooteplein Zuid 26-28,
6525 GA, Nijmegen, The Netherlands
| | - Arménio J. M. Barbosa
- Department of Experimental Pathology,
Alma Mater Studiorum, University of Bologna, Via S. Giacomo 14, 40126
Bologna, Italy
| | - Barbara Zarzycka
- Department
of Biochemistry, Cardiovascular
Research Institute Maastricht, Maastricht University, Universiteitssingel
50, 6229 ER, The Netherlands
| | - Gerry A.F. Nicolaes
- Department
of Biochemistry, Cardiovascular
Research Institute Maastricht, Maastricht University, Universiteitssingel
50, 6229 ER, The Netherlands
| | - Jan P.G. Klomp
- Lead Pharma Medicine, Kapittelweg
29, 6525 EN, Nijmegen, The Netherlands
| | - Jacob de Vlieg
- Computational Drug Discovery
Group, CMBI, Radboud University Nijmegen, Geert Grooteplein Zuid 26-28,
6525 GA, Nijmegen, The Netherlands
- Netherlands eScience Center,
Science Park 140, 1098XG, Amsterdam, The Netherlands
| | - Alberto Del Rio
- Department of Experimental Pathology,
Alma Mater Studiorum, University of Bologna, Via S. Giacomo 14, 40126
Bologna, Italy
| |
Collapse
|
13
|
Sanders MPA, McGuire R, Roumen L, de Esch IJP, de Vlieg J, Klomp JPG, de Graaf C. From the protein's perspective: the benefits and challenges of protein structure-based pharmacophore modeling. MEDCHEMCOMM 2012. [DOI: 10.1039/c1md00210d] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Protein structure-based pharmacophore (SBP) models derive the molecular features a ligand must contain to be biologically active by conversion of protein properties to reciprocal ligand space. SBPs improve molecular understanding of ligand–protein interactions and can be used as valuable tools for hit and lead optimization, compound library design, and target hopping.
Collapse
Affiliation(s)
- Marijn P. A. Sanders
- Computational Drug Discovery Group
- CMBI
- Radboud University Nijmegen
- Nijmegen
- The Netherlands
| | | | - Luc Roumen
- Division of Medicinal Chemistry
- LACDR
- VU University Amsterdam
- Amsterdam
- The Netherlands
| | - Iwan J. P. de Esch
- Division of Medicinal Chemistry
- LACDR
- VU University Amsterdam
- Amsterdam
- The Netherlands
| | - Jacob de Vlieg
- Computational Drug Discovery Group
- CMBI
- Radboud University Nijmegen
- Nijmegen
- The Netherlands
| | | | - Chris de Graaf
- Division of Medicinal Chemistry
- LACDR
- VU University Amsterdam
- Amsterdam
- The Netherlands
| |
Collapse
|
14
|
Tai W, Lu T, Yuan H, Wang F, Liu H, Lu S, Leng Y, Zhang W, Jiang Y, Chen Y. Pharmacophore modeling and virtual screening studies to identify new c-Met inhibitors. J Mol Model 2011; 18:3087-100. [PMID: 22203475 DOI: 10.1007/s00894-011-1328-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 12/05/2011] [Indexed: 10/14/2022]
Abstract
Mesenchymal epithelial transition factor (c-Met) is an attractive target for cancer therapy. Three-dimensional pharmacophore hypotheses were built based on a set of known structurally diverse c-Met inhibitors. The best pharmacophore model, which identified inhibitors with an associated correlation coefficient of 0.983 between their experimental and estimated IC(50) values, consisted of two hydrogen-bond acceptors, one hydrophobic, and one ring aromatic feature. The highly predictive power of the model was rigorously validated by test set prediction and Fischer's randomization method. The high values of enrichment factor and receiver operating characteristic (ROC) score indicated the model performed fairly well at distinguishing active from inactive compounds. The model was then applied to screen compound database for potential c-Met inhibitors. A filtering protocol, including druggability and molecular docking, were also applied in hits selection. The final 38 molecules, which exhibited good estimated activities, desired binding mode and favorable drug likeness were identified as potential c-Met inhibitors. Their novel backbone structures could be served as scaffolds for further study, which may facilitate the discovery and rational design of potent c-Met kinase inhibitors.
Collapse
Affiliation(s)
- Wenting Tai
- Laboratory of Molecular Design and Drug Discovery, School of Basic Science, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Tang C, Zhu X, Huang D, Zan X, Yang B, Li Y, Du X, Qian H, Huang W. A specific pharmacophore model of sodium-dependent glucose co-transporter 2 (SGLT2) inhibitors. J Mol Model 2011; 18:2795-804. [DOI: 10.1007/s00894-011-1303-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 11/04/2011] [Indexed: 10/15/2022]
|
16
|
Sun HP, Zhu J, Chen FH, You QD. Structure-Based Pharmacophore Modeling from Multicomplex: a Comprehensive Pharmacophore Generation of Protein Kinase CK2 and Virtual Screening Based on it for Novel Inhibitors. Mol Inform 2011; 30:579-92. [DOI: 10.1002/minf.201000178] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Accepted: 04/03/2011] [Indexed: 11/07/2022]
|
17
|
Gruszczyński P, Smalara K, Obuchowski M, Kaźmierkiewicz R. ATP and its N⁶-substituted analogues: parameterization, molecular dynamics simulation and conformational analysis. J Mol Model 2010; 17:1081-90. [PMID: 20668896 PMCID: PMC3096017 DOI: 10.1007/s00894-010-0808-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 07/12/2010] [Indexed: 11/26/2022]
Abstract
In this work we used a combination of classical molecular dynamics and simulated annealing techniques to shed more light on the conformational flexibility of 12 adenosine triphosphate (ATP) analogues in a water environment. We present simulations in AMBER force field for ATP and 12 published analogues [Shah et al. (1997) Proc Natl Acad Sci USA 94: 3565–3570]. The calculations were carried out using the generalized Born (GB) solvation model in the presence of the cation Mg2+. The ion was placed at a close distance (2 Å) from the charged oxygen atoms of the beta and gamma phosphate groups of the −3 negatively charged ATP analogue molecules. Analysis of the results revealed the distribution of inter-proton distances H8–H1′ and H8–H2′ versus the torsion angle ψ (C4–N9-C1′–O4′) for all conformations of ATP analogues. There are two gaps in the distribution of torsion angle ψ values: the first is between −30 and 30 degrees and is described by cis-conformation; and the second is between 90 and 175 degrees, which mostly covers a region of anti conformation. Our results compare favorably with results obtained in experimental assays [Jiang and Mao (2002) Polyhedron 21:435–438]. Dihedral O4′–C1′–N9–C4 angle dependence on inter-proton distances H8–H1′ (crosses) and H8–H2′ (dots) measured for ATP ![]()
Collapse
Affiliation(s)
- Paweł Gruszczyński
- Faculty of Chemistry, University of Gdańsk, Sobieskiego 18/19, 80-952 Gdańsk, Poland.
| | | | | | | |
Collapse
|