1
|
Kozubik KS, Radova L, Reblova K, Smida M, Zaliova Kubricanova M, Baloun J, Pesova M, Vrzalova Z, Folber F, Mejstrikova S, Pospisilova S, Doubek M. Functional analysis of germline ETV6 W380R mutation causing inherited thrombocytopenia and secondary acute lymphoblastic leukemia or essential thrombocythemia. Platelets 2021; 32:838-841. [PMID: 32819174 DOI: 10.1080/09537104.2020.1802416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/02/2020] [Accepted: 07/10/2020] [Indexed: 10/23/2022]
Abstract
Germline mutations in ETV6 gene cause inherited thrombocytopenia with leukemia predisposition. Here, we report on functional validation of ETV6 W380R mutation segregating with thrombocytopenia in a family where two family members also suffered from acute lymphoblastic leukemia (ALL) or essential thrombocythemia (ET). In-silico analysis predicted impaired DNA binding due to W380R mutation. Functional analysis showed that this mutation prevents the ETV6 protein from localizing into the cell nucleus and impairs the transcriptional repression activity of ETV6. Based on the germline ETV6 mutation, ET probably started with somatic JAK2 V617F mutation, whereas ALL could be caused by diverse mechanisms: high-hyperdiploidity; somatic deletion of exon 1 IKZF1 gene; or somatic mutations of other genes found by exome sequencing of the ALL sample taken at the diagnosis.
Collapse
Affiliation(s)
- Katerina Stano Kozubik
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University (CEITEC MU), Brno, Czech Republic
- Department of Internal Medicine - Haematology and Oncology, University Hospital and Medical Faculty, Masaryk University, Brno, Czech Republic
| | - Lenka Radova
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University (CEITEC MU), Brno, Czech Republic
| | - Kamila Reblova
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University (CEITEC MU), Brno, Czech Republic
- Department of Internal Medicine - Haematology and Oncology, University Hospital and Medical Faculty, Masaryk University, Brno, Czech Republic
| | - Michal Smida
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University (CEITEC MU), Brno, Czech Republic
- Department of Internal Medicine - Haematology and Oncology, University Hospital and Medical Faculty, Masaryk University, Brno, Czech Republic
| | - Marketa Zaliova Kubricanova
- Department of Paediatric Haematology and Oncology, 2nd Faculty of Medicine, Charles University in Prague and Motol University Hospital, Prague, Czech Republic
| | - Jiri Baloun
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University (CEITEC MU), Brno, Czech Republic
| | - Michaela Pesova
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University (CEITEC MU), Brno, Czech Republic
- Department of Internal Medicine - Haematology and Oncology, University Hospital and Medical Faculty, Masaryk University, Brno, Czech Republic
| | - Zuzana Vrzalova
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University (CEITEC MU), Brno, Czech Republic
| | - Frantisek Folber
- Department of Internal Medicine - Haematology and Oncology, University Hospital and Medical Faculty, Masaryk University, Brno, Czech Republic
| | - Sona Mejstrikova
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University (CEITEC MU), Brno, Czech Republic
- Department of Internal Medicine - Haematology and Oncology, University Hospital and Medical Faculty, Masaryk University, Brno, Czech Republic
| | - Sarka Pospisilova
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University (CEITEC MU), Brno, Czech Republic
- Department of Internal Medicine - Haematology and Oncology, University Hospital and Medical Faculty, Masaryk University, Brno, Czech Republic
| | - Michael Doubek
- Center of Molecular Medicine, Central European Institute of Technology, Masaryk University (CEITEC MU), Brno, Czech Republic
- Department of Internal Medicine - Haematology and Oncology, University Hospital and Medical Faculty, Masaryk University, Brno, Czech Republic
| |
Collapse
|
2
|
Lopez A, Havranek B, Papadantonakis GA, Islam SM. In silico screening and molecular dynamics simulation of deleterious PAH mutations responsible for phenylketonuria genetic disorder. Proteins 2021; 89:683-696. [PMID: 33491267 DOI: 10.1002/prot.26051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 01/08/2021] [Accepted: 01/21/2021] [Indexed: 12/23/2022]
Abstract
Phenylketonuria (PKU) is a genetic disorder that if left untreated can lead to behavioral problems, epilepsy, and even mental retardation. PKU results from mutations within the phenylalanine-4-hydroxylase (PAH) gene that encodes for the PAH protein. The study of all PAH causing mutations is improbable using experimental techniques. In this study, a collection of in silico resources, sorting intolerant from tolerant, Polyphen-2, PhD-SNP, and MutPred were used to identify possible pathogenetic and deleterious PAH non-synonymous single nucleotide polymorphisms (nsSNPs). We identified two variants of PAH, I65N and L311P, to be the most deleterious and disease causing nsSNPs. Molecular dynamics (MD) simulations were carried out to characterize these point mutations on the atomic level. MD simulations revealed increased flexibility and a decrease in the hydrogen bond network for both mutants compared to the native protein. Free energy calculations using the MM/GBSA approach found that BH4 , a drug-based therapy for PKU patients, had a higher binding affinity for I65N and L311P mutants compared to the wildtype protein. We also identify important residues in the BH4 binding pocket that may be of interest for the rational drug design of other PAH drug-based therapies. Lastly, free energy calculations also determined that the I65N mutation may impair the dimerization of the N-terminal regulatory domain of PAH.
Collapse
Affiliation(s)
- Andrea Lopez
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Brandon Havranek
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois, USA
| | | | - Shahidul M Islam
- Department of Chemistry, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
3
|
Dušková L, Nohelová L, Loja T, Fialová J, Zapletalová P, Réblová K, Tichý L, Freiberger T, Fajkusová L. Low Density Lipoprotein Receptor Variants in the Beta-Propeller Subdomain and Their Functional Impact. Front Genet 2020; 11:691. [PMID: 32695144 PMCID: PMC7339958 DOI: 10.3389/fgene.2020.00691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Pathogenic variants in the low density lipoprotein receptor gene are associated with familial hypercholesterolemia. Some of these variants can result in incorrect folding of the LDLR protein, which is then accumulated inside the cell and cannot fulfill its function to internalize LDL particles. We analyzed the functional impact of 10 LDLR variants localized in the beta-propeller of epidermal growth factor precursor homology domain. The experimental part of the work was complemented by a structural analysis on the basis of 3D LDLR protein structure. Methods: T-Rex Chinese hamster ovary cells transfected with the human LDLR gene were used for live cell imaging microscopy, flow cytometry, and qRT-PCR analysis. Results: Our results showed that the analyzed LDLR protein variants can be divided into three groups. (1) The variants buried inside the 3D protein structure expressing proteins accumulated in the endoplasmic reticulum (ER) with no or reduced plasma membrane localization and LDL particle internalization, and associated with an increased gene expression of ER-resident chaperones. (2) The variants localized on the surface of 3D protein structure with slightly reduced LDLR plasma membrane localization and LDL particle internalization, and associated with no increased mRNA level of ER-resident chaperones. (3) The variants localized on the surface of the 3D protein structure but expressing proteins with cell responses similar to the group 1. Conclusion: All analyzed LDLR variants have been evaluated as pathogenic but with different effects on protein localization and function, and expression of genes associated with ER stress.
Collapse
Affiliation(s)
- Lucie Dušková
- Centre of Molecular Biology and Gene Therapy, University Hospital Brno, Brno, Czechia
| | - Lucie Nohelová
- Centre of Molecular Biology and Gene Therapy, University Hospital Brno, Brno, Czechia
| | - Tomáš Loja
- Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Jana Fialová
- Centre of Molecular Biology and Gene Therapy, University Hospital Brno, Brno, Czechia.,Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Petra Zapletalová
- Centre of Molecular Biology and Gene Therapy, University Hospital Brno, Brno, Czechia
| | - Kamila Réblová
- Centre of Molecular Biology and Gene Therapy, University Hospital Brno, Brno, Czechia.,Central European Institute of Technology, Masaryk University, Brno, Czechia
| | - Lukáš Tichý
- Centre of Molecular Biology and Gene Therapy, University Hospital Brno, Brno, Czechia
| | - Tomáš Freiberger
- Centre for Cardiovascular Surgery and Transplantation, Brno, Czechia.,Medical Faculty, Masaryk University, Brno, Czechia
| | - Lenka Fajkusová
- Centre of Molecular Biology and Gene Therapy, University Hospital Brno, Brno, Czechia.,Medical Faculty, Masaryk University, Brno, Czechia.,Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research (NCBR), Faculty of Science, Masaryk University, Brno, Czechia
| |
Collapse
|
4
|
Costa RD, Galera BB, Rezende BC, Venâncio AC, Galera MF. IDENTIFICATION OF MUTATIONS IN THE PAH GENE IN PKU PATIENTS IN THE STATE OF MATO GROSSO. REVISTA PAULISTA DE PEDIATRIA 2020; 38:e2018351. [PMID: 32074228 PMCID: PMC7025444 DOI: 10.1590/1984-0462/2020/38/2018351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 04/21/2019] [Indexed: 11/21/2022]
Abstract
Objective: To identify phenylalanine hydroxylase (PAH) mutations in
patients with phenylketonuria (PKU) from the Newborn Screening Service in
Mato Grosso, Midwest Brazil. Methods: This is a cross-sectional descriptive study. The sample consisted of 19 PKU
patients diagnosed by newborn screening. Molecular analysis: DNA extraction
using the “salting-out” method. Detection of IVS10nt-11G>A, V388M, R261Q,
R261X, R252W, and R408W mutations by the restriction fragment length
polymorphism (RFLP) technique. Results: Two mutant alleles were identified in four patients (21.1%), one allele in
five patients (26.2%), and none in the remaining ten patients (52.6%). A
total of 13/38 alleles were detected, corresponding to 34.2% of the
PAH alleles present. The most prevalent variant was
V388M (13.2% of the alleles), followed by R261Q (10.1%) and IVS10nt-11G>A
(7.9%). Three variants (R261X, R252W, and R408W) were not found. The most
frequent mutation types were: missense mutation in eight alleles (18.4%) and
splicing in four alleles (10.5%). The model proposed by Guldberg to
determine a genotype/phenotype correlation was applied to four classical PKU
patients with two identified mutations. In three of them, the predicted
moderate/moderate or moderate PKU phenotype did not coincide with the actual
diagnosis. The prediction coincided with the diagnosis of one classic PKU
patient. The estimated incidence of PKU for Mato Grosso, Brazil, was
1:33,342 live births from 2003 to 2015. Conclusion: The only mutations found in the analyzed samples were the IVS10nt-11G>A,
V388M, and R261Q. The genotype/phenotype correlation only occurred in four
(5.3%) patients.
Collapse
|
5
|
Pecimonova M, Kluckova D, Csicsay F, Reblova K, Krahulec J, Procházkova D, Skultety L, Kadasi L, Soltysova A. Structural and Functional Impact of Seven Missense Variants of Phenylalanine Hydroxylase. Genes (Basel) 2019; 10:E459. [PMID: 31208052 PMCID: PMC6628251 DOI: 10.3390/genes10060459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 11/17/2022] Open
Abstract
The molecular genetics of well-characterized inherited diseases, such as phenylketonuria (PKU) and hyperphenylalaninemia (HPA) predominantly caused by mutations in the phenylalanine hydroxylase (PAH) gene, is often complicated by the identification of many novel variants, often with no obvious impact on the associated disorder. To date, more than 1100 PAH variants have been identified of which a substantial portion have unknown clinical significance. In this work, we study the functionality of seven yet uncharacterized PAH missense variants p.Asn167Tyr, p.Thr200Asn, p.Asp229Gly, p.Gly239Ala, p.Phe263Ser, p.Ala342Pro, and p.Ile406Met first identified in the Czech PKU/HPA patients. From all tested variants, three of them, namely p.Asn167Tyr, p.Thr200Asn, and p.Ile406Met, exerted residual enzymatic activity in vitro similar to wild type (WT) PAH, however, when expressed in HepG2 cells, their protein level reached a maximum of 72.1% ± 4.9%, 11.2% ± 4.2%, and 36.6% ± 7.3% compared to WT PAH, respectively. Remaining variants were null with no enzyme activity and decreased protein levels in HepG2 cells. The chaperone-like effect of applied BH4 precursor increased protein level significantly for p.Asn167Tyr, p.Asp229Gly, p.Ala342Pro, and p.Ile406Met. Taken together, our results of functional characterization in combination with in silico prediction suggest that while p.Asn167Tyr, p.Thr200Asn, and p.Ile406Met PAH variants have a mild impact on the protein, p.Asp229Gly, p.Gly239Ala, p.Phe263Ser, and p.Ala342Pro severely affect protein structure and function.
Collapse
Affiliation(s)
- Martina Pecimonova
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia.
| | - Daniela Kluckova
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia.
| | - Frantisek Csicsay
- Insitute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia.
| | - Kamila Reblova
- Central European Institute of Technology, Masaryk University, 625 00 Brno, Czech Republic.
| | - Jan Krahulec
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia.
| | - Dagmar Procházkova
- Department of Pediatrics, Medical Faculty of Masaryk University and University Hospital Brno, Černopolní 9, 625 00 Brno, Czech Republic.
| | - Ludovit Skultety
- Insitute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia.
| | - Ludevit Kadasi
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia.
- Institute for Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia.
| | - Andrea Soltysova
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia.
- Institute for Clinical and Translational Research, Biomedical Research Center, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia.
| |
Collapse
|
6
|
Borská R, Pinková B, Réblová K, Bučková H, Kopečková L, Němečková J, Puchmajerová A, Malíková M, Hermanová M, Fajkusová L. Inherited ichthyoses: molecular causes of the disease in Czech patients. Orphanet J Rare Dis 2019; 14:92. [PMID: 31046801 PMCID: PMC6498588 DOI: 10.1186/s13023-019-1076-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 04/18/2019] [Indexed: 11/13/2022] Open
Abstract
Inherited ichthyoses belong to a large and heterogeneous group of mendelian disorders of cornification, and can be distinguished by the quality and distribution of scaling and hyperkeratosis, by other dermatologic and extracutaneous involvement, and by inheritance. We present the genetic analysis results of probands with X-linked ichthyosis, autosomal recessive congenital ichthyosis, keratinopathic ichthyosis, and a patient with Netherton syndrome. Genetic diagnostics was complemented by in silico missense variant analysis based on 3D protein structures and commonly used prediction programs to compare the yields of these two approaches to each other. This analysis revealed various structural defects in proteins coded by mutated genes while no defects were associated with known polymorphisms. Two patients with pathogenic variants in the ABCA12 gene have a premature termination codon mutation on one allele and a silent variant on the second. The silent variants c.69G > A and c.4977G > A are localised in the last nucleotide of exon 1 and exon 32, respectively, and probably affect mRNA splicing. The phenotype of both patients is very severe, including a picture harlequin foetus after birth; later (at 3 and 6 years of age, respectively) ectropin, eclabion, generalised large polygonal scaling and erythema.
Collapse
Affiliation(s)
- Romana Borská
- Centre of Molecular Biology and Gene Therapy, University Hospital Brno and Masaryk University, Jihlavská 20, 625 00, Brno, Czech Republic
| | - Blanka Pinková
- Department of Pediatric Dermatology, Pediatric Clinic, University Hospital Brno and Masaryk University, Jihlavská 20, 625 00, Brno, Czech Republic
| | - Kamila Réblová
- Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic
| | - Hana Bučková
- Department of Pediatric Dermatology, Pediatric Clinic, University Hospital Brno and Masaryk University, Jihlavská 20, 625 00, Brno, Czech Republic
| | - Lenka Kopečková
- Centre of Molecular Biology and Gene Therapy, University Hospital Brno and Masaryk University, Jihlavská 20, 625 00, Brno, Czech Republic
| | - Jitka Němečková
- Department of Medical Genetics, University Hospital Brno, Jihlavská 20, 625 00, Brno, Czech Republic.,Department of Public Health, Faculty of Medicine, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic
| | - Alena Puchmajerová
- Institute of Biology and Medical Genetics, University Hospital Motol, V Úvalu 84, 150 06, Prague, Czech Republic.,GENNET, Kostelní 9/292, 170 00, Prague, Czech Republic
| | - Marcela Malíková
- Institute of Biology and Medical Genetics, University Hospital Motol, V Úvalu 84, 150 06, Prague, Czech Republic
| | - Markéta Hermanová
- First Department of Pathological Anatomy, Faculty of Medicine, Masaryk University and St. Anne's University Hospital, Pekařská 664/53, 656 91, Brno, Czech Republic
| | - Lenka Fajkusová
- Centre of Molecular Biology and Gene Therapy, University Hospital Brno and Masaryk University, Jihlavská 20, 625 00, Brno, Czech Republic. .,Central European Institute of Technology, Masaryk University, Kamenice 753/5, 625 00, Brno, Czech Republic. .,Laboratory of Functional Genomics and Proteomics, NCBR, Faculty of Science, Kotlářská 267/2, 611 37, Brno, Czech Republic.
| |
Collapse
|
7
|
Rausell D, García-Blanco A, Correcher P, Vitoria I, Vento M, Cháfer-Pericás C. Newly validated biomarkers of brain damage may shed light into the role of oxidative stress in the pathophysiology of neurocognitive impairment in dietary restricted phenylketonuria patients. Pediatr Res 2019; 85:242-250. [PMID: 30333522 DOI: 10.1038/s41390-018-0202-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 09/14/2018] [Accepted: 10/04/2018] [Indexed: 01/07/2023]
Abstract
Despite a strict dietary control, patient with hyperphenylalaninemia or phenylketonuria may show cognitive and/or behavioral disorders. These comorbid deficits are of great concern to patients, families, and health organizations. However, biomarkers capable of detecting initial stages of neurological damage are not commonly employed. The pathogenesis of phenylketonuria is complex in nature. Increasingly, the role of oxidative stress has gained acceptance and biomarkers reflecting oxidative damage to the brain and easily accessible in peripheral biofluids have been validated using mass spectrometry techniques. In the present review, the role of oxidative stress in the pathogenesis of phenylketonuria and hyperphenylalaninemia has been updated. Moreover, we report on newly validated brain-specific lipid peroxidation biomarkers and inform on their relevance in the detection and monitoring of neurological damage in phenylketonuric patients. In preliminary studies, a correlation between lipid peroxidation biomarkers and neurological dysfunction in patients with PKU was reported. However, there is a need of adequately powered trials to confirm the validity of these biomarkers for early detection of brain damage, initiation of treatment, and reliably monitor evolving disease both in phenylketonuria and hyperphenylalaninemia.
Collapse
Affiliation(s)
- Dolores Rausell
- Division of Congenital Metabolopathies, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Ana García-Blanco
- Neonatal Research Group, Health Research Institute La Fe, Valencia, Spain
| | - Patricia Correcher
- Division of Congenital Metabolopathies, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Isidro Vitoria
- Division of Congenital Metabolopathies, University and Polytechnic Hospital La Fe, Valencia, Spain
| | - Máximo Vento
- Neonatal Research Group, Health Research Institute La Fe, Valencia, Spain
| | | |
Collapse
|
8
|
Agrahari AK, Muskan M, George Priya Doss C, Siva R, Zayed H. Computational insights of K1444N substitution in GAP-related domain of NF1 gene associated with neurofibromatosis type 1 disease: a molecular modeling and dynamics approach. Metab Brain Dis 2018; 33:1443-1457. [PMID: 29804243 DOI: 10.1007/s11011-018-0251-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Accepted: 05/17/2018] [Indexed: 12/18/2022]
Abstract
The NF1 gene encodes for neurofibromin protein, which is ubiquitously expressed, but most highly in the central nervous system. Non-synonymous SNPs (nsSNPs) in the NF1 gene were found to be associated with Neurofibromatosis Type 1 disease, which is characterized by the growth of tumors along nerves in the skin, brain, and other parts of the body. In this study, we used several in silico predictions tools to analyze 16 nsSNPs in the RAS-GAP domain of neurofibromin, the K1444N (K1423N) mutation was predicted as the most pathogenic. The comparative molecular dynamic simulation (MDS; 50 ns) between the wild type and the K1444N (K1423N) mutant suggested a significant change in the electrostatic potential. In addition, the RMSD, RMSF, Rg, hydrogen bonds, and PCA analysis confirmed the loss of flexibility and increase in compactness of the mutant protein. Further, SASA analysis revealed exchange between hydrophobic and hydrophilic residues from the core of the RAS-GAP domain to the surface of the mutant domain, consistent with the secondary structure analysis that showed significant alteration in the mutant protein conformation. Our data concludes that the K1444N (K1423N) mutant lead to increasing the rigidity and compactness of the protein. This study provides evidence of the benefits of the computational tools in predicting the pathogenicity of genetic mutations and suggests the application of MDS and different in silico prediction tools for variant assessment and classification in genetic clinics.
Collapse
Affiliation(s)
- Ashish Kumar Agrahari
- Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Meghana Muskan
- Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - C George Priya Doss
- Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| | - R Siva
- Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health and Sciences, Qatar University, Doha, Qatar.
| |
Collapse
|
9
|
Niroula A, Vihinen M. Predicting Severity of Disease-Causing Variants. Hum Mutat 2017; 38:357-364. [PMID: 28070986 DOI: 10.1002/humu.23173] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/07/2016] [Accepted: 01/06/2017] [Indexed: 12/22/2022]
Abstract
Most diseases, including those of genetic origin, express a continuum of severity. Clinical interventions for numerous diseases are based on the severity of the phenotype. Predicting severity due to genetic variants could facilitate diagnosis and choice of therapy. Although computational predictions have been used as evidence for classifying the disease relevance of genetic variants, special tools for predicting disease severity in large scale are missing. Here, we manually curated a dataset containing variants leading to severe and less severe phenotypes and studied the abilities of variation impact predictors to distinguish between them. We found that these tools cannot separate the two groups of variants. Then, we developed a novel machine-learning-based method, PON-PS (http://structure.bmc.lu.se/PON-PS), for the classification of amino acid substitutions associated with benign, severe, and less severe phenotypes. We tested the method using an independent test dataset and variants in four additional proteins. For distinguishing severe and nonsevere variants, PON-PS showed an accuracy of 61% in the test dataset, which is higher than for existing tolerance prediction methods. PON-PS is the first generic tool developed for this task. The tool can be used together with other evidence for improving diagnosis and prognosis and for prioritization of preventive interventions, clinical monitoring, and molecular tests.
Collapse
Affiliation(s)
- Abhishek Niroula
- Department of Experimental Medical Science, Lund University, Lund, SE-22184, Sweden
| | - Mauno Vihinen
- Department of Experimental Medical Science, Lund University, Lund, SE-22184, Sweden
| |
Collapse
|
10
|
Pavloušková J, Réblová K, Tichý L, Freiberger T, Fajkusová L. Functional analysis of the p.(Leu15Pro) and p.(Gly20Arg) sequence changes in the signal sequence of LDL receptor. Atherosclerosis 2016; 250:9-14. [DOI: 10.1016/j.atherosclerosis.2016.04.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 04/04/2016] [Accepted: 04/26/2016] [Indexed: 10/21/2022]
|
11
|
First structure of full-length mammalian phenylalanine hydroxylase reveals the architecture of an autoinhibited tetramer. Proc Natl Acad Sci U S A 2016; 113:2394-9. [PMID: 26884182 DOI: 10.1073/pnas.1516967113] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Improved understanding of the relationship among structure, dynamics, and function for the enzyme phenylalanine hydroxylase (PAH) can lead to needed new therapies for phenylketonuria, the most common inborn error of amino acid metabolism. PAH is a multidomain homo-multimeric protein whose conformation and multimerization properties respond to allosteric activation by the substrate phenylalanine (Phe); the allosteric regulation is necessary to maintain Phe below neurotoxic levels. A recently introduced model for allosteric regulation of PAH involves major domain motions and architecturally distinct PAH tetramers [Jaffe EK, Stith L, Lawrence SH, Andrake M, Dunbrack RL, Jr (2013) Arch Biochem Biophys 530(2):73-82]. Herein, we present, to our knowledge, the first X-ray crystal structure for a full-length mammalian (rat) PAH in an autoinhibited conformation. Chromatographic isolation of a monodisperse tetrameric PAH, in the absence of Phe, facilitated determination of the 2.9 Å crystal structure. The structure of full-length PAH supersedes a composite homology model that had been used extensively to rationalize phenylketonuria genotype-phenotype relationships. Small-angle X-ray scattering (SAXS) confirms that this tetramer, which dominates in the absence of Phe, is different from a Phe-stabilized allosterically activated PAH tetramer. The lack of structural detail for activated PAH remains a barrier to complete understanding of phenylketonuria genotype-phenotype relationships. Nevertheless, the use of SAXS and X-ray crystallography together to inspect PAH structure provides, to our knowledge, the first complete view of the enzyme in a tetrameric form that was not possible with prior partial crystal structures, and facilitates interpretation of a wealth of biochemical and structural data that was hitherto impossible to evaluate.
Collapse
|
12
|
Schuck PF, Malgarin F, Cararo JH, Cardoso F, Streck EL, Ferreira GC. Phenylketonuria Pathophysiology: on the Role of Metabolic Alterations. Aging Dis 2015; 6:390-9. [PMID: 26425393 DOI: 10.14336/ad.2015.0827] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 08/27/2015] [Indexed: 11/01/2022] Open
Abstract
Phenylketonuria (PKU) is an inborn error of phenylalanine (Phe) metabolism caused by the deficiency of phenylalanine hydroxylase. This deficiency leads to the accumulation of Phe and its metabolites in tissues and body fluids of PKU patients. The main signs and symptoms are found in the brain but the pathophysiology of this disease is not well understood. In this context, metabolic alterations such as oxidative stress, mitochondrial dysfunction, and impaired protein and neurotransmitters synthesis have been described both in animal models and patients. This review aims to discuss the main metabolic disturbances reported in PKU and relate them with the pathophysiology of this disease. The elucidation of the pathophysiology of brain damage found in PKU patients will help to develop better therapeutic strategies to improve quality of life of patients affected by this condition.
Collapse
Affiliation(s)
- Patrícia Fernanda Schuck
- 1 Laboratório de Erros Inatos do Metabolismo, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Fernanda Malgarin
- 1 Laboratório de Erros Inatos do Metabolismo, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - José Henrique Cararo
- 1 Laboratório de Erros Inatos do Metabolismo, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Fabiola Cardoso
- 2 Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Emilio Luiz Streck
- 3 Laboratório de Bioenergética, Unidade Acadêmica de Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, Brazil
| | - Gustavo Costa Ferreira
- 2 Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|