1
|
Fujino T, Hyodo T, Otani Y, Yamaguchi K, Ohwada T. Synthesis of Stable Hypervalent Bromine(III) Complexes by in Situ Oxidation with Lewis Acids Containing sp-Hybridized Nitrogen. Org Lett 2024. [PMID: 39526937 DOI: 10.1021/acs.orglett.4c03881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Stable hypervalent bromine(III) compounds were synthesized via aryl bromine oxidation with sp-hybridized nitrogen cations generated by oxime N-O bond cleavage in trifluoroacetic acid. The resulting intramolecular N-Br hypervalent bond is effectively stabilized by the planar xanthone structure. The structures and physicochemical properties of these λ3-bromanes were characterized by X-ray crystallography, cyclic voltammetry, UV-vis spectroscopy, and computational analysis.
Collapse
Affiliation(s)
- Tomohiro Fujino
- Department of Organic and Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tadashi Hyodo
- Faculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa 769-2193, Japan
| | - Yuko Otani
- Department of Organic and Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kentaro Yamaguchi
- Faculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa 769-2193, Japan
| | - Tomohiko Ohwada
- Department of Organic and Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
2
|
Fujino T, Hyodo T, Otani Y, Yamaguchi K, Ohwada T. Stabilization of sp-Hybridized Nitrogen Cation by Lewis Acid-Base Complex Formation with Intramolecular Iodine. Chemistry 2024; 30:e202303393. [PMID: 37984364 DOI: 10.1002/chem.202303393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/18/2023] [Accepted: 11/18/2023] [Indexed: 11/22/2023]
Abstract
Here we show that the sp-hybridized nitrogen cation is strongly stabilized by a peri-iodine substituent in the tetralone system. The cation is captured by anionic species such as CF3 CO2 - , affording hypervalent iodine(III) compounds with a short nitrogen-iodine (N-I) bond, in which the cation serves as a Lewis acid. Notably, the O-I bond of the O-trifluoroacetate or O-acetate is intrinsically weaker than the N-I bond due to its more ionic character and is further weakened by protonation in trifluoroacetic acid. As a result, the oxygen ligand can dissociate in the presence of a Brønsted acid, affording a I+ cation intermediate that retains the N-I bond. We isolated the cation as the tetrafluoroborate, and characterized it experimentally by 1 H NMR spectroscopy and X-ray structure analysis, and theoretically by means of DFT calculation. The results suggest that the N-I bonded cation is intrinsically stable, and is weakly coordinated with water and the BF4 counter anion or trifluoroacetate anion. This cation can be employed as a reagent for α-oxidation of ketones.
Collapse
Affiliation(s)
- Tomohiro Fujino
- Department of Organic and Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Tadashi Hyodo
- Faculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa, 769-2193, Japan
| | - Yuko Otani
- Department of Organic and Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kentaro Yamaguchi
- Faculty of Pharmaceutical Sciences at Kagawa Campus, Tokushima Bunri University, 1314-1 Shido, Sanuki, Kagawa, 769-2193, Japan
| | - Tomohiko Ohwada
- Department of Organic and Medicinal Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
3
|
Rasul R, Mahmood T, Ayub K, Joya KS, Anwar F, Saari N, Nawaz R, Gilani MA. Alkali metals doped cycloparaphenylene nanohoops: Promising nonlinear optical materials with enhanced performance. Heliyon 2023; 9:e21508. [PMID: 38027972 PMCID: PMC10654151 DOI: 10.1016/j.heliyon.2023.e21508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/02/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
In the ongoing pursuit of novel and efficient NLO materials, the potential of alkali metal-doped {6}cycloparaphenylene ({6}CPP) and methylene bridged {6} cycloparaphenylene (MB{6}CPP) nanohoops as excellent NLO candidates has been explored. The geometric, electronic, linear, and nonlinear optical properties of designed systems have been investigated theoretically. All the nanohoops demonstrated thermodynamic stability, with remarkable interaction energies reaching up to -1.39 eV (-0.0511 au). Notably, the introduction of alkali metals led to a significant reduction in the HOMO-LUMO energy gaps, with values as low as 2.92 eV, compared to 6.80 eV and 6.06 eV for undoped {6}CPP and MB{6}CPP, respectively. Moreover, the alkali metal-doped nanohoops exhibited exceptional NLO response, with the K@r6-{6}CPP complex achieving the highest first hyperpolarizability of 56,221.7 × 10-30 esu. Additionally, the frequency-dependent first hyperpolarizability values are also computed at two commonly used wavelengths of 1550 nm and 1907 nm, respectively. These findings highlight the potential of designed nanohoops as promising candidates for advanced NLO materials with high-tech applications.
Collapse
Affiliation(s)
- Ruqiya Rasul
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Lahore-54600, Pakistan
| | - Tariq Mahmood
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad-22060, Pakistan
- Department of Chemistry, College of Science, University of Bahrain, Sakhir P. O. Box 32038, Bahrain
| | - Khurshid Ayub
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad-22060, Pakistan
| | - Khurram Saleem Joya
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
| | - Farooq Anwar
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
- Institute of Chemistry, University of Sargodha, Sargodha-40100, Pakistan
| | - Nazamid Saari
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - R. Nawaz
- Center for Applied Mathematics and Bioinformatics (CAMB), Gulf University for Science and Technology, 32093 Hawally, Kuwait
| | - Mazhar Amjad Gilani
- Department of Chemistry, COMSATS University Islamabad, Lahore Campus, Lahore-54600, Pakistan
| |
Collapse
|
4
|
Lourenço ACM, Santin LG, Fajemiroye JO, Oliveira SS, Napolitano HB. Studies on charge transfer of enalapril maleate: from solid-state to molecular dynamics. J Mol Model 2023; 29:197. [PMID: 37268806 DOI: 10.1007/s00894-023-05597-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/19/2023] [Indexed: 06/04/2023]
Abstract
INTRODUCTION Enalapril maleate is an antihypertensive ethyl ester pro-drug with two crystalline forms. A network of hydrogen bonds in both polymorphs plays an important role on solid-state stability, charge transfer process and degradation reactions (when exposed to high humidity, temperature and/or pH changes). COMPUTATIONAL PROCEDURES Supramolecular arrangement was proposed by Hirshfeld surface using the CrystalExplorer17 software and quantum theory of atoms in molecules. The electronic structure properties were calculated using the functional hybrid M06-2X with 6-311++G** base function employing diffuse and polarization functions to improve the description of hydrogen atoms on intermolecular interactions. Also, the H+ charge transfer between enalapril and maleate molecules was performed using Car-Parrinello molecular dynamics with the Verlet algorithm. In both simulations, the temperature of the ionic system was maintained around 300 K using the Nosé-Hoover thermostat and the electronic system evolved without the use of the thermostat. RESULTS This work evaluates the effect of maleate on the structural stability of enalapril maleate solid state. The electronic structural analysis points out a partially covalent character for N1-H∙∙∙O7 interaction; and the molecular dynamic showed a decentralized hydrogen on maleate driving a decomposition by charge transfer process while a centered hydrogen driving the stabilization. The charge transfer process and the mobility of the proton (H+) between enalapril and maleate molecules was demonstrated using supramolecular modeling analyses and molecular dynamics calculations.
Collapse
Affiliation(s)
- Ana Carolina M Lourenço
- Grupo de Química Teórica E Estrutural de Anápolis, Universidade Estadual de Goiás, Anápolis, GO, Brazil
| | - Lauriane G Santin
- Laboratório de Novos Materiais, Universidade Evangélica de Goiás, Anápolis, GO, Brazil
| | - James O Fajemiroye
- Laboratório de Novos Materiais, Universidade Evangélica de Goiás, Anápolis, GO, Brazil
- Laboratório de Farmacologia de Produtos Naturais E Sintéticos, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, Brazil
| | - Solemar S Oliveira
- Grupo de Química Teórica E Estrutural de Anápolis, Universidade Estadual de Goiás, Anápolis, GO, Brazil
| | - Hamilton B Napolitano
- Grupo de Química Teórica E Estrutural de Anápolis, Universidade Estadual de Goiás, Anápolis, GO, Brazil.
- Laboratório de Novos Materiais, Universidade Evangélica de Goiás, Anápolis, GO, Brazil.
| |
Collapse
|
5
|
Allangawi A, Sajid H, Ayub K, Gilani MA, Akhter MS, Mahmood T. High drug carrying efficiency of boron-doped Triazine based covalent organic framework toward anti-cancer tegafur; a theoretical perspective. COMPUT THEOR CHEM 2023. [DOI: 10.1016/j.comptc.2022.113990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
6
|
Structural Insights and Supramolecular Description of Gliclazide and its Impurity F. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Halogen bonds on substituted dibromonitrobenzene derivatives. J Mol Model 2020; 26:319. [PMID: 33104901 DOI: 10.1007/s00894-020-04566-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 10/08/2020] [Indexed: 10/23/2022]
Abstract
Halogen bonding is a noncovalent interaction that has attracted great attention because of its importance in several areas, such as photonics, nonlinear optics, pharmaceutical products, supramolecular engineering, biochemistry, protein-ligand complexes, and polymer interactions. In this context, we describe the synthesis, molecular structure, supramolecular arrangement, and theoretical calculations of five dibromonitrobenzene derivatives, which present different halogen atoms substituted. The solid-state characterization was carried out by X-ray diffraction with the contribution of Hirshfeld surfaces for analysis of molecular interactions. The frontier molecular orbital, molecular electrostatic potential, and quantum theory of atoms in molecules were carried out at the M06-2X/6-311+G(d,p) level of theory. Those observed halogen interactions indicate the crystalline solid-state stabilization for the dibromonitrobenzene derivatives.
Collapse
|
8
|
Palladium-catalyzed carbonylative synthesis and theoretical study of elongated tubular cavitands. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Rodrigues-Oliveira AF, Batista PR, Ducati LC, Correra TC. Analyzing the N–H+…π interactions of protonated tryptophan and phenylalkylamines using QTAIM, NCI, and NBO. Theor Chem Acc 2020. [DOI: 10.1007/s00214-020-02643-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
Stare J, Gradišek A, Seliger J. Nuclear quadrupole resonance supported by periodic quantum calculations: a sensitive tool for precise structural characterization of short hydrogen bonds. Phys Chem Chem Phys 2020; 22:27681-27689. [PMID: 33237040 DOI: 10.1039/d0cp04710d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Systems with short hydrogen bonds (H-bonds) are notoriously difficult to describe even using cutting edge experimental techniques supported by advanced computational protocols. One of the most challenging issues is the highly dislocated H-bonded proton, which is typically smeared over a large area, featuring complex dynamics governed by pronounced nuclear quantum effects. Thus, in combination with experimental results, these systems offer a rich platform for the benchmarking of various computational approaches and methods. Herein, we present a methodology combining experimental and computational assessment of H-bond observables probed by the nuclear quadrupole resonance technique. Focusing on the case of picolinic acid N-oxide featuring one of the shortest known hydrogen bonds (ROO ∼ 2.425 Å), we compare the predictions of nuclear quadrupole coupling constants (NQCCs) for a series of computational models differing in fine structural details of the H-bond. By comparing the computed 14N and 17O NQCCs with the measured ones and by analyzing the sensitivity of NQCCs to H-bond geometry variations, we demonstrate that NQCCs represent a very sensitive probe for H-bond geometry, particularly the proton location, thereby offering, in conjunction with computations, an accurate and reliable tool for the fine structural characterization of short H-bonds. Importantly, the present methodology is a good compromise between accuracy and computational cost.
Collapse
Affiliation(s)
- Jernej Stare
- Theory Department, National Institute of Chemistry, Ljubljana, Slovenia.
| | | | | |
Collapse
|
11
|
de Paula RLG, Duarte VS, Fernandes FS, Vaz WF, Ribeiro IN, Osório FAP, Valverde C, Oliveira GR, Napolitano HB. A Comprehensive Topological Analysis on a New Bromine-Chalcone with Potential Nonlinear Optical Properties. J Phys Chem A 2019; 123:8632-8643. [DOI: 10.1021/acs.jpca.9b06066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Renata Layse G. de Paula
- Campus de Ciências Exatas e Tecnológicas, Universidade Estadual de Goiás, 75132-40 Anápolis, Goiás, Brazil
| | - Vitor S. Duarte
- Campus de Ciências Exatas e Tecnológicas, Universidade Estadual de Goiás, 75132-40 Anápolis, Goiás, Brazil
- Centro de Pesquisa e Eficiência Energética, CAOA Montadora de Veículos- LTDA, 75184-000 Anápolis, Goiás, Brazil
| | - Fernanda S. Fernandes
- Instituto de Química, Universidade Federal de Goiás, 74001-970 Goiânia, Goiás, Brazil
| | - Wesley F. Vaz
- Campus de Ciências Exatas e Tecnológicas, Universidade Estadual de Goiás, 75132-40 Anápolis, Goiás, Brazil
| | - Italo N. Ribeiro
- Campus de Ciências Exatas e Tecnológicas, Universidade Estadual de Goiás, 75132-40 Anápolis, Goiás, Brazil
| | - Francisco A. P. Osório
- Instituto de Física, Universidade Federal de Goiás, 74690-900 Goiânia, Goiás, Brazil
- Pontifícia Universidade Católica de Goiás, 74175-120 Goiânia, Goiás, Brazil
| | - Clodoaldo Valverde
- Campus de Ciências Exatas e Tecnológicas, Universidade Estadual de Goiás, 75132-40 Anápolis, Goiás, Brazil
- Laboratório de Modelagem Molecular Aplicada e Simulação, Universidade Paulista, 74845-090 Goiânia, Goiás, Brazil
| | - Guilherme R. Oliveira
- Instituto de Química, Universidade Federal de Goiás, 74001-970 Goiânia, Goiás, Brazil
| | - Hamilton B. Napolitano
- Campus de Ciências Exatas e Tecnológicas, Universidade Estadual de Goiás, 75132-40 Anápolis, Goiás, Brazil
- Laboratório de Novos Materiais, Centro Universitário de Anápolis, 75075-010 Anápolis, Goiás, Brazil
| |
Collapse
|
12
|
Dastani N, Arab A, Raissi H. Adsorption of Ampyra anticancer drug on the graphene and functionalized graphene as template materials with high efficient carrier. ADSORPTION 2019. [DOI: 10.1007/s10450-019-00142-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Domagała M, Lutyńska A, Palusiak M. Extremely Strong Halogen Bond. The Case of a Double-Charge-Assisted Halogen Bridge. J Phys Chem A 2018; 122:5484-5492. [PMID: 29809012 DOI: 10.1021/acs.jpca.8b03735] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The stable model of a double (±)charge-assisted halogen bridge has been built on the basis of searches of the Crystal Structure Database. The model, investigated by DFT theory, consists of quinuclidine-like cation derivatives and a set of simple anions. These charged fragments form halogen-bonded complexes of which the energy of complexation in some cases reaches 100 kcal/mol. Even for such strong interactions, the QTAIM characteristics are similar to those of the more classic, relatively weak halogen bonds. An important effect of complexation is the charge transfer measured by means of QTAIM and NBO. It can also be supposed, on the basis of detailed structural and QTAIM analysis, that the delocalization of the charge in a quinuclidine moiety occurs through space and not necessarily along formal bonds. The analysis of only partially charged and fully neutral counterparts of a double (±)charge-assisted halogen bridge shows significantly weaker bonding, being less than 10 kcal/mol.
Collapse
Affiliation(s)
- Małgorzata Domagała
- Theoretical and Structural Chemistry Group, Faculty of Chemistry , University of Lodz , Pomorska 163/165 , 90-236 Lodz , Poland
| | - Aneta Lutyńska
- Theoretical and Structural Chemistry Group, Faculty of Chemistry , University of Lodz , Pomorska 163/165 , 90-236 Lodz , Poland
| | - Marcin Palusiak
- Theoretical and Structural Chemistry Group, Faculty of Chemistry , University of Lodz , Pomorska 163/165 , 90-236 Lodz , Poland
| |
Collapse
|
14
|
Roohi H, Tondro T. Exploring the pnicogen bond non-covalent interactions in 4-XPhNH2:PFnH3-n complexes (n = 1–3, X = H, F, CN, CHO, NH2, CH3, NO2 and OCH3). J Fluor Chem 2017. [DOI: 10.1016/j.jfluchem.2017.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
The Role of Weak Interactions in Supramolecular Compounds: A Synthetic and Theoretical Study of Novel Elongated Cavitands. ChemistrySelect 2017. [DOI: 10.1002/slct.201701762] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
16
|
Shahabi M, Raissi H. Screening of the structural, topological, and electronic properties of the functionalized Graphene nanosheets as potential Tegafur anticancer drug carriers using DFT method. J Biomol Struct Dyn 2017; 36:2517-2529. [DOI: 10.1080/07391102.2017.1360209] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Mahnaz Shahabi
- Department of Chemistry, University of Birjand, Birjand, Iran
| | - Heidar Raissi
- Department of Chemistry, University of Birjand, Birjand, Iran
| |
Collapse
|
17
|
Tahan A, Ahmadinejad N. Theoretical investigation of NMR–NQR tensors of hallucinogenic harmine in monomeric and cluster states. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2017. [DOI: 10.1142/s0219633617500432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In the present study, density functional theory was employed to analyze the structure and nuclear magnetic resonance (NMR) — nuclear quadrupole resonance (NQR) spectra of hallucinogenic harmine in monomeric, dimeric, trimeric, and tetrameric states in the gas phase. Furthermore, the effects of hydrogen and resonance interactions on the values of NMR and NQR parameters of nitrogen nuclei in the four states mentioned above were investigated. The computations at the B3LYP/6-311[Formula: see text]G** level of theory indicated that NQR — NMR parameters of nitrogen nuclei varied for each of the four states and were strongly affected by chemical environment, molecular cluster size and molecular interactions. Accordingly, by increasing the participation of lone pair electrons in resonance interactions and aromaticity development, the values of NMR chemical shielding around them increased, whereas their NQR parameters ([Formula: see text] and [Formula: see text] decreased. In contrast, it could be observed that resonance interaction was not the only effective factor influencing changes in values and trends of NMR — NQR parameters by passing from monomeric state to other ones. Moreover, the negative charge on nitrogen atoms and the possibility of hydrogen bond formation were other important factors influencing NMR — NQR parameters.
Collapse
Affiliation(s)
- Arezoo Tahan
- Semnan Branch, Islamic Azad University, Semnan, Iran
| | - Neda Ahmadinejad
- Young Researchers and Elite Club, Arak Branch, Islamic Azad University, Arak, Iran
| |
Collapse
|
18
|
Aziz SG, Alyoubi AO, Elroby SA, Hilal RH. Electronic structure and acid–base properties of Kojic acid and its dimers. A DFT and quantum topology study. Mol Phys 2017. [DOI: 10.1080/00268976.2017.1335896] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Saadullah G. Aziz
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdulrahman O. Alyoubi
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shaaban A. Elroby
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Rifaat H. Hilal
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Chemistry Department, Faculty of Science, Cairo University, Cairo, Egypt
| |
Collapse
|
19
|
Astani EK, Heshmati E, Chen CJ, Hadipour NL. A theoretical study on the characteristics of the intermolecular interactions in the active site of human androsterone sulphotransferase: DFT calculations of NQR and NMR parameters and QTAIM analysis. J Mol Graph Model 2016; 68:14-22. [PMID: 27337388 DOI: 10.1016/j.jmgm.2016.06.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 05/29/2016] [Accepted: 06/07/2016] [Indexed: 11/29/2022]
Abstract
A theoretical study at the level of density functional theory (DFT) was performed to characterize noncovalent intermolecular interactions, especially hydrogen bond interactions, in the active site of enzyme human androsterone sulphotransferase (SULT2A1/ADT). Geometry optimization, interaction energy, (2)H, (14)N, and (17)O electric field gradient (EFG) tensors, (1)H, (13)C, (17)O, and (15)N chemical shielding (CS) tensors, Natural Bonding Orbital (NBO) analysis, and quantum theory of atoms in molecules (QTAIM) analysis of this active site were investigated. It was found that androsterone (ADT) is able to form hydrogen bonds with residues Ser80, Ile82, and His99 of the active site. The interaction energy calculations and NBO analysis revealed that the ADT molecule forms the strongest hydrogen bond with Ser80. Results revealed that ADT interacts with the other residues through electrostatic and Van der Waals interactions. Results showed that these hydrogen bonds influence on the calculated (2)H, (14)N, and (17)O quadrupole coupling constants (QCCs), as well as (1)H, (13)C, (17)O, and (15)N CS tensors. The magnitude of the QCC and CS changes at each nucleus depends directly on its amount of contribution to the hydrogen bond interaction.
Collapse
Affiliation(s)
- Elahe K Astani
- Department of Chemistry, Faculty of Science, Tarbiat Modares University, Tehran, 14115-175, Iran
| | - Emran Heshmati
- Department of Biology, Faculty of Science, Zanjan University, Zanjan, Iran
| | - Chun-Jung Chen
- Life Science Group, Scientific Research Division, National Synchrotron Radiation Research Center, Taiwan
| | - Nasser L Hadipour
- Department of Chemistry, Faculty of Science, Tarbiat Modares University, Tehran, 14115-175, Iran.
| |
Collapse
|
20
|
A study of hydrogen bond effects on the oxygen, nitrogen, and hydrogen electric field gradient tensors in the active site of human dehydroepiandrosterone sulphotransferase: A density-functional theory based treatment. Chem Phys Lett 2016. [DOI: 10.1016/j.cplett.2016.04.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
21
|
Esrafili MD, Vakili M, Javaheri M, Sobhi HR. Tuning of tetrel bonds interactions by substitution and cooperative effects in XH3Si···NCH···HM (X = H, F, Cl, Br; M = Li, Na, BeH and MgH) complexes. Mol Phys 2016. [DOI: 10.1080/00268976.2016.1174786] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
22
|
Esrafili MD, Mohammadian-Sabet F. Substituent effects on geometry and bonding properties of asymmetric bifurcated pnicogen bonds: A theoretical study. Chem Phys Lett 2016. [DOI: 10.1016/j.cplett.2016.02.060] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
A theoretical study on the hydrogen-bonding interactions between flavonoids and ethanol/water. J Mol Model 2016; 22:95. [DOI: 10.1007/s00894-016-2968-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 03/16/2016] [Indexed: 10/22/2022]
|
24
|
Abstract
The halogen bond occurs when there is evidence of a net attractive interaction between an electrophilic region associated with a halogen atom in a molecular entity and a nucleophilic region in another, or the same, molecular entity. In this fairly extensive review, after a brief history of the interaction, we will provide the reader with a snapshot of where the research on the halogen bond is now, and, perhaps, where it is going. The specific advantages brought up by a design based on the use of the halogen bond will be demonstrated in quite different fields spanning from material sciences to biomolecular recognition and drug design.
Collapse
Affiliation(s)
- Gabriella Cavallo
- Laboratory
of Nanostructured Fluorinated Materials (NFMLab), Department of Chemistry,
Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Via L. Mancinelli 7, I-20131 Milano, Italy
| | - Pierangelo Metrangolo
- Laboratory
of Nanostructured Fluorinated Materials (NFMLab), Department of Chemistry,
Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Via L. Mancinelli 7, I-20131 Milano, Italy
- VTT-Technical
Research Centre of Finland, Biologinkuja 7, 02150 Espoo, Finland
| | - Roberto Milani
- VTT-Technical
Research Centre of Finland, Biologinkuja 7, 02150 Espoo, Finland
| | - Tullio Pilati
- Laboratory
of Nanostructured Fluorinated Materials (NFMLab), Department of Chemistry,
Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Via L. Mancinelli 7, I-20131 Milano, Italy
| | - Arri Priimagi
- Department
of Chemistry and Bioengineering, Tampere
University of Technology, Korkeakoulunkatu 8, FI-33101 Tampere, Finland
| | - Giuseppe Resnati
- Laboratory
of Nanostructured Fluorinated Materials (NFMLab), Department of Chemistry,
Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Via L. Mancinelli 7, I-20131 Milano, Italy
| | - Giancarlo Terraneo
- Laboratory
of Nanostructured Fluorinated Materials (NFMLab), Department of Chemistry,
Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Via L. Mancinelli 7, I-20131 Milano, Italy
| |
Collapse
|
25
|
|
26
|
Abstract
Halogen bonding (XB) is being extensively explored for its potential use in advanced materials and drug design. Despite significant progress in describing this interaction by theoretical and experimental methods, the chemical nature remains somewhat elusive, and it seems to vary with the selected system. In this work we present a detailed DFT analysis of three-center asymmetric halogen bond (XB) formed between dihalogen molecules and variously 4-substituted 1,2-dimethoxybenzene. The energy decomposition, orbital, and electron density analyses suggest that the contribution of electrostatic stabilization is comparable with that of non-electrostatic factors. Both terms increase parallel with increasing negative charge of the electron donor molecule in our model systems. Depending on the orientation of the dihalogen molecules, this bifurcated interaction may be classified as 'σ-hole - lone pair' or 'σ-hole - π' halogen bonds. Arrangement of the XB investigated here deviates significantly from a recent IUPAC definition of XB and, in analogy to the hydrogen bonding, the term bifurcated halogen bond (BXB) seems to be appropriate for this type of interaction.
Collapse
Affiliation(s)
- Martin Novák
- CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 5/A4, CZ-625 00 Brno, Czech Republic.
| | | | | |
Collapse
|
27
|
Esrafili MD, Vakili M. Strengthening halogen… halogen interactions by hydrogen and lithium bonds in NCM···NCX···YCH3 and CNM···CNX···YCH3 (M = H, Li and X,Y = Cl, Br) complexes: a comparative study. Mol Phys 2015. [DOI: 10.1080/00268976.2015.1102349] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Mehdi D. Esrafili
- Laboratory of Theoretical Chemistry, Department of Chemistry, University of Maragheh, Maragheh, Iran
| | - Mahshad Vakili
- Laboratory of Theoretical Chemistry, Department of Chemistry, University of Maragheh, Maragheh, Iran
| |
Collapse
|
28
|
|
29
|
|
30
|
Dargent D, Zins EL, Madebène B, Alikhani ME. Topological insights into the 1/1 diacetyl/water complex gained using a new methodological approach. J Mol Model 2015. [PMID: 26224601 DOI: 10.1007/s00894-015-2751-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The 1/1 diacetyl/water complex is of atmospheric relevance. Previous experimental and theoretical studies have focused on two isomeric forms, and geometry optimizations were carried out on them. Herein, we propose a six-step methodological approach based on topological properties to search for and characterize all of the isomeric forms of the 1/1 noncovalent diacetyl/water complex: (1) a molecular electrostatic potential (MESP) study to get an overview of the V min and V max regions on the molecular surfaces of the separate molecules (diacetyl and water); (2) a topological (QTAIM and ELF) study allowing thorough characterization of the electron densities (QTAIM) and irreducible ELF basins of the separate molecules; (3) full optimization of the predicted structures based on the interaction between complementary reaction sites; (4) energetic characterization based on a symmetry-adapted perturbation theory (SAPT) analysis; (5) topological characterization of the optimized complexes; (6) analysis of the complexes in terms of orbital overlaps (natural bond orbitals, NBO analysis). Using this approach, in addition to achieving the topological characterization of the two isomeric forms already reported, a third possible isomer was identified and characterized. Graphical Abstract Topological tools to study monohydrated complexes.
Collapse
Affiliation(s)
- D Dargent
- Sorbonne Universités, UPMC Univ. Paris 06, MONARIS, UMR 8233, Université Pierre et Marie Curie, Pr. M. Esmaïl Alikhani CC 49, 4 place Jussieu, 75252, Paris, France
| | | | | | | |
Collapse
|
31
|
El-Sheshtawy HS, Salman HMA, El-Kemary M. Halogen vs hydrogen bonding in thiazoline-2-thione stabilization with σ- and π-electron acceptors adducts: theoretical and experimental study. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 137:442-449. [PMID: 25238182 DOI: 10.1016/j.saa.2014.08.077] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 08/16/2014] [Accepted: 08/23/2014] [Indexed: 06/03/2023]
Abstract
Molecular charge-transfer complexes (CT) between thiazoline-2-thione (THZ) and different σ- (I2) and π-acceptors (Tetracyanoethylene (TCNE), 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ), and 2,3,5,6-tetrachloro-1,4-benzoquinone (CHL)) were investigated. UV-Vis absorption spectroscopy and theoretical calculations using both MP2/aug-cc-pVDZ-PP and B3LYP/6-311++G(d,p) level of theory were corroborated to study the nature of the stabilizing forces for THZ-I2, THZ-DDQ, THZ-TCNE, and THZ-CHL. Halogen bonding (XB) was the stabilizing attractive force in THZ-I2 and THZ-CHL whereas; hydrogen bonding (HB) was dominated in both THZ-TCNE, and THZ-DDQ complexes. Formation constant (K), extinction coefficient (ɛ), thermodynamic parameters such as enthalpy change (ΔH), entropy (ΔS), and Gibbs free energy (ΔG) were measured in different solvents.
Collapse
Affiliation(s)
- Hamdy S El-Sheshtawy
- Biotechnology and Fish Processing Department, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, 33516 Kafr ElSheikh, Egypt; Nanochemistry Laboratory, Chemistry Department, Faculty of Science, Kafrelsheikh University, 33516 Kafr ElSheikh, Egypt.
| | - Hassan M A Salman
- Chemistry Department, Faculty of Science, South Valley University, Qena 83523, Egypt
| | - Maged El-Kemary
- Nanochemistry Laboratory, Chemistry Department, Faculty of Science, Kafrelsheikh University, 33516 Kafr ElSheikh, Egypt
| |
Collapse
|
32
|
Esrafili MD, Mohammadirad N. Effect of cation–π interaction on lithium and halogen bonds: a comparative study. Mol Phys 2014. [DOI: 10.1080/00268976.2014.970594] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
33
|
Esrafili MD, Vakili M. Cooperativity effects betweenσ-hole interactions: a theoretical evidence for mutual influence between chalcogen bond and halogen bond interactions in F2S···NCX···NCY complexes (X = F, Cl, Br, I; Y = H, F, OH). Mol Phys 2014. [DOI: 10.1080/00268976.2014.909057] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
34
|
CNXeCl and CNXeBr species as halogen bond donors: a quantum chemical study on the structure, properties, and nature of halogen···nitrogen interactions. J Mol Model 2014; 20:2203. [PMID: 24682724 DOI: 10.1007/s00894-014-2203-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 03/06/2014] [Indexed: 10/25/2022]
Abstract
In the present study, strength and characteristic of halogen bond interactions between CNXeY and NCZ molecules are investigated, where Y = Cl, Br and Z = H, CN, F, OH, CH₃, OCH₃, NH₂. MP2/aug-cc-pVTZ calculations indicate that the interaction energies for CNXeY⋯NCZ complexes lie in the range between -1.0 and -3.1 kcal mol⁻¹. Not surprisingly, the calculated interaction energies show a strong correlation with the negative electrostatic potentials on nitrogen atoms. One of the most important results of this study is that, according to energy decomposition analyses, Cl⋯N halogen bonds are largely dependent on dispersion effects, while electrostatic interactions are the major source of the attraction in Br⋯N bonds. The quantum theory of atoms in molecules (QTAIM) and natural bond orbital (NBO) analysis are used in this study to deepen the nature of the interactions considered. This appears to be the first report on a halogen bond involving halogenated xenon isocyanides.
Collapse
|
35
|
Esrafili MD, Vakili M, Solimannejad M. Characterization of halogen···halogen interactions in crystalline dihalomethane compounds (CH2Cl2, CH2Br2 and CH2I2): a theoretical study. J Mol Model 2014; 20:2102. [DOI: 10.1007/s00894-014-2102-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 11/30/2013] [Indexed: 11/30/2022]
|
36
|
Theoretical study of the complementarity in halogen–bonded complexes involving nitrogen and halogen as negative sites. J Mol Model 2014; 20:2101. [DOI: 10.1007/s00894-014-2101-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 11/30/2013] [Indexed: 10/25/2022]
|
37
|
Esrafili MD, Solimannejad M. On the strength and nature of intermolecular X···O interactions in CF2ClBr−O3 complexes (X = F, Cl, Br): an ab initio investigation. CAN J CHEM 2014. [DOI: 10.1139/cjc-2013-0372] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ab initio calculations were realized to analyze the existence of intermolecular X···O interactions in bromochlorodifluoromethane (CF2ClBr) complexes with ozone, where X = F, Cl, and Br. These calculations have been carried out using MP2 and CCSD(T) methods, through analysis of surface electrostatic potentials V(r), intermolecular interaction energies, and electron density analysis. Coupled cluster (CCSD(T)/aug-cc-pVTZ//MP2/aug-cc-pVTZ) calculations indicate that the stabilization energies for the CF2ClBr−O3 complexes lie in the range between –3.9 and –7.7 kJ/mol. The characteristic of X···O interactions has been identified in terms of the electron density analysis within the quantum theory of atoms in molecules. Energy decomposition analysis shows that the attractive nature of the X···O interactions within the title complexes is chiefly due to dispersion effects, but electrostatic contribution also plays an important role.
Collapse
Affiliation(s)
- Mehdi D. Esrafili
- Laboratory of Theoretical Chemistry, Department of Chemistry, University of Maragheh, Maragheh 5513864596, Iran
| | - Mohammad Solimannejad
- Quantum Chemistry Group, Department of Chemistry, Faculty of Sciences, Arak University, Arak 38156-8-8349, Iran
| |
Collapse
|
38
|
Esrafili MD, Yourdkhani S, Bahrami A. Characteristics and nature of the halogen-bonding interactions between CCl3F and ozone: a supermolecular and SAPT study. Mol Phys 2013. [DOI: 10.1080/00268976.2013.788740] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
39
|
Esrafili MD, Esmailpour P, Mohammadian-Sabet F, Solimannejad M. Theoretical study of the interplay between halogen bond and lithium–π interactions: Cooperative and diminutive effects. Chem Phys Lett 2013. [DOI: 10.1016/j.cplett.2013.10.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Esraili MD, Mohammadian-Sabet F, Esmailpour P, Solimannejad M. Cooperativity between fluorine-centered halogen bonds: investigation of substituent effects. J Mol Model 2013; 19:5625-32. [DOI: 10.1007/s00894-013-2032-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 10/08/2013] [Indexed: 11/29/2022]
|
41
|
Esrafili MD, Mahdavinia G, Javaheri M, Sobhi HR. A theoretical study of substitution effects on halogen–π interactions. Mol Phys 2013. [DOI: 10.1080/00268976.2013.837535] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
42
|
Exploring surface reactivity of phosphorous-doped (6,0) and (4,4) BC3 nanotubes: a DFT study. J Mol Model 2013; 19:4877-86. [DOI: 10.1007/s00894-013-1978-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 08/21/2013] [Indexed: 10/26/2022]
|
43
|
Theoretical study on cooperative effects between X⋯N and X⋯Carbene halogen bonds (X = F,Cl,Br and I). J Mol Model 2013; 19:4797-804. [DOI: 10.1007/s00894-013-1983-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 08/21/2013] [Indexed: 10/26/2022]
|
44
|
Esrafili MD, Shahabivand S, Vessally E. HRgCN and HRgNC as halogen bond acceptors (Rg=Kr and Xe): A theoretical study upon strength and nature of halogen⋯nitrogen and halogen⋯carbon interactions. COMPUT THEOR CHEM 2013. [DOI: 10.1016/j.comptc.2013.07.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
45
|
Nitrogen-doped (6,0) carbon nanotubes: A comparative DFT study based on surface reactivity descriptors. COMPUT THEOR CHEM 2013. [DOI: 10.1016/j.comptc.2013.04.003] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
46
|
Revealing substitution effects on the strength and nature of halogen-hydride interactions: a theoretical study. J Mol Model 2013; 19:3767-77. [DOI: 10.1007/s00894-013-1912-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 06/05/2013] [Indexed: 11/26/2022]
|
47
|
Walter SM, Jungbauer SH, Kniep F, Schindler S, Herdtweck E, Huber SM. Polyfluorinated versus cationic multidentate halogen-bond donors: A direct comparison. J Fluor Chem 2013. [DOI: 10.1016/j.jfluchem.2013.02.027] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
48
|
Esrafili MD, Mohammadirad N. Insights into the strength and nature of carbene···halogen bond interactions: a theoretical perspective. J Mol Model 2013; 19:2559-66. [PMID: 23455928 DOI: 10.1007/s00894-013-1804-1] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Accepted: 02/11/2013] [Indexed: 11/25/2022]
Abstract
Halogen-bonding, a noncovalent interaction between a halogen atom X in one molecule and a negative site in another, plays critical roles in fields as diverse as molecular biology, drug design and material engineering. In this work, we have examined the strength and origin of halogen bonds between carbene CH₂ and XCCY molecules, where X = Cl, Br, I, and Y = H, F, COF, COOH, CF₃, NO₂, CN, NH₂, CH₃, OH. These calculations have been carried out using M06-2X, MP2 and CCSD(T) methods, through analyses of surface electrostatic potentials V S(r) and intermolecular interaction energies. Not surprisingly, the strength of the halogen bonds in the CH₂···XCCY complexes depend on the polarizability of the halogen X and the electron-withdrawing power of the Y group. It is revealed that for a given carbene···X interaction, the electrostatic term is slightly larger (i.e., more negative) than the dispersion term. Comparing the data for the chlorine, bromine and iodine substituted CH₂···XCCY systems, it can be seen that both the polarization and dispersion components of the interaction energy increase with increasing halogen size. One can see that increasing the size and positive nature of a halogen's σ-hole markedly enhances the electrostatic contribution of the halogen-bonding interaction.
Collapse
Affiliation(s)
- Mehdi D Esrafili
- Laboratory of Theoretical Chemistry, Department of Chemistry, University of Maragheh, PO Box: 5513864596, Maragheh, Iran.
| | | |
Collapse
|
49
|
Esrafili MD. A theoretical investigation of the characteristics of hydrogen/halogen bonding interactions in dibromo-nitroaniline. J Mol Model 2012; 19:1417-27. [DOI: 10.1007/s00894-012-1691-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 11/12/2012] [Indexed: 10/27/2022]
|