1
|
Bashour H, Smorodina E, Pariset M, Zhong J, Akbar R, Chernigovskaya M, Lê Quý K, Snapkow I, Rawat P, Krawczyk K, Sandve GK, Gutierrez-Marcos J, Gutierrez DNZ, Andersen JT, Greiff V. Biophysical cartography of the native and human-engineered antibody landscapes quantifies the plasticity of antibody developability. Commun Biol 2024; 7:922. [PMID: 39085379 PMCID: PMC11291509 DOI: 10.1038/s42003-024-06561-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/05/2024] [Indexed: 08/02/2024] Open
Abstract
Designing effective monoclonal antibody (mAb) therapeutics faces a multi-parameter optimization challenge known as "developability", which reflects an antibody's ability to progress through development stages based on its physicochemical properties. While natural antibodies may provide valuable guidance for mAb selection, we lack a comprehensive understanding of natural developability parameter (DP) plasticity (redundancy, predictability, sensitivity) and how the DP landscapes of human-engineered and natural antibodies relate to one another. These gaps hinder fundamental developability profile cartography. To chart natural and engineered DP landscapes, we computed 40 sequence- and 46 structure-based DPs of over two million native and human-engineered single-chain antibody sequences. We find lower redundancy among structure-based compared to sequence-based DPs. Sequence DP sensitivity to single amino acid substitutions varied by antibody region and DP, and structure DP values varied across the conformational ensemble of antibody structures. We show that sequence DPs are more predictable than structure-based ones across different machine-learning tasks and embeddings, indicating a constrained sequence-based design space. Human-engineered antibodies localize within the developability and sequence landscapes of natural antibodies, suggesting that human-engineered antibodies explore mere subspaces of the natural one. Our work quantifies the plasticity of antibody developability, providing a fundamental resource for multi-parameter therapeutic mAb design.
Collapse
Affiliation(s)
- Habib Bashour
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway.
- School of Life Sciences, University of Warwick, Coventry, UK.
| | - Eva Smorodina
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | | | - Jahn Zhong
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
- Division of Genetics, Department Biology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Rahmad Akbar
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Maria Chernigovskaya
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Khang Lê Quý
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Igor Snapkow
- Department of Chemical Toxicology, Norwegian Institute of Public Health, Oslo, Norway
| | - Puneet Rawat
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
| | | | | | | | | | - Jan Terje Andersen
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway
- Department of Pharmacology, University of Oslo and Oslo University Hospital, Oslo, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, Oslo, Norway
| | - Victor Greiff
- Department of Immunology, University of Oslo and Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
2
|
Cachau R, Shahsavari S, Cho SK. The in-silico evaluation of important GLUT9 residue for uric acid transport based on renal hypouricemia type 2. Chem Biol Interact 2023; 373:110378. [PMID: 36736875 PMCID: PMC10596759 DOI: 10.1016/j.cbi.2023.110378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 01/17/2023] [Accepted: 01/31/2023] [Indexed: 02/04/2023]
Abstract
Uric acid is the end product of purine metabolism. Uric acid transporters in the renal proximal tubule plays a key role in uric acid transport. Functional abnormalities in these transporters could lead to high or low levels of uric acid in the blood plasma, known as hyperuricemia and hypouricemia, respectively. GLUT9 has been reported as a key transporter for uric acid reuptake in renal proximal tubule. GLUT9 mutation is known as causal gene for renal hypouricemia due to defective uric acid uptake, with more severe cases resulting in urolithiasis and exercise induced acute kidney injury (EIAKI). However, the effect of mutation is not fully investigated and hard to predict the change of binding affinity. We comprehensively described the effect of GLUT9 mutation for uric acid transport using molecular dynamics and investigated the specific site for uric acid binding differences. R171C and R380W showed the significant disruption of the structure not affecting transport dynamics whereas L75R, G216R, N333S, and P412R showed the reduced affinity of the extracellular vestibular area towards urate. Interestingly, T125 M showed a significant increase in intracellular binding energy, associated with distorted geometries. We can use this classification to consider the effect mutations by comparing the transport profiles of mutants against those of chemical candidates for transport and providing new perspectives to urate lowering drug discovery using GLUT9.
Collapse
Affiliation(s)
- Raul Cachau
- Integrated Data Science Section, Research Technologies Branch, National Institute of Allergies and Infectious Diseases, Bethesda, MD, USA
| | | | - Sung Kweon Cho
- Center for Cancer Research, National Cancer Institute, Frederick, MD, USA; Department of Pharmacology Ajou University, School of Medicine, Suwon, South Korea.
| |
Collapse
|
3
|
da Silva DF, de Souza JL, da Costa DM, Costa DB, Moreira POL, Fonseca ALD, Varotti FDP, Cruz JN, Dos Santos CBR, Alves CQ, Leite FHA, Brandão HN. Antiplasmodial activity of coumarins isolated from Polygala boliviensis: in vitro and in silico studies. J Biomol Struct Dyn 2023; 41:13383-13403. [PMID: 36744465 DOI: 10.1080/07391102.2023.2173295] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 01/21/2023] [Indexed: 02/07/2023]
Abstract
Polygala boliviensis is found in the Brazilian semiarid region. This specie is little chemically and biologically studied. Polygala spp. have different metabolites, especially coumarins. Studies indicate that coumarins have antimalarial potential, denoting the importance of researching new active compounds from plants, since the resistance of Plasmodium strains to conventional therapy has increased. The present study aimed to evaluate the antiplasmodial activity of auraptene and poligalen against a chloroquine-resistant strain of Plasmodium falciparum. Coumarins were isolated from P. boliviensis by open column chromatography and identified by Nuclear Magnetic Resonance Spectroscopy. A cytotoxicity assay was carried out using MTT test, and the in vitro antiplasmodial activity was evaluated using the W2 strain. The antiplasmodial activity results found were IC50=0.171 ± 0.016 for auraptene and 0.164 ± 0.012 for poligalen; the selectivity indexes were 78.71 and 609.76, respectively. Inverse virtual screening in the BRAMMT database by OCTOPUS 1.2 was applied to coumarins to find potential P. falciparum targets and showed higher affinity energy of auraptene for purine nucleoside phosphorylase (PfPNP) and of poligalen for dihydroorotate dehydrogenase (PfDHODH). Molecular Dynamics studies (MD and MM-GBSA) approach were applied to calculate binding energies against selected P. falciparum targets and showed that all coumarins were stable at the binding site during simulations. Furthermore, energies were favorable for complexation. This is the first report of auraptene in P. boliviensis species and of in vitro antiplasmodial activity of auraptene and poligalen. In silico studies indicated that the mechanism of action of coumarins is the inhibition of PfPNP and PfDHODH.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Danielle Figuerêdo da Silva
- Departamento de Saúde, Laboratório de Bioprospecção Vegetal, Universidade Estadual de Feira de Santana, Feira de Santana, Bahia, Brazil
| | - Jéssica Lima de Souza
- Departamento de Saúde, Laboratório de Bioprospecção Vegetal, Universidade Estadual de Feira de Santana, Feira de Santana, Bahia, Brazil
| | - Diego Mota da Costa
- Departamento de Saúde, Laboratório de Bioprospecção Vegetal, Universidade Estadual de Feira de Santana, Feira de Santana, Bahia, Brazil
| | - David Bacelar Costa
- Departamento de Saúde, Laboratório de Modelagem Molecular, Universidade Estadual de Feira de Santana, Feira de Santana, Bahia, Brazil
| | - Paulo Otávio Lourenço Moreira
- Centro de Ciências da Saúde, Laboratório de Bioquímica Medicinal, Universidade Federal de São João Del-Rei, Divinópolis, Minas Gerais, Brazil
| | - Amanda Luisa da Fonseca
- Centro de Ciências da Saúde, Laboratório de Bioquímica Medicinal, Universidade Federal de São João Del-Rei, Divinópolis, Minas Gerais, Brazil
| | - Fernando de Pilla Varotti
- Centro de Ciências da Saúde, Laboratório de Bioquímica Medicinal, Universidade Federal de São João Del-Rei, Divinópolis, Minas Gerais, Brazil
| | - Jorddy Neves Cruz
- Departamento de Ciências Biológicas e da Saúde, Laboratório de Modelagem e Química Computacional, Universidade Federal do Amapá, Macapá, Amapá, Brazil
| | - Cleydson Breno Rodrigues Dos Santos
- Departamento de Ciências Biológicas e da Saúde, Laboratório de Modelagem e Química Computacional, Universidade Federal do Amapá, Macapá, Amapá, Brazil
| | - Clayton Queiroz Alves
- Departamento de Saúde, Laboratório de Bioprospecção Vegetal, Universidade Estadual de Feira de Santana, Feira de Santana, Bahia, Brazil
| | - Franco Henrique Andrade Leite
- Departamento de Saúde, Laboratório de Modelagem Molecular, Universidade Estadual de Feira de Santana, Feira de Santana, Bahia, Brazil
| | - Hugo Neves Brandão
- Departamento de Saúde, Laboratório de Bioprospecção Vegetal, Universidade Estadual de Feira de Santana, Feira de Santana, Bahia, Brazil
| |
Collapse
|
4
|
Almajidi YQ, Maraie NK, Raauf AMR. Modified solid in oil nanodispersion containing vemurafenib-lipid complex- in vitro/ in vivo study. F1000Res 2022; 11:841. [PMID: 36339973 PMCID: PMC9627402 DOI: 10.12688/f1000research.123041.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/05/2022] [Indexed: 01/13/2023] Open
Abstract
Background: Vemurafenib (VEM) was a licensed drug for the treatment of skin melanoma and is available only in the market as oral tablets prescribed in huge doses (1920 mg/day). One reason for the high dose is vemurafenib's low oral bioavailability. Methods: VEM-lipid complex (DLC) was predicted based on Conquest and Mercury programs and prepared using the solvent evaporation method using the lipid (phosphatidylethanolamine). DLC was subjected to characterization (FT-IR, Raman spectroscopy, DSC, TGA, P-XRD, and FESEM) to confirm complexation. DLC was used to prepare solid in oil nanodispersion (DLC-SON) and subjected to in vitro, ex vivo, and in vivo evaluation in comparison to our recently prepared conventional SON (VEM-SON) and DLC-control. Results: Conquest and Mercury predict the availability of intermolecular hydrogen bonding between VEM and phosphatidylethanolamine (PE). All characterization tests of DLC ensure the complexation of the drug with PE. Ex vivo studies showed that the drug in DLC-SON has significantly (P<0.05) higher skin permeation than DLC-control but lower drug permeation than conventional SON but it has a higher % skin deposition (P<0.05) than others. The half-maximal inhibitory concentration (IC50) of the prepared DLC-SON is significantly high (P<0.05) in comparison to the conventional SON and pure VEM. In vivo permeation using confocal laser scanning microscopy (on the rat) results indicated that both conventional SON and DLC-SON can cross the SC and infiltrate the dermis and epidermis but DLC-SON has a higher luminance/gray value after 24 h in the dermis in comparison to the conventional SON. Conclusion: The novel lipid complex for VEM prepared using PE as a lipid and enclosed in SON showed higher anticancer activity and topical permeation as well as sustained delivery and good retention time in the dermis that localize the drug in a sufficient concentration to eliminate early diagnosed skin melanoma.
Collapse
Affiliation(s)
- Yasir Q. Almajidi
- Department of Pharmaceutics, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq, Iraq,
| | - Nidhal K. Maraie
- Department of Pharmaceutics, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq, Iraq
| | - Ayad M. R. Raauf
- Department of Pharmaceutics, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq, Iraq
| |
Collapse
|
5
|
Almajidi YQ, Maraie NK, Raauf AMR. Modified solid in oil nanodispersion containing vemurafenib-lipid complex- in vitro/ in vivo study. F1000Res 2022; 11:841. [PMID: 36339973 PMCID: PMC9627402 DOI: 10.12688/f1000research.123041.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/05/2022] [Indexed: 07/30/2023] Open
Abstract
Background: Vemurafenib (VEM) was a licensed drug for the treatment of skin melanoma and is available only in the market as oral tablets prescribed in huge doses (1920 mg/day). One reason for the high dose is vemurafenib's low oral bioavailability. Methods: VEM-lipid complex (DLC) was predicted based on Conquest and Mercury programs and prepared using the solvent evaporation method using the lipid (phosphatidylethanolamine). DLC was subjected to characterization (FT-IR, Raman spectroscopy, DSC, TGA, P-XRD, and FESEM) to confirm complexation. DLC was used to prepare solid in oil nanodispersion (DLC-SON) and subjected to in vitro, ex vivo, and in vivo evaluation in comparison to our recently prepared conventional SON (VEM-SON) and DLC-control. Results: Conquest and Mercury predict the availability of intermolecular hydrogen bonding between VEM and phosphatidylethanolamine (PE). All characterization tests of DLC ensure the complexation of the drug with PE. Ex vivo studies showed that the drug in DLC-SON has significantly (P<0.05) higher skin permeation than DLC-control but lower drug permeation than conventional SON but it has a higher % skin deposition (P<0.05) than others. The half-maximal inhibitory concentration (IC50) of the prepared DLC-SON is significantly high (P<0.05) in comparison to the conventional SON and pure VEM. In vivo permeation using confocal laser scanning microscopy (on the rat) results indicated that both conventional SON and DLC-SON can cross the SC and infiltrate the dermis and epidermis but DLC-SON has a higher luminance/gray value after 24 h in the dermis in comparison to the conventional SON. Conclusion: The novel lipid complex for VEM prepared using PE as a lipid and enclosed in SON showed higher anticancer activity and topical permeation as well as sustained delivery and good retention time in the dermis that localize the drug in a sufficient concentration to eliminate early diagnosed skin melanoma.
Collapse
Affiliation(s)
- Yasir Q. Almajidi
- Department of Pharmaceutics, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq, Iraq
| | - Nidhal K. Maraie
- Department of Pharmaceutics, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq, Iraq
| | - Ayad M. R. Raauf
- Department of Pharmaceutics, College of Pharmacy, Mustansiriyah University, Baghdad, Iraq, Iraq
| |
Collapse
|
6
|
Bystrov VS, Filippov SV. Molecular modelling and computational studies of peptide diphenylalanine nanotubes, containing waters: structural and interactions analysis. J Mol Model 2022; 28:81. [PMID: 35247081 DOI: 10.1007/s00894-022-05074-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/26/2022] [Indexed: 10/18/2022]
Abstract
The work is devoted to computer studies of the structural and physical properties of such self-organizing structures as peptide nanotubes (PNT) based on diphenylalanine (FF) dipeptide with different initial isomers of the left (L-FF) and right (D-FF) chiralities of these dipeptides. The structures under study are considered both with empty anhydrous and with internal cavities filled with water molecules. Molecular models of both chiralities are investigated using quantum-chemical DFT and semi-empirical methods, which are in consistent with the known experimental data. To study the effect of nano-sized clusters of water molecules embedded in the inner hydrophilic cavity on the properties of nanotubes (including the changes in their dipole moments and polarizations), as well as the changes in the structure and properties of water clusters themselves (their own dipole moments and polarizations), the surfaces of internal cavities of nanotubes and outer surfaces of water cluster structures for both types of chirality are analyzed. A specially developed method of visual differential analysis of structural features of (bio)macromolecular structures is applied for these studies. The results obtained of a number of physical properties (interacting energies, dipole moments, polarization values) are given for various cases and analyzed in comparison with the known data. These data are necessary for analyzing the interactions of water molecules with hydrophilic parts of nanotube molecules based on FF, such as COO- and NH3 + , since they determine many properties of the structures under study. The data obtained are useful for further analysis of the possible adhesion and capture of medical molecular components by active layers of FF-based PNT, which can be designed for creating capsules for targeted delivery of pharmaceuticals and drugs on their basis.
Collapse
Affiliation(s)
- Vladimir S Bystrov
- Institute of Mathematical Problems of Biology RAS - the Branch of Keldysh Institute of Applied Mathematics of Russian Academy of Sciences (IMPB RAS- Branch of KIAM RAS), 142290, Pushchino, Moscow region, Russia.
| | - Sergey V Filippov
- Institute of Mathematical Problems of Biology RAS - the Branch of Keldysh Institute of Applied Mathematics of Russian Academy of Sciences (IMPB RAS- Branch of KIAM RAS), 142290, Pushchino, Moscow region, Russia
| |
Collapse
|
7
|
Molecular Dynamics Simulation Study of the Self-Assembly of Phenylalanine Peptide Nanotubes. NANOMATERIALS 2022; 12:nano12050861. [PMID: 35269349 PMCID: PMC8912360 DOI: 10.3390/nano12050861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 02/01/2023]
Abstract
In this paper, we propose and use a new approach for a relatively simple technique for conducting MD simulation (MDS) of various molecular nanostructures, determining the trajectory of the MD run and forming the final structure using external force actions. A molecular dynamics manipulator (MD manipulator) is a controlled MDS type. As an example, the applicability of the developed algorithm for assembling peptide nanotubes (PNT) from linear phenylalanine (F or Phe) chains of different chirality is presented. The most adequate regimes for the formation of nanotubes of right chirality D from the initial L-F and nanotubes of left chirality L of their initial dipeptides D-F modes were determined. We use the method of a mixed (vector–scalar) product of the vectors of the sequence of dipole moments of phenylalanine molecules located along the nanotube helix to calculate the magnitude and sign of chirality of self-assembled helical phenylalanine nanotubes, which shows the validity of the proposed approach. As result, all data obtained correspond to the regularity of the chirality sign change of the molecular structures with a hierarchical complication of their organization.
Collapse
|
8
|
Ortiz-Mahecha CA, Agudelo WA, Patarroyo MA, Patarroyo ME, Suárez CF. MHCBI: a pipeline for calculating peptide-MHC binding energy using semi-empirical quantum mechanical methods with explicit/implicit solvent models. Brief Bioinform 2021; 22:6274818. [PMID: 33979434 DOI: 10.1093/bib/bbab171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/10/2021] [Accepted: 03/30/2021] [Indexed: 11/12/2022] Open
Abstract
Experimentally estimating peptide-major histocompatibility complex (pMHC) binding affinity has been quite challenging due to the many receptors and the many potential ligands implicated in it. We have thus proposed a straightforward computational methodology considering the different mechanisms involved in pMHC binding to facilitate studying such receptor-ligand interactions. We have developed a pipeline using semi-empirical quantum mechanical methods for calculating pMHC class I and II molecules' binding energy (BE). This pipeline can systematize the methodology for calculating pMHC system BE, enabling the rational design of T-cell epitopes to be used as pharmaceuticals and vaccines.
Collapse
Affiliation(s)
| | | | | | | | - Carlos F Suárez
- Fundación Instituto de Inmunología de Colombia, Bogota DC, Colombia
| |
Collapse
|
9
|
Sulimov VB, Kutov DC, Taschilova AS, Ilin IS, Tyrtyshnikov EE, Sulimov AV. Docking Paradigm in Drug Design. Curr Top Med Chem 2021; 21:507-546. [PMID: 33292135 DOI: 10.2174/1568026620666201207095626] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/28/2020] [Accepted: 10/16/2020] [Indexed: 11/22/2022]
Abstract
Docking is in demand for the rational computer aided structure based drug design. A review of docking methods and programs is presented. Different types of docking programs are described. They include docking of non-covalent small ligands, protein-protein docking, supercomputer docking, quantum docking, the new generation of docking programs and the application of docking for covalent inhibitors discovery. Taking into account the threat of COVID-19, we present here a short review of docking applications to the discovery of inhibitors of SARS-CoV and SARS-CoV-2 target proteins, including our own result of the search for inhibitors of SARS-CoV-2 main protease using docking and quantum chemical post-processing. The conclusion is made that docking is extremely important in the fight against COVID-19 during the process of development of antivirus drugs having a direct action on SARS-CoV-2 target proteins.
Collapse
Affiliation(s)
- Vladimir B Sulimov
- Research Computer Center of Lomonosov Moscow State University, Moscow, Russian Federation
| | - Danil C Kutov
- Research Computer Center of Lomonosov Moscow State University, Moscow, Russian Federation
| | - Anna S Taschilova
- Research Computer Center of Lomonosov Moscow State University, Moscow, Russian Federation
| | - Ivan S Ilin
- Research Computer Center of Lomonosov Moscow State University, Moscow, Russian Federation
| | - Eugene E Tyrtyshnikov
- Institute of Numerical Mathematics of Russian Academy of Sciences, Moscow, Russian Federation
| | - Alexey V Sulimov
- Research Computer Center of Lomonosov Moscow State University, Moscow, Russian Federation
| |
Collapse
|
10
|
Bystrov VS, Coutinho J, Zelenovskiy PS, Nuraeva AS, Kopyl S, Filippov SV, Zhulyabina OA, Tverdislov VA. Molecular modeling and computational study of the chiral-dependent structures and properties of the self-assembling diphenylalanine peptide nanotubes, containing water molecules. J Mol Model 2020; 26:326. [PMID: 33140163 DOI: 10.1007/s00894-020-04564-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/07/2020] [Indexed: 12/16/2022]
Abstract
DFT (VASP) and semi-empirical (HyperChem) calculations for the L- and D-chiral diphenylalanine (L-FF and D-FF) nanotube (PNT) structures, empty and filled with water/ice clusters, are presented and analyzed. The results obtained show that after optimization, the dipole moment and polarization of both chiral type L-FF and D-FF PNT and embedded water/ice cluster are enhanced; the water/ice cluster acquire the helix-like structure similar as L-FF and D-FF PNT. Ferroelectric properties of tubular water/ice helix-like-cluster obtained after optimization inside L-FF and D-FF PNT and total L-FF and D-FF PNT with embedded water/ice cluster are discussed.
Collapse
Affiliation(s)
- Vladimir S Bystrov
- Institute of Mathematical Problems of Biology, Keldysh Institute of Applied Mathematics, RAS, 142290, Pushchino, Moscow region, Russia.
| | - Jose Coutinho
- Department of Physics & I3N, University of Aveiro, Campus Santiago, 3810-193, Aveiro, Portugal
| | - Pavel S Zelenovskiy
- School of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, 620000, Russia.,Department of Chemistry & CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Alla S Nuraeva
- School of Natural Sciences and Mathematics, Ural Federal University, Ekaterinburg, 620000, Russia
| | - Svitlana Kopyl
- Department of Physics & CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Sergei V Filippov
- Institute of Mathematical Problems of Biology, Keldysh Institute of Applied Mathematics, RAS, 142290, Pushchino, Moscow region, Russia
| | - Olga A Zhulyabina
- Faculty of Physics, Lomonosov Moscow State University, 119991, Moscow, Russia
| | | |
Collapse
|
11
|
Structures and Properties of the Self-Assembling Diphenylalanine Peptide Nanotubes Containing Water Molecules: Modeling and Data Analysis. NANOMATERIALS 2020; 10:nano10101999. [PMID: 33050446 PMCID: PMC7600064 DOI: 10.3390/nano10101999] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/25/2020] [Accepted: 09/27/2020] [Indexed: 12/31/2022]
Abstract
The structures and properties of the diphenylalanine (FF) peptide nanotubes (PNTs), both L-chiral and D-chiral (L-FF and D-FF) and empty and filled with water/ice clusters, are presented and analyzed. DFT (VASP) and semi-empirical calculations (HyperChem) to study these structural and physical properties of PNTs (including ferroelectric) were used. The results obtained show that after optimization the dipole moment and polarization of both chiral type L-FF and D-FF PNT and embedded water/ice cluster are enhanced; the water/ice cluster acquire the helix-like structure similar as L-FF and D-FF PNT. Ferroelectric properties of tubular water/ice helix-like cluster, obtained after optimization inside L-FF and D-FF PNT, as well of the total L-FF and D-FF PNT with embedded water/ice cluster, are discussed.
Collapse
|
12
|
Ortiz-Mahecha CA, Bohórquez HJ, Agudelo WA, Patarroyo MA, Patarroyo ME, Suárez CF. Assessing Peptide Binding to MHC II: An Accurate Semiempirical Quantum Mechanics Based Proposal. J Chem Inf Model 2019; 59:5148-5160. [DOI: 10.1021/acs.jcim.9b00672] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
| | - Hugo J. Bohórquez
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá D.C., Colombia
- Universidad de Ciencias Aplicadas y Ambientales (UDCA), Bogotá D.C., Colombia
| | - William A. Agudelo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá D.C., Colombia
| | - Manuel A. Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá D.C., Colombia
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá D.C., Colombia
| | - Manuel E. Patarroyo
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá D.C., Colombia
- Universidad Nacional de Colombia, Bogotá D.C., Colombia
| | - Carlos F. Suárez
- Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá D.C., Colombia
- School of Medicine and Health Sciences, Universidad del Rosario, Bogotá D.C., Colombia
| |
Collapse
|
13
|
Bystrov VS, Zelenovskiy PS, Nuraeva AS, Kopyl S, Zhulyabina OA, Tverdislov VA. Molecular modeling and computational study of the chiral-dependent structures and properties of self-assembling diphenylalanine peptide nanotubes. J Mol Model 2019; 25:199. [DOI: 10.1007/s00894-019-4080-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 05/28/2019] [Indexed: 12/26/2022]
|
14
|
Gueto-Tettay C, Pelaez-Bedoya L, Drosos-Ramirez JC. Population density analysis for determining the protonation state of the catalytic dyad in BACE1-tertiary carbinamine-based inhibitor complex. J Biomol Struct Dyn 2017; 36:3557-3574. [DOI: 10.1080/07391102.2017.1393461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Carlos Gueto-Tettay
- Grupo de Química Bioorgánica, Universidad de Cartagena, Cartagena de Indias, Colombia
| | - Luis Pelaez-Bedoya
- Grupo de Química Bioorgánica, Universidad de Cartagena, Cartagena de Indias, Colombia
| | | |
Collapse
|
15
|
Gueto-Tettay C, Martinez-Consuegra A, Zuchniarz J, Gueto-Tettay LR, Drosos-Ramírez JC. A PM7 dynamic residue-ligand interactions energy landscape of the BACE1 inhibitory pathway by hydroxyethylamine compounds. Part I: The flap closure process. J Mol Graph Model 2017; 76:274-288. [PMID: 28746905 DOI: 10.1016/j.jmgm.2017.07.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 07/10/2017] [Accepted: 07/11/2017] [Indexed: 01/08/2023]
Abstract
BACE1 is an enzyme of scientific interest because it participates in the progression of Alzheimer's disease. Hydroxyethylamines (HEAs) are a family of compounds which exhibit inhibitory activity toward BACE1 at a nanomolar level, favorable pharmacokinetic properties and oral bioavailability. The first step in the inhibition of BACE1 by HEAs consists of their entrance into the protease active site and the resultant conformational change in the protein, from Apo to closed form. These two conformations differ in the position of an antiparallel loop (called the flap) which covers the entrance to the catalytic site. For BACE1, closure of this flap is vital to its catalytic activity and to inhibition of the enzyme due to the new interactions thereby formed with the ligand. In the present study a dynamic energy landscape of residue-ligand interaction energies (ReLIE) measured for 112 amino acids in the BACE1 active site and its immediate vicinity during the closure of the flap induced by 8 HEAs of different inhibitory power is presented. A total of 6.272 million ReLIE calculations, based on the PM7 semiempirical method, provided a deep and quantitative view of the first step in the inhibition of the aspartyl protease. The information suggests that residues Asp93, Asp289, Thr292, Thr293, Asn294 and Arg296 are anchor points for the ligand, accounting for approximately 45% of the total protein-ligand interaction. Additionally, flap closure improved the BACE1-HEA interaction by around 25%. Furthermore, the inhibitory activity of HEAs could be related to the capacity of these ligands to form said anchor point interactions and maintain them over time: the lack of some of these anchor interactions delayed flap closure or impeded it completely, or even caused the flap to reopen. The methodology employed here could be used as a tool to evaluate future structural modifications which lead to improvements in the favorability and stability of BACE1-HEA ReLIEs, aiding in the design of better inhibitors.
Collapse
Affiliation(s)
- Carlos Gueto-Tettay
- Grupo de Química Bioorgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Cartagena, Cartagena, Colombia.
| | - Alejandro Martinez-Consuegra
- Grupo de Química Bioorgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Cartagena, Cartagena, Colombia
| | - Joshua Zuchniarz
- Grupo de Química Bioorgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Cartagena, Cartagena, Colombia
| | - Luis Roberto Gueto-Tettay
- Grupo de Química Bioorgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Cartagena, Cartagena, Colombia
| | - Juan Carlos Drosos-Ramírez
- Grupo de Química Bioorgánica, Facultad de Ciencias Exactas y Naturales, Universidad de Cartagena, Cartagena, Colombia.
| |
Collapse
|
16
|
Stewart JJP. An investigation into the applicability of the semiempirical method PM7 for modeling the catalytic mechanism in the enzyme chymotrypsin. J Mol Model 2017; 23:154. [PMID: 28378242 PMCID: PMC5380709 DOI: 10.1007/s00894-017-3326-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 03/17/2017] [Indexed: 02/01/2023]
Abstract
The catalytic cycle for the serine protease α-chymotrypsin was investigated in an attempt to determine the suitability of using the semiempirical method PM7 in the program MOPAC for investigating enzyme-catalyzed reactions. All six classical intermediates were modeled using standard methods, and were characterized as stable minima on the potential energy surface. Using a modified saddle point optimization method, five transition states were located and verified both by vibrational and by intrinsic reaction coordinate analysis. Some individual features, such as the hydrogen bonds in the oxyanion hole, the nature of various electrostatic interactions, and the role of Met192, were examined. This involved designing and running computational experiments to model mutations that would allow features of interest, in particular the energies involved, to be isolated. Three features within the enzyme were examined in detail: the reaction site itself, where covalent bonds were made and broken, the electrostatic effects of the buried aspartate anion, a passive but essential component of the catalytic triad, and the oxyanion hole, where hydrogen bonds help stabilize charged intermediates. With one minor exception, all phenomena investigated agreed with previously-reported descriptions. This result, along with the fact that all the techniques used were relatively straightforward, leads to the recommendation that PM7 and related methods, such as PM6-D3H4, are appropriate for modeling similar enzyme-catalyzed reactions. Graphical abstract Fifth of six transition states, showing water splitting into hydroxyl anion and a proton, to form the second tetrahedral intermediate and histidinium ion. Atoms of the water molecule involved in the hydrolysis are indicated by halos.
Collapse
Affiliation(s)
- James J P Stewart
- Stewart Computational Chemistry, 15210 Paddington Circle, Colorado Springs, CO, 80921, USA.
| |
Collapse
|
17
|
Sulimov AV, Kutov DC, Katkova EV, Sulimov VB. Combined Docking with Classical Force Field and Quantum Chemical Semiempirical Method PM7. Adv Bioinformatics 2017; 2017:7167691. [PMID: 28191015 PMCID: PMC5278191 DOI: 10.1155/2017/7167691] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/19/2016] [Accepted: 12/22/2016] [Indexed: 12/11/2022] Open
Abstract
Results of the combined use of the classical force field and the recent quantum chemical PM7 method for docking are presented. Initially the gridless docking of a flexible low molecular weight ligand into the rigid target protein is performed with the energy function calculated in the MMFF94 force field with implicit water solvent in the PCM model. Among several hundred thousand local minima, which are found in the docking procedure, about eight thousand lowest energy minima are chosen and then energies of these minima are recalculated with the recent quantum chemical semiempirical PM7 method. This procedure is applied to 16 test complexes with different proteins and ligands. For almost all test complexes such energy recalculation results in the global energy minimum configuration corresponding to the ligand pose near the native ligand position in the crystalized protein-ligand complex. A significant improvement of the ligand positioning accuracy comparing with MMFF94 energy calculations is demonstrated.
Collapse
Affiliation(s)
- A. V. Sulimov
- Dimonta Ltd., Nagornaya Str. 15, Building 8, Moscow 117186, Russia
- Research Computer Center (NIVC), M.V. Lomonosov Moscow State University (MGU), Leninskiye Gory 1, Building 4, Moscow 119991, Russia
| | - D. C. Kutov
- Dimonta Ltd., Nagornaya Str. 15, Building 8, Moscow 117186, Russia
- Research Computer Center (NIVC), M.V. Lomonosov Moscow State University (MGU), Leninskiye Gory 1, Building 4, Moscow 119991, Russia
| | - E. V. Katkova
- Dimonta Ltd., Nagornaya Str. 15, Building 8, Moscow 117186, Russia
- Research Computer Center (NIVC), M.V. Lomonosov Moscow State University (MGU), Leninskiye Gory 1, Building 4, Moscow 119991, Russia
| | - V. B. Sulimov
- Dimonta Ltd., Nagornaya Str. 15, Building 8, Moscow 117186, Russia
- Research Computer Center (NIVC), M.V. Lomonosov Moscow State University (MGU), Leninskiye Gory 1, Building 4, Moscow 119991, Russia
| |
Collapse
|
18
|
Stewart JJP. A method for predicting individual residue contributions to enzyme specificity and binding-site energies, and its application to MTH1. J Mol Model 2016; 22:259. [PMID: 27714533 PMCID: PMC5054044 DOI: 10.1007/s00894-016-3119-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 09/08/2016] [Indexed: 12/20/2022]
Abstract
A new method for predicting the energy contributions to substrate binding and to specificity has been developed. Conventional global optimization methods do not permit the subtle effects responsible for these properties to be modeled with sufficient precision to allow confidence to be placed in the results, but by making simple alterations to the model, the precisions of the various energies involved can be improved from about ±2 kcal mol−1 to ±0.1 kcal mol−1. This technique was applied to the oxidized nucleotide pyrophosphohydrolase enzyme MTH1. MTH1 is unusual in that the binding and reaction sites are well separated—an advantage from a computational chemistry perspective, as it allows the energetics involved in docking to be modeled without the need to consider any issues relating to reaction mechanisms. In this study, two types of energy terms were investigated: the noncovalent interactions between the binding site and the substrate, and those responsible for discriminating between the oxidized nucleotide 8-oxo-dGTP and the normal dGTP. Both of these were investigated using the semiempirical method PM7 in the program MOPAC. The contributions of the individual residues to both the binding energy and the specificity of MTH1 were calculated by simulating the effect of mutations. Where comparisons were possible, all calculated results were in agreement with experimental observations. This technique provides fresh insight into the binding mechanism that enzymes use for discriminating between possible substrates.
Collapse
Affiliation(s)
- James J P Stewart
- Stewart Computational Chemistry, 15210 Paddington Circle, Colorado Springs, CO, 80921, USA.
| |
Collapse
|
19
|
Ryan H, Carter M, Stenmark P, Stewart JJP, Braun-Sand SB. A comparison of X-ray and calculated structures of the enzyme MTH1. J Mol Model 2016; 22:168. [PMID: 27350386 PMCID: PMC4923096 DOI: 10.1007/s00894-016-3025-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/27/2016] [Indexed: 12/15/2022]
Abstract
Modern computational chemistry methods provide a powerful tool for use in refining the geometry of proteins determined by X-ray crystallography. Specifically, computational methods can be used to correctly place hydrogen atoms unresolved by this experimental method and improve bond geometry accuracy. Using the semiempirical method PM7, the structure of the nucleotide-sanitizing enzyme MTH1, complete with hydrolyzed substrate 8-oxo-dGMP, was optimized and the resulting geometry compared with the original X-ray structure of MTH1. After determining hydrogen atom placement and the identification of ionized sites, the charge distribution in the binding site was explored. Where comparison was possible, all the theoretical predictions were in good agreement with experimental observations. However, when these were combined with additional predictions for which experimental observations were not available, the result was a new and alternative description of the substrate-binding site interaction. An estimate was made of the strengths and weaknesses of the PM7 method for modeling proteins on varying scales, ranging from overall structure to individual interatomic distances. An attempt to correct a known fault in PM7, the under-estimation of steric repulsion, is also described. This work sheds light on the specificity of the enzyme MTH1 toward the substrate 8-oxo-dGTP; information that would facilitate drug development involving MTH1. Graphical Abstract Overlay of the backbone traces of the two MTH1 protein chains (green and orange respectively) in PDB 3ZR0 and the equivalent PM7 structures (magenta and cyan respectively) each optimized separately.
Collapse
Affiliation(s)
- Hannah Ryan
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, Colorado Springs, CO, 80918, USA
| | - Megan Carter
- Department of Chemistry and Biochemistry, University of Colorado Colorado Springs, Colorado Springs, CO, 80918, USA
- Department of Biochemistry and Biophysics, Stockholm University, S-106 91, Stockholm, Sweden
| | - Pål Stenmark
- Department of Biochemistry and Biophysics, Stockholm University, S-106 91, Stockholm, Sweden
| | - James J P Stewart
- Stewart Computational Chemistry, 15210 Paddington Circle, Colorado Springs, CO, 80921, USA
| | - Sonja B Braun-Sand
- In Silico Chemical Consulting, 128 Longwood Ave, Lakeway, TX, 78734, USA.
| |
Collapse
|
20
|
Yilmazer ND, Korth M. Recent Progress in Treating Protein-Ligand Interactions with Quantum-Mechanical Methods. Int J Mol Sci 2016; 17:ijms17050742. [PMID: 27196893 PMCID: PMC4881564 DOI: 10.3390/ijms17050742] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/18/2016] [Accepted: 05/03/2016] [Indexed: 11/16/2022] Open
Abstract
We review the first successes and failures of a “new wave” of quantum chemistry-based approaches to the treatment of protein/ligand interactions. These approaches share the use of “enhanced”, dispersion (D), and/or hydrogen-bond (H) corrected density functional theory (DFT) or semi-empirical quantum mechanical (SQM) methods, in combination with ensemble weighting techniques of some form to capture entropic effects. Benchmark and model system calculations in comparison to high-level theoretical as well as experimental references have shown that both DFT-D (dispersion-corrected density functional theory) and SQM-DH (dispersion and hydrogen bond-corrected semi-empirical quantum mechanical) perform much more accurately than older DFT and SQM approaches and also standard docking methods. In addition, DFT-D might soon become and SQM-DH already is fast enough to compute a large number of binding modes of comparably large protein/ligand complexes, thus allowing for a more accurate assessment of entropic effects.
Collapse
Affiliation(s)
- Nusret Duygu Yilmazer
- Institute for Theoretical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89069 Ulm, Germany.
| | - Martin Korth
- Institute for Theoretical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89069 Ulm, Germany.
| |
Collapse
|