1
|
Kabilan SJ, Kunjiappan S, Sundar K, Pavadai P, Sathishkumar N, Velayuthaperumal H. Pharmacoinformatics-based screening of active compounds from Vitex negundo against lymphatic filariasis by targeting asparaginyl-tRNA synthetase. J Mol Model 2023; 29:87. [PMID: 36872402 DOI: 10.1007/s00894-023-05488-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 02/24/2023] [Indexed: 03/07/2023]
Abstract
CONTEXT Lymphatic filariasis, generally called as elephantiasis, is a vector-borne infectious disease caused by the filarial nematodes, mainly Wuchereria bancrofti, Brugia malayi, and Brugia timori, which are transmitted through mosquitoes. The infection affects the normal flow of lymph leading to abnormal enlargement of body parts, severe pain, permanent disability, and social stigma. Due to the development of resistance as well as toxic effects, existing medicines for lymphatic filariasis are becoming ineffective in killing the adult worms. It is essential to search novel filaricidal drugs with new molecular targets. Asparaginyl-tRNA synthetase (PDB ID: 2XGT) belongs to the group of aminoacyl-tRNA synthetases that catalyze specific attachment of amino acids to their tRNA during protein biosynthesis. Plants and their extracts are well-known medicinal practice for the management of several parasitic infectious diseases including filarial infections. METHODS In this study, asparaginyl-tRNA synthetase of Brugia malayi was used as a target to perform virtual screening of plant phytoconstituents of Vitex negundo from IMPPAT database, which exhibits anti-filarial and anti-helminthic properties. A total of sixty-eight compounds from Vitex negundo were docked against asparaginyl-tRNA synthetase using Autodock module of PyRx tool. Among the 68 compounds screened, 3 compounds, negundoside, myricetin, and nishindaside, exhibited a higher binding affinity compared to standard drugs. The pharmacokinetic and physicochemical prediction, stability of ligand-receptor complexes via molecular dynamics simulation, and density functionality theory were done further for the top-scored ligands with receptor.
Collapse
Affiliation(s)
| | - Selvaraj Kunjiappan
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, 626126, Tamil Nadu, India
| | - Krishnan Sundar
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, 626126, Tamil Nadu, India
| | - Parasuraman Pavadai
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, M.S. Ramaiah University of Applied Sciences, MSR Nagar, Bengaluru, 560054, Karnataka, India
| | - Nivethitha Sathishkumar
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, 626126, Tamil Nadu, India
| | - Haritha Velayuthaperumal
- Department of Biotechnology, Kalasalingam Academy of Research and Education, Krishnankoil, 626126, Tamil Nadu, India
| |
Collapse
|
2
|
Wang Z, Zhan J, Gao H. Computer-aided drug design combined network pharmacology to explore anti-SARS-CoV-2 or anti-inflammatory targets and mechanisms of Qingfei Paidu Decoction for COVID-19. Front Immunol 2022; 13:1015271. [PMID: 36618410 PMCID: PMC9816407 DOI: 10.3389/fimmu.2022.1015271] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Coronavirus Disease-2019 (COVID-19) is an infectious disease caused by SARS-CoV-2. Severe cases of COVID-19 are characterized by an intense inflammatory process that may ultimately lead to organ failure and patient death. Qingfei Paidu Decoction (QFPD), a traditional Chines e medicine (TCM) formula, is widely used in China as anti-SARS-CoV-2 and anti-inflammatory. However, the potential targets and mechanisms for QFPD to exert anti-SARS-CoV-2 or anti-inflammatory effects remain unclear. Methods In this study, Computer-Aided Drug Design was performed to identify the antiviral or anti-inflammatory components in QFPD and their targets using Discovery Studio 2020 software. We then investigated the mechanisms associated with QFPD for treating COVID-19 with the help of multiple network pharmacology approaches. Results and discussion By overlapping the targets of QFPD and COVID-19, we discovered 8 common targets (RBP4, IL1RN, TTR, FYN, SFTPD, TP53, SRPK1, and AKT1) of 62 active components in QFPD. These may represent potential targets for QFPD to exert anti-SARS-CoV-2 or anti-inflammatory effects. The result showed that QFPD might have therapeutic effects on COVID-19 by regulating viral infection, immune and inflammation-related pathways. Our work will promote the development of new drugs for COVID-19.
Collapse
Affiliation(s)
| | | | - Hongwei Gao
- School of Life Science, Ludong University, Yantai, Shandong, China
| |
Collapse
|
3
|
Rai P, Arya H, Saha S, Kumar D, Bhatt TK. Drug repurposing based novel anti-leishmanial drug screening using in-silico and in-vitro approaches. J Biomol Struct Dyn 2022; 40:10812-10820. [PMID: 36529188 DOI: 10.1080/07391102.2021.1950574] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Visceral leishmaniasis is a neglected tropical disease and is mainly caused by L. donovani in the Indian subcontinent. The mitochondria genome replication in Leishmania spp. is having a very specific mechanism, and it is initiated by a key enzyme called mitochondrial primase. This enzyme is essential for the onset of the replication process and growth of the parasite. Therefore, we focused on the primase protein as a potential therapeutic target for combating leishmaniasis diseases. We started our studies molecular modeling and followed by docking of the FDA-approved drug library into the binding site of the primase protein. The top 30 selected compounds were subjected for molecular dynamics studies. Also, the target protein was cloned, purified, and tested experimentally (primase activity assays and inhibition assays). Some compounds were very effective against the Leishmania cell culture. All these approaches helped us to identify few possible novel anti-leishmanial drugs such as Pioglitazone and Mupirocin. These drugs are effectively involved in inhibiting the promastigote of L. donovani, and it can be utilized in the next level of clinical trials. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Praveen Rai
- Department of Biotechnology, Central University of Rajasthan, Ajmer, India
| | - Hemant Arya
- Department of Biotechnology, Central University of Rajasthan, Ajmer, India
| | - Satabdi Saha
- Department of Microbiology, Assam University, Silchar, India
| | - Diwakar Kumar
- Department of Microbiology, Assam University, Silchar, India
| | - Tarun Kumar Bhatt
- Department of Biotechnology, Central University of Rajasthan, Ajmer, India
| |
Collapse
|
4
|
Ge PY, Qi YY, Qu SY, Zhao X, Ni SJ, Yao ZY, Guo R, Yang NY, Zhang QC, Zhu HX. Potential Mechanism of S. baicalensis on Lipid Metabolism Explored via Network Pharmacology and Untargeted Lipidomics. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:1915-1930. [PMID: 33976541 PMCID: PMC8106469 DOI: 10.2147/dddt.s301679] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/31/2021] [Indexed: 12/24/2022]
Abstract
Background S. baicalensis, a traditional herb, has great potential in treating diseases associated with aberrant lipid metabolism, such as inflammation, hyperlipidemia, atherosclerosis and Alzheimer’s disease. Aim of the Study To elucidate the mechanism by which S. baicalensis modulates lipid metabolism and explore the medicinal effects of S. baicalensis at a holistic level. Materials and Methods The potential active ingredients of S. baicalensis and targets involved in regulating lipid metabolism were identified using a network pharmacology approach. Metabolomics was utilized to compare lipids that were altered after S. baicalensis treatment in order to identify significantly altered metabolites, and crucial targets and compounds were validated by molecular docking. Results Steroid biosynthesis, sphingolipid metabolism, the PPAR signaling pathway and glycerolipid metabolism were enriched and predicted to be potential pathways upon which S. baicalensis acts. Further metabolomics assays revealed 14 significantly different metabolites were identified as lipid metabolism-associated elements. After the pathway enrichment analysis of the metabolites, cholesterol metabolism and sphingolipid metabolism were identified as the most relevant pathways. Based on the results of the pathway analysis, sphingolipid and cholesterol biosynthesis and glycerophospholipid metabolism were regarded as key pathways in which S. baicalensis is involved to regulate lipid metabolism. Conclusion According to our metabolomics results, S. baicalensis may exert its therapeutic effects by regulating the cholesterol biosynthesis and sphingolipid metabolism pathways. Upon further analysis of the altered metabolites in certain pathways, agents downstream of squalene were significantly upregulated; however, the substrate of SQLE was surprisingly increased. By combining evidence from molecular docking, we speculated that baicalin, a major ingredient of S. baicalensis, may suppress cholesterol biosynthesis by inhibiting SQLE and LSS, which are important enzymes in the cholesterol biosynthesis pathway. In summary, this study provides new insights into the therapeutic effects of S. baicalensis on lipid metabolism using network pharmacology and lipidomics.
Collapse
Affiliation(s)
- Ping-Yuan Ge
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Yi-Yu Qi
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Shu-Yue Qu
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Xin Zhao
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Sai-Jia Ni
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Zeng-Ying Yao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Rui Guo
- School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Nian-Yun Yang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Qi-Chun Zhang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China.,Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| | - Hua-Xu Zhu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, People's Republic of China
| |
Collapse
|
5
|
Jiang W, Liu P, Zhang J, Yang W. Identification of Key Candidate Genes and Pathways of Candida albicans-Infected Human Umbilical Vein Endothelial Cells and Drug Screening. Indian J Microbiol 2019; 60:62-69. [PMID: 32089575 PMCID: PMC7000633 DOI: 10.1007/s12088-019-00847-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 12/04/2019] [Indexed: 12/19/2022] Open
Abstract
Candida albicans is a common opportunistic pathogen that can cause serious infection by blood transmission. C. albicans enters the blood circulation and adheres to the endothelial cells of the vascular wall. However, the detailed mechanism of the effect of C. albicans on the endothelial cells remains unclear. In this study, the microarray expression profile of human umbilical vein endothelial cells exposed to C. albicans was analyzed. The 191 up-regulated genes were enriched in TNF, T cell receptor, and NF-kappa B signaling pathways. The 71 down-regulated genes were enriched in pyruvate metabolic, purine nucleotide metabolic, purine nucleotide biosynthetic, and humoral immune response processes. Gene set enrichment analysis showed that apoptosis, oxidative phosphorylation, IL6/JAK/STAT3 signaling pathways were enriched. Moreover, two hub genes with a high degree of connectivity, namely, MYC and IL6, were selected. Molecular screening of traditional Chinese medicine libraries was performed on the basis of the structure of MYC protein. The okanin had the highest docking score. MYC might be used as molecular targets for treatment. In addition, okanin may inhibit the infection of C. albicans. Thus, MYC can be subjected to further research.
Collapse
Affiliation(s)
- Wei Jiang
- 1Department of Infectious Diseases, Tianjin First Center Hospital, No. 24 Fukang Road, Nankai District, Tianjin, 300192 China
| | - Ping Liu
- 2Laboratory of Microbiology of Tianjin First Center Hospital, Tianjin, China
| | - Jianlei Zhang
- 2Laboratory of Microbiology of Tianjin First Center Hospital, Tianjin, China
| | - Wenjie Yang
- 1Department of Infectious Diseases, Tianjin First Center Hospital, No. 24 Fukang Road, Nankai District, Tianjin, 300192 China
| |
Collapse
|
6
|
Rohini K, Agarwal P, Preethi B, Shanthi V, Ramanathan K. Exploring the Lead Compounds for Zika Virus NS2B-NS3 Protein: an e-Pharmacophore-Based Approach. Appl Biochem Biotechnol 2018; 187:194-210. [PMID: 29911269 DOI: 10.1007/s12010-018-2814-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 06/05/2018] [Indexed: 12/19/2022]
Abstract
The rapid spread of the Zika virus and its association with the abnormal brain development constitute a global health emergency. With a continuing spread of the mosquito vector, the exposure is expected to accelerate in the coming years. Despite number of efforts, there is still no proper vaccine or medicine to combat this virus. Of note, the NS2B-NS3 protein is proven to be the potential target for the Zika virus therapeutics. Hence, e-pharmacophore-based drug design strategy was employed to identify potent inhibitors of NS2B-NS3 protein from ASINEX database consisting of 467,802 molecules. A 3D e-pharmacophore model was generated using PHASE module of Schrödinger Suite. The generated model consists of one hydrogen bond acceptor (A), two hydrogen bond donors (D), and two aromatic rings (R), ADDRR. The model was further evaluated for its ability to screen actives using enrichment analysis. Subsequently, high-throughput virtual screening protocol was employed, and the resultant hit molecules were also examined for its binding free energies and ADME properties using Prime MM-GBSA and Qikprop module of Schrodinger packages, respectively. Finally, the screened hit molecule was subjected to molecular dynamics simulation to examine its stability. Overall, the results from our analysis suggest that compound BAS 19192837 could be a potent inhibitor for the NS2B-NS3 protein of the Zika virus. It is also noteworthy to mention that our results are in good agreement with literature evidences. We hope that this result is of immense importance in designing potential drug molecules to combat the spread of Zika virus in the near future.
Collapse
Affiliation(s)
- K Rohini
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamilnadu, 632014, India
| | - Pratika Agarwal
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamilnadu, 632014, India
| | - B Preethi
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamilnadu, 632014, India
| | - V Shanthi
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamilnadu, 632014, India
| | - K Ramanathan
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamilnadu, 632014, India.
| |
Collapse
|
7
|
Singh VK, Chang HH, Kuo CC, Shiao HY, Hsieh HP, Coumar MS. Drug repurposing for chronic myeloid leukemia: in silico and in vitro investigation of DrugBank database for allosteric Bcr-Abl inhibitors. J Biomol Struct Dyn 2016; 35:1833-1848. [DOI: 10.1080/07391102.2016.1196462] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Vivek Kumar Singh
- School of Life Sciences, Centre for Bioinformatics, Pondicherry University, Kalapet, Puducherry 605014, India
| | - Hsin-Huei Chang
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County 350, Taiwan, ROC
| | - Ching-Chuan Kuo
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County 350, Taiwan, ROC
- Institute of Clinical Pharmacy and Pharmaceutical Sciences, National Cheng Kung University Medical College, Tainan, Taiwan
- Graduate Program for Aging, China Medical University, Taichung, Taiwan, ROC
| | - Hui-Yi Shiao
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County 350, Taiwan, ROC
| | - Hsing-Pang Hsieh
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, 35 Keyan Road, Zhunan, Miaoli County 350, Taiwan, ROC
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan, ROC
| | - Mohane Selvaraj Coumar
- School of Life Sciences, Centre for Bioinformatics, Pondicherry University, Kalapet, Puducherry 605014, India
| |
Collapse
|
8
|
Blei F. Update September 2014. Lymphat Res Biol 2014. [DOI: 10.1089/lrb.2014.1232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|