1
|
Manandhar B, Paudel KR, Clarence DD, De Rubis G, Madheswaran T, Panneerselvam J, Zacconi FC, Williams KA, Pont LG, Warkiani ME, MacLoughlin R, Oliver BG, Gupta G, Singh SK, Chellappan DK, Hansbro PM, Dua K. Zerumbone-incorporated liquid crystalline nanoparticles inhibit proliferation and migration of non-small-cell lung cancer in vitro. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:343-356. [PMID: 37439806 PMCID: PMC10771618 DOI: 10.1007/s00210-023-02603-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Accepted: 06/25/2023] [Indexed: 07/14/2023]
Abstract
Lung cancer is the second most prevalent type of cancer and is responsible for the highest number of cancer-related deaths worldwide. Non-small-cell lung cancer (NSCLC) makes up the majority of lung cancer cases. Zerumbone (ZER) is natural compound commonly found in the roots of Zingiber zerumbet which has recently demonstrated anti-cancer activity in both in vitro and in vivo studies. Despite their medical benefits, ZER has low aqueous solubility, poor GI absorption and oral bioavailability that hinders its effectiveness. Liquid crystalline nanoparticles (LCNs) are novel drug delivery carrier that have tuneable characteristics to enhance and ease the delivery of bioactive compounds. This study aimed to formulate ZER-loaded LCNs and investigate their effectiveness against NSCLC in vitro using A549 lung cancer cells. ZER-LCNs, prepared in the study, inhibited the proliferation and migration of A549 cells. These inhibitory effects were superior to the effects of ZER alone at a concentration 10 times lower than that of free ZER, demonstrating a potent anti-cancer activity of ZER-LCNs. The underlying mechanisms of the anti-cancer effects by ZER-LCNs were associated with the transcriptional regulation of tumor suppressor genes P53 and PTEN, and metastasis-associated gene KRT18. The protein array data showed downregulation of several proliferation associated proteins such as AXL, HER1, PGRN, and BIRC5 and metastasis-associated proteins such as DKK1, CAPG, CTSS, CTSB, CTSD, and PLAU. This study provides evidence of potential for increasing the potency and effectiveness of ZER with LCN formulation and developing ZER-LCNs as a treatment strategy for mitigation and treatment of NSCLC.
Collapse
Affiliation(s)
- Bikash Manandhar
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Keshav Raj Paudel
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2050, Australia
| | - Dvya Delilaa Clarence
- School of Postgraduate Studies, International Medical University (IMU), 57000, Kuala Lumpur, Malaysia
| | - Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Thiagarajan Madheswaran
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, 57000, Kuala Lumpur, Malaysia
| | - Jithendra Panneerselvam
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, 57000, Kuala Lumpur, Malaysia
| | - Flavia C Zacconi
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, 7820436, Macul, Santiago, Chile
- Centro de Investigación en Nanotecnología y Materiales Avanzados, CIEN-UC, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, 7820436, Macul, Santiago, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Kylie A Williams
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Lisa G Pont
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Sydney, New South Wales, Australia
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Ronan MacLoughlin
- Research and Development, Aerogen Limited, IDA Business Park, Galway, Connacht, H91 HE94, Ireland
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Leinster, D02 YN77, Ireland
- School of Pharmacy & Pharmaceutical Sciences, Trinity College, Dublin, Leinster, D02 PN40, Ireland
| | - Brian Gregory Oliver
- Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW, 2137, Australia
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jaipur, Rajasthan, India
- Center for Transdisciplinary Research, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India
| | - Sachin Kumar Singh
- Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, 144411, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, 57000, Kuala Lumpur, Malaysia.
| | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW 2050, Australia.
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia.
- Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia.
| |
Collapse
|
2
|
Vemula D, Maddi DR, Bhandari V. Homology modeling, virtual screening, molecular docking, and dynamics studies for discovering Staphylococcus epidermidis FtsZ inhibitors. Front Mol Biosci 2023; 10:1087676. [PMID: 36936991 PMCID: PMC10020519 DOI: 10.3389/fmolb.2023.1087676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/30/2023] [Indexed: 03/06/2023] Open
Abstract
Staphylococcus epidermidis is the most common cause of medical device-associated infections and is an opportunistic biofilm former. Among hospitalized patients, S. epidermidis infections are the most prevalent, and resistant to most antibiotics. In order to overcome this resistance, it is imperative to treat the infection at a cellular level. The present study aims to identify inhibitors of the prokaryotic cell division protein FtsZ a widely conserved component of bacterial cytokinesis. Two substrate binding sites are present on the FtsZ protein; the nucleotide-binding domain and the inter-domain binding sites. Molecular modeling was used to identify potential inhibitors against the binding sites of the FtsZ protein. One hundred thirty-eight chemical entities were virtually screened for the binding sites and revealed ten molecules, each with good binding affinities (docking score range -9.549 to -4.290 kcal/mol) compared to the reference control drug, i.e., Dacomitinib (-4.450 kcal/mol) and PC190723 (-4.694 kcal/mol) at nucleotide and inter-domain binding sites respectively. These top 10 hits were further analyzed for their ADMET properties and molecular dynamics simulations. The Chloro-derivative of GTP, naphthalene-1,3-diyl bis(3,4,5-trihydroxybenzoate), Guanosine triphosphate (GTP), morpholine and methylpiperazine derivative of GTP were identified as the lead molecules for nucleotide binding site whereas for inter-domain binding site, 1-(((amino(iminio)methyl)amino)methyl)-3-(3-(tert-butyl)phenyl)-6,7-dimethoxyisoquinolin-2-ium, and Chlorogenic acidwere identified as lead molecules. Molecular dynamics simulation and post MM/GBSA analysis of the complexes revealed good protein-ligand stability predicting them as potential inhibitors of FtsZ (Figure 1). Thus, identified FtsZ inhibitors are a promising lead compounds for S. epidermidis related infections.
Collapse
|
3
|
Wang J, Liu J, Wang M, Zhao F, Ge M, Liu L, Jiang E, Feng S, Han M, Pei X, Zheng Y. Levamisole Suppresses CD4 + T-Cell Proliferation and Antigen-Presenting Cell Activation in Aplastic Anemia by Regulating the JAK/STAT and TLR Signaling Pathways. Front Immunol 2022; 13:907808. [PMID: 35911766 PMCID: PMC9331934 DOI: 10.3389/fimmu.2022.907808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Aplastic anemia (AA) is a life-threatening disease primarily caused by a metabolic disorder and an altered immune response in the bone marrow (BM) microenvironment, where cytotoxic immune cells attack resident cells and lead to hematopoietic failure. We previously reported an efficient strategy by applying cyclosporin (CSA) combined with levamisole (CSA+LMS-based regimen) in the treatment of AA, but the immunoregulatory mechanism of LMS was still unclear. Here, the therapeutic effects of LMS were examined in vivo using the BM failure murine model. Meanwhile, the proportion and related function of T cells were measured by flow cytometry in vivo and in vitro. The involved signaling pathways were screened by RNA-seq and virtual binding analysis, which were further verified by interference experiments using the specific antagonists on the targeting cells by RT-PCR in vitro. In this study, the CSA+LMS-based regimen showed a superior immune-suppressive response and higher recession rate than standard CSA therapy in the clinical retrospective study. LMS improved pancytopenia and extended the survival in an immune-mediated BM failure murine model by suppressing effector T cells and promoting regulatory T-cell expansion, which were also confirmed by in vitro experiments. By screening of binding targets, we found that JAK1/2 and TLR7 showed the highest docking score as LMS targeting molecules. In terms of the underlying molecular mechanisms, LMS could inhibit JAK/STAT and TLR7 signaling activity and downstream involved molecules. In summary, LMS treatment could inhibit T-cell activation and downregulate related molecules by the JAK/STAT and TLR signaling pathways, supporting the valuable clinical utility of LMS in the treatment of AA.
Collapse
Affiliation(s)
- Jiali Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Hematopoietic Stem Cell Transplant Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Jia Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Hematopoietic Stem Cell Transplant Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Mingyang Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Hematopoietic Stem Cell Transplant Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Fei Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Hematopoietic Stem Cell Transplant Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Meili Ge
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Anemia Disease Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Li Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Hematopoietic Stem Cell Transplant Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Erlie Jiang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Hematopoietic Stem Cell Transplant Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Sizhou Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Hematopoietic Stem Cell Transplant Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Mingzhe Han
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Hematopoietic Stem Cell Transplant Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xiaolei Pei
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Hematopoietic Stem Cell Transplant Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yizhou Zheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
- Anemia Disease Center, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| |
Collapse
|
4
|
Paudel KR, Mehta M, Yin GHS, Yen LL, Malyla V, Patel VK, Panneerselvam J, Madheswaran T, MacLoughlin R, Jha NK, Gupta PK, Singh SK, Gupta G, Kumar P, Oliver BG, Hansbro PM, Chellappan DK, Dua K. Berberine-loaded liquid crystalline nanoparticles inhibit non-small cell lung cancer proliferation and migration in vitro. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:46830-46847. [PMID: 35171422 PMCID: PMC9232428 DOI: 10.1007/s11356-022-19158-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 02/06/2022] [Indexed: 05/02/2023]
Abstract
Non-small cell lung cancer (NSCLC) is reported to have a high incidence rate and is one of the most prevalent types of cancer contributing towards 85% of all incidences of lung cancer. Berberine is an isoquinoline alkaloid which offers a broad range of therapeutical and pharmacological actions against cancer. However, extremely low water solubility and poor oral bioavailability have largely restricted its therapeutic applications. To overcome these limitations, we formulated berberine-loaded liquid crystalline nanoparticles (LCNs) and investigated their in vitro antiproliferative and antimigratory activity in human lung epithelial cancer cell line (A549). 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT), trypan blue staining, and colony forming assays were used to evaluate the anti-proliferative activity, while scratch wound healing assay and a modified Boyden chamber assay were carried out to determine the anti-migratory activity. We also investigated major proteins associated with lung cancer progression. The developed nanoparticles were found to have an average particle size of 181.3 nm with spherical shape, high entrapment efficiency (75.35%) and have shown sustained release behaviour. The most remarkable findings reported with berberine-loaded LCNs were significant suppression of proliferation, inhibition of colony formation, inhibition of invasion or migration via epithelial mesenchymal transition, and proliferation related proteins associated with cancer progression. Our findings suggest that anti-cancer compounds with the problem of poor solubility and bioavailability can be overcome by formulating them into nanotechnology-based delivery systems for better efficacy. Further in-depth investigations into anti-cancer mechanistic research will expand and strengthen the current findings of berberine-LCNs as a potential NSCLC treatment option.
Collapse
Affiliation(s)
- Keshav R Paudel
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Centre for Inflammation, Centenary Institute, Sydney, NSW, 2050, Australia
| | - Meenu Mehta
- Centre for Inflammation, Centenary Institute, Sydney, NSW, 2050, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Geena Hew Suet Yin
- School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Lee Li Yen
- School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Vamshikrishna Malyla
- Centre for Inflammation, Centenary Institute, Sydney, NSW, 2050, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Vyoma K Patel
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Centre for Inflammation, Centenary Institute, Sydney, NSW, 2050, Australia
| | - Jithendra Panneerselvam
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Thiagarajan Madheswaran
- Department of Pharmaceutical Technology, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia
| | - Ronan MacLoughlin
- IDA Business Park, Dangan, H91 HE94, Galway, Ireland
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- School of Pharmacy & Pharmaceutical Sciences, Trinity College, Dublin, D02 PN40, Ireland
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology (SET), Sharda University, Greater Noida, Uttar Pradesh, 201310, India
| | - Piyush Kumar Gupta
- Department of Life Sciences, School of Basic Sciences and Research (SBSR), Sharda University, Knowledge Park III, Greater Noida-201310, Uttar Pradesh, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura 302017, Mahal Road, Jaipur, India
| | - Pradeep Kumar
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
| | - Brian G Oliver
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, 2006, Australia
| | - Philip M Hansbro
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, 2007, Australia.
- Centre for Inflammation, Centenary Institute, Sydney, NSW, 2050, Australia.
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil 57000, Kuala Lumpur, Malaysia.
| | - Kamal Dua
- Centre for Inflammation, Centenary Institute, Sydney, NSW, 2050, Australia.
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia.
- Woolcock Institute of Medical Research, University of Sydney, Sydney, NSW, 2006, Australia.
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| |
Collapse
|
5
|
Evaluation of the Cytotoxic Activity and Anti-Migratory Effect of Berberine–Phytantriol Liquid Crystalline Nanoparticle Formulation on Non-Small-Cell Lung Cancer In Vitro. Pharmaceutics 2022; 14:pharmaceutics14061119. [PMID: 35745691 PMCID: PMC9228615 DOI: 10.3390/pharmaceutics14061119] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 02/04/2023] Open
Abstract
Non-small-cell lung cancer (NSCLC) is the most common form of lung cancer, which is a leading cause of cancer-related deaths worldwide. Berberine is an isoquinoline alkaloid that is commercially available for use as a supplement for the treatment of diabetes and cardiovascular diseases. However, the therapeutic benefits of berberine are limited by its extremely low bioavailability and toxicity at higher doses. Increasing evidence suggests that the incorporation of drug compounds in liquid crystal nanoparticles provides a new platform for the safe, effective, stable, and controlled delivery of the drug molecules. This study aimed to formulate an optimized formulation of berberine–phytantriol-loaded liquid crystalline nanoparticles (BP-LCNs) and to investigate the in vitro anti-cancer activity in a human lung adenocarcinoma A549 cell line. The BP-LCN formulation possessing optimal characteristics that was used in this study had a favorable particle size and entrapment efficiency rate (75.31%) and a superior drug release profile. The potential mechanism of action of the formulation was determined by measuring the mRNA levels of the tumor-associated genes PTEN, P53, and KRT18 and the protein expression levels with a human oncology protein array. BP-LCNs decreased the proliferation, migration, and colony-forming activity of A549 cells in a dose-dependent manner by upregulating the mRNA expression of PTEN and P53 and downregulating the mRNA expression of KRT18. Similarly, BP-LCNs also decreased the expression of proteins related to cancer cell proliferation and migration. This study highlights the utility of phytantriol-based LCNs in incorporating drug molecules with low GI absorption and bioavailability to increase their pharmacological effectiveness and potency in NSCLC.
Collapse
|
6
|
Zhao Y, Tian Y, Pan C, Liang A, Zhang W, Sheng Y. Target-Based In Silico Screening for Phytoactive Compounds Targeting SARS-CoV-2. Interdiscip Sci 2022; 14:64-79. [PMID: 34308530 PMCID: PMC8310681 DOI: 10.1007/s12539-021-00461-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 07/01/2021] [Accepted: 07/04/2021] [Indexed: 12/18/2022]
Abstract
Coronavirus disease 2019 (COVID-19), resulting from infection by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), can cause severe and fatal pneumonia along with other life-threatening complications. The COVID-19 pandemic has taken a heavy toll on the healthcare system globally and has hit the economy hard in all affected countries. As a result, there is an unmet medical need for both the prevention and treatment of COVID-19 infection. Several herbal remedies have claimed to show promising clinical results, but the mechanisms of action are not clear. We set out to identify the anti-viral natural products of these herbal remedies that presumably inhibit the life cycle of SARS-CoV-2. Particularly we chose four key SARS-CoV-2 viral enzymes as targets: Papain-like protease, Main protease, RNA dependent RNA polymerase, and 2'-O-ribose methyltransferase, which were subjected to an unbiased in silico screening against a small molecule library of 33,765 compounds originating from herbs and medicinal plants. The small molecules were then ranked based on their free energy of fitting into the "druggable" pockets on the surface of each target protein. We have analyzed the best "fit" molecules and annotated them according to their plant sources and pharmacokinetic properties. Here we present a list of potential anti-viral ingredients of herbal remedies targeting SARS-CoV-2 and explore the potential mechanisms of action of these compounds as a framework for further development of chemoprophylaxis agents against COVID-19.
Collapse
Affiliation(s)
- Yong Zhao
- Beijing Computing Center, Beijing Academy of Science and Technology, 7 Fengxian Road, Beijing, 100094, China.
| | - Yu Tian
- Department of Urology, Peking University Third Hospital, Beijing, 100191, China.
| | - Chenling Pan
- Beijing Computing Center, Beijing Academy of Science and Technology, 7 Fengxian Road, Beijing, 100094, China
| | - Aihua Liang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Wei Zhang
- The Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
- CIFAR Azrieli Global Scholars Program, Canadian Institute for Advanced Research, Toronto, ON, Canada
| | - Yi Sheng
- The Department of Biology, York University, Life Sciences Building 327B, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada.
| |
Collapse
|
7
|
Sankar M, Ramachandran B, Pandi B, Mutharasappan N, Ramasamy V, Prabu PG, Shanmugaraj G, Wang Y, Muniyandai B, Rathinasamy S, Chandrasekaran B, Bayan MF, Jeyaraman J, Halliah GP, Ebenezer SK. In silico Screening of Natural Phytocompounds Towards Identification of Potential Lead Compounds to Treat COVID-19. Front Mol Biosci 2021; 8:637122. [PMID: 34291081 PMCID: PMC8288047 DOI: 10.3389/fmolb.2021.637122] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/16/2021] [Indexed: 12/23/2022] Open
Abstract
COVID-19 is one of the members of the coronavirus family that can easily assail humans. As of now, 10 million people are infected and above two million people have died from COVID-19 globally. Over the past year, several researchers have made essential advances in discovering potential drugs. Up to now, no efficient drugs are available on the market. The present study aims to identify the potent phytocompounds from different medicinal plants (Zingiber officinale, Cuminum cyminum, Piper nigrum, Curcuma longa, and Allium sativum). In total, 227 phytocompounds were identified and screened against the proteins S-ACE2 and M pro through structure-based virtual screening approaches. Based on the binding affinity score, 30 active phytocompounds were selected. Amongst, the binding affinity for beta-sitosterol and beta-elemene against S-ACE2 showed -12.0 and -10.9 kcal/mol, respectively. Meanwhile, the binding affinity for beta-sitosterol and beta-chlorogenin against M pro was found to be -9.7 and -8.4 kcal/mol, respectively. Further, the selected compounds proceeded with molecular dynamics simulation, prime MM-GBSA analysis, and ADME/T property checks to understand the stability, interaction, conformational changes, binding free energy, and pharmaceutical relevant parameters. Moreover, the hotspot residues such as Lys31 and Lys353 for S-ACE2 and catalytic dyad His41 and Cys145 for M pro were actively involved in the inhibition of viral entry. From the in silico analyses, we anticipate that this work could be valuable to ongoing novel drug discovery with potential treatment for COVID-19.
Collapse
Affiliation(s)
| | | | - Boomi Pandi
- Department of Bioinformatics, Alagappa University, Karaikudi, India
| | | | | | | | | | - Yao Wang
- Department of Biotechnology, School of Life Science, Anyang Institute of Technology, Anyang, China
| | - Brintha Muniyandai
- Department of Animal Health and Management, Science Campus, Alagappa University, Karaikudi, India
| | | | | | - Mohammad F Bayan
- Faculty of Pharmacy, Philadelphia University-Jordan, Philadelphia University, Jordan
| | | | - Gurumallesh Prabu Halliah
- Department of Industrial Chemistry, School of Chemical Sciences, Alagappa University, Karaikudi, India
| | | |
Collapse
|
8
|
Zarei O, Faham N, Vankayalapati H, Raeppel SL, Welm AL, Hamzeh-Mivehroud M. Ligand-based Discovery of Novel Small Molecule Inhibitors of RON Receptor Tyrosine Kinase. Mol Inform 2020; 41:e2000181. [PMID: 33274845 DOI: 10.1002/minf.202000181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/18/2020] [Indexed: 11/05/2022]
Abstract
BACKGROUND RON (Recepteur d'Origine Nantais) receptor tyrosine kinase is a promising target for anti-cancer therapeutics. The aim of this study was to identify new RON inhibitors using virtual screening methods. METHODS To this end, a ligand-based virtual screening approach was employed for screening of ZINC database on the homology model of RON receptor. All the selected hits were inspected in terms of drug-likeness, ADME properties, and toxicity profiles. Ligand-based similarity searches along with further filtering criteria led to the identification of two compounds, TKI1 and TKI2 that were evaluated using in vitro cell-based RON inhibition assays. RESULTS The results showed that TKI1 and TKI2 could reduce phosphorylation of RON. Both compounds showed inhibitory activity of the downstream mTOR pathway with no apparent effects on other signaling mediators in a dose-dependent manner. CONCLUSION These compounds can provide a basis for developing novel anti-RON inhibitors applicable to cancer therapy using medicinal chemistry-oriented optimization strategies.
Collapse
Affiliation(s)
- Omid Zarei
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Najme Faham
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah.,Department of Oncological Sciences, University of Utah, Salt Lake City, Utah
| | - Hariprasad Vankayalapati
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah.,College of Pharmacy, University of Utah, Salt Lake City, Utah
| | - Stéphane L Raeppel
- ChemRF Laboratories, 3194, rue Claude-Jodoin, Montréal, QC, H1Y 3M2, Canada
| | - Alana L Welm
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah.,Department of Oncological Sciences, University of Utah, Salt Lake City, Utah
| | - Maryam Hamzeh-Mivehroud
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,School of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
9
|
Xu X, Wang L, Hu L, Dirks WG, Zhao Y, Wei Z, Chen D, Li Z, Wang Z, Han Y, Wei L, Drexler HG, Hu Z. Small molecular modulators of JMJD1C preferentially inhibit growth of leukemia cells. Int J Cancer 2019; 146:400-412. [PMID: 31271662 DOI: 10.1002/ijc.32552] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 06/25/2019] [Accepted: 06/27/2019] [Indexed: 01/08/2023]
Abstract
Histone demethylases are promising therapeutic targets as they play fundamental roles for survival of Mixed lineage leukemia rearranged acute leukemia (MLLr AL). Here we focused on the catalytic Jumonji domain of histone H3 lysine 9 (H3K9) demethylase JMJD1C to screen for potential small molecular modulators from 149,519 natural products and 33,765 Chinese medicine components via virtual screening. JMJD1C Jumonji domain inhibitor 4 (JDI-4) and JDI-12 that share a common structural backbone were detected within the top 15 compounds. Surface plasmon resonance analysis showed that JDI-4 and JDI-12 bind to JMJD1C and its family homolog KDM3B with modest affinity. In vitro demethylation assays showed that JDI-4 can reverse the H3K9 demethylation conferred by KDM3B. In vivo demethylation assays indicated that JDI-4 and JDI-12 could induce the global increase of H3K9 methylation. Cell proliferation and colony formation assays documented that JDI-4 and JDI-12 kill MLLr AL and other malignant hematopoietic cells, but not leukemia cells resistant to JMJD1C depletion or cord blood cells. Furthermore, JDI-16, among multiple compounds structurally akin to JDI-4/JDI-12, exhibits superior killing activities against malignant hematopoietic cells compared to JDI-4/JDI-12. Mechanistically, JDI-16 not only induces apoptosis but also differentiation of MLLr AL cells. RNA sequencing and quantitative PCR showed that JDI-16 induced gene expression associated with cell metabolism; targeted metabolomics revealed that JDI-16 downregulates lactic acids, NADP+ and other metabolites. Moreover, JDI-16 collaborates with all-trans retinoic acid to repress MLLr AML cells. In summary, we identified bona fide JMJD1C inhibitors that induce preferential death of MLLr AL cells.
Collapse
Affiliation(s)
- Xin Xu
- Laboratory for Stem Cell and Regenerative Medicine, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China.,College of Bioscience and Technology, Weifang, Shandong, China
| | - Lin Wang
- The School of Physics and Optoelectronic Engineering, Weifang University, Weifang, Shandong, China
| | - Linda Hu
- Upstate Medical University, Syracuse, NY
| | - Wilhelm G Dirks
- Department of Human and Animal Cell Culture, Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Yao Zhao
- Laboratory for Stem Cell and Regenerative Medicine, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Zhishuai Wei
- College of Bioscience and Technology, Weifang, Shandong, China
| | - Dexiang Chen
- College of Bioscience and Technology, Weifang, Shandong, China
| | - Zhaoliang Li
- Laboratory for Stem Cell and Regenerative Medicine, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Zhanju Wang
- The Department of Hematology, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Yangyang Han
- College of Bioscience and Technology, Weifang, Shandong, China
| | - Liuya Wei
- College of Pharmacy, Weifang Medical University, Weifang, Shandong, China
| | - Hans G Drexler
- Department of Human and Animal Cell Culture, Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Zhenbo Hu
- Laboratory for Stem Cell and Regenerative Medicine, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|
10
|
Jones MR, Williamson LM, Topham JT, Lee MKC, Goytain A, Ho J, Denroche RE, Jang G, Pleasance E, Shen Y, Karasinska JM, McGhie JP, Gill S, Lim HJ, Moore MJ, Wong HL, Ng T, Yip S, Zhang W, Sadeghi S, Reisle C, Mungall AJ, Mungall KL, Moore RA, Ma Y, Knox JJ, Gallinger S, Laskin J, Marra MA, Schaeffer DF, Jones SJM, Renouf DJ. NRG1 Gene Fusions Are Recurrent, Clinically Actionable Gene Rearrangements in KRAS Wild-Type Pancreatic Ductal Adenocarcinoma. Clin Cancer Res 2019; 25:4674-4681. [PMID: 31068372 DOI: 10.1158/1078-0432.ccr-19-0191] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 03/07/2019] [Accepted: 04/15/2019] [Indexed: 01/28/2023]
Abstract
PURPOSE Gene fusions involving neuregulin 1 (NRG1) have been noted in multiple cancer types and have potential therapeutic implications. Although varying results have been reported in other cancer types, the efficacy of the HER-family kinase inhibitor afatinib in the treatment of NRG1 fusion-positive pancreatic ductal adenocarcinoma is not fully understood. EXPERIMENTAL DESIGN Forty-seven patients with pancreatic ductal adenocarcinoma received comprehensive whole-genome and transcriptome sequencing and analysis. Two patients with gene fusions involving NRG1 received afatinib treatment, with response measured by pretreatment and posttreatment PET/CT imaging. RESULTS Three of 47 (6%) patients with advanced pancreatic ductal adenocarcinoma were identified as KRAS wild type by whole-genome sequencing. All KRAS wild-type tumors were positive for gene fusions involving the ERBB3 ligand NRG1. Two of 3 patients with NRG1 fusion-positive tumors were treated with afatinib and demonstrated a significant and rapid response while on therapy. CONCLUSIONS This work adds to a growing body of evidence that NRG1 gene fusions are recurrent, therapeutically actionable genomic events in pancreatic cancers. Based on the clinical outcomes described here, patients with KRAS wild-type tumors harboring NRG1 gene fusions may benefit from treatment with afatinib.See related commentary by Aguirre, p. 4589.
Collapse
Affiliation(s)
- Martin R Jones
- BC Cancer, Canada's Michael Smith Genome Sciences Centre, Vancouver, British Columbia, Canada
| | - Laura M Williamson
- BC Cancer, Canada's Michael Smith Genome Sciences Centre, Vancouver, British Columbia, Canada
| | | | - Michael K C Lee
- BC Cancer, Division of Medical Oncology, Vancouver, British Columbia, Canada
| | - Angela Goytain
- Department of Pathology and Laboratory Medicine, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Julie Ho
- Department of Pathology and Laboratory Medicine, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Robert E Denroche
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - GunHo Jang
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Erin Pleasance
- BC Cancer, Canada's Michael Smith Genome Sciences Centre, Vancouver, British Columbia, Canada
| | - Yaoquing Shen
- BC Cancer, Canada's Michael Smith Genome Sciences Centre, Vancouver, British Columbia, Canada
| | | | - John P McGhie
- BC Cancer, Division of Medical Oncology, Vancouver, British Columbia, Canada
| | - Sharlene Gill
- BC Cancer, Division of Medical Oncology, Vancouver, British Columbia, Canada
| | - Howard J Lim
- BC Cancer, Division of Medical Oncology, Vancouver, British Columbia, Canada
| | - Malcolm J Moore
- Division of Medical Oncology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Hui-Li Wong
- BC Cancer, Division of Medical Oncology, Vancouver, British Columbia, Canada
| | - Tony Ng
- Department of Pathology and Laboratory Medicine, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Stephen Yip
- Department of Pathology and Laboratory Medicine, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Wei Zhang
- BC Cancer, Canada's Michael Smith Genome Sciences Centre, Vancouver, British Columbia, Canada
| | - Sara Sadeghi
- BC Cancer, Canada's Michael Smith Genome Sciences Centre, Vancouver, British Columbia, Canada
| | - Carolyn Reisle
- BC Cancer, Canada's Michael Smith Genome Sciences Centre, Vancouver, British Columbia, Canada
| | - Andrew J Mungall
- BC Cancer, Canada's Michael Smith Genome Sciences Centre, Vancouver, British Columbia, Canada
| | - Karen L Mungall
- BC Cancer, Canada's Michael Smith Genome Sciences Centre, Vancouver, British Columbia, Canada
| | - Richard A Moore
- BC Cancer, Canada's Michael Smith Genome Sciences Centre, Vancouver, British Columbia, Canada
| | - Yussanne Ma
- BC Cancer, Canada's Michael Smith Genome Sciences Centre, Vancouver, British Columbia, Canada
| | - Jennifer J Knox
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Division of Medical Oncology, Princess Margaret Cancer Centre, Toronto, Ontario, Canada
| | - Steven Gallinger
- PanCuRx Translational Research Initiative, Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Janessa Laskin
- BC Cancer, Division of Medical Oncology, Vancouver, British Columbia, Canada
| | - Marco A Marra
- BC Cancer, Canada's Michael Smith Genome Sciences Centre, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - David F Schaeffer
- Pancreas Centre British Columbia, Vancouver, Canada
- Department of Pathology and Laboratory Medicine, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Steven J M Jones
- BC Cancer, Canada's Michael Smith Genome Sciences Centre, Vancouver, British Columbia, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Vancouver, British Columbia, Canada
| | - Daniel J Renouf
- Pancreas Centre British Columbia, Vancouver, Canada.
- BC Cancer, Division of Medical Oncology, Vancouver, British Columbia, Canada
| |
Collapse
|
11
|
Jones MR, Lim H, Shen Y, Pleasance E, Ch'ng C, Reisle C, Leelakumari S, Zhao C, Yip S, Ho J, Zhong E, Ng T, Ionescu D, Schaeffer DF, Mungall AJ, Mungall KL, Zhao Y, Moore RA, Ma Y, Chia S, Ho C, Renouf DJ, Gelmon K, Jones SJM, Marra MA, Laskin J. Successful targeting of the NRG1 pathway indicates novel treatment strategy for metastatic cancer. Ann Oncol 2018; 28:3092-3097. [PMID: 28950338 DOI: 10.1093/annonc/mdx523] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Background NRG1 fusion-positive lung cancers have emerged as potentially actionable events in lung cancer, but clinical support is currently limited and no evidence of efficacy of this approach in cancers beyond lung has been shown. Patients and methods Here, we describe two patients with advanced cancers refractory to standard therapies. Patient 1 had lung adenocarcinoma and patient 2 cholangiocarcinoma. Whole-genome and transcriptome sequencing were carried out for these cases with select findings validated by fluorescence in situ hybridization. Results Both tumors were found to be positive for NRG1 gene fusions. In patient 1, an SDC4-NRG1 gene fusion was detected, similar gene fusions having been described in lung cancers previously. In patient 2, a novel ATP1B1-NRG1 gene fusion was detected. Cholangiocarcinoma is not a disease type in which NRG1 fusions had been described previously. Integrative genome analysis was used to assess the potential functional significance of the detected genomic events including the gene fusions, prioritizing therapeutic strategies targeting the HER-family of growth factor receptors. Both patients were treated with the pan HER-family kinase inhibitor afatinib and both displayed significant and durable response to treatment. Upon progression sites of disease were sequenced. The lack of obvious genomic events to describe the disease progression indicated that broad transcriptomic or epigenetic mechanisms could be attributed to the lack of prolonged response to afatinib. Conclusion These observations lend further support to the use of pan HER-tyrosine kinase inhibitors for the treatment of NRG1 fusion-positive in both cancers of lung and hepatocellular origin and indicate more broadly that cancers found to be NRG1 fusion-positive may benefit from such a clinical approach regardless of their site of origin. Clinical trial information Personalized Oncogenomics (POG) Program of British Columbia: Utilization of Genomic Analysis to Better Understand Tumour Heterogeneity and Evolution (NCT02155621).
Collapse
Affiliation(s)
- M R Jones
- Canada's Michael Smith Genome Sciences Centre
| | - H Lim
- Division of Medical Oncology, BC Cancer Agency, Vancouver
| | - Y Shen
- Canada's Michael Smith Genome Sciences Centre
| | - E Pleasance
- Canada's Michael Smith Genome Sciences Centre
| | - C Ch'ng
- Canada's Michael Smith Genome Sciences Centre
| | - C Reisle
- Canada's Michael Smith Genome Sciences Centre
| | | | - C Zhao
- Canada's Michael Smith Genome Sciences Centre
| | - S Yip
- Department of Pathology & Laboratory Medicine, Vancouver General Hospital, Vancouver
| | - J Ho
- Department of Pathology & Laboratory Medicine, Vancouver General Hospital, Vancouver
| | - E Zhong
- Department of Pathology & Laboratory Medicine, Vancouver General Hospital, Vancouver
| | - T Ng
- Department of Pathology & Laboratory Medicine, Vancouver General Hospital, Vancouver
| | - D Ionescu
- Department of Pathology & Laboratory Medicine, BC Cancer Agency, Vancouver
| | - D F Schaeffer
- Department of Pathology & Laboratory Medicine, Vancouver General Hospital, Vancouver
| | - A J Mungall
- Canada's Michael Smith Genome Sciences Centre
| | - K L Mungall
- Canada's Michael Smith Genome Sciences Centre
| | - Y Zhao
- Canada's Michael Smith Genome Sciences Centre
| | - R A Moore
- Canada's Michael Smith Genome Sciences Centre
| | - Y Ma
- Canada's Michael Smith Genome Sciences Centre
| | - S Chia
- Division of Medical Oncology, BC Cancer Agency, Vancouver
| | - C Ho
- Division of Medical Oncology, BC Cancer Agency, Vancouver
| | - D J Renouf
- Division of Medical Oncology, BC Cancer Agency, Vancouver
| | - K Gelmon
- Division of Medical Oncology, BC Cancer Agency, Vancouver
| | - S J M Jones
- Canada's Michael Smith Genome Sciences Centre.,Department of Medical Genetics, University of British Columbia, Vancouver.,Department of Molecular Biology and Biochemistry, Simon Fraser University, Vancouver, Canada
| | - M A Marra
- Canada's Michael Smith Genome Sciences Centre.,Department of Medical Genetics, University of British Columbia, Vancouver
| | - J Laskin
- Division of Medical Oncology, BC Cancer Agency, Vancouver
| |
Collapse
|
12
|
Hu F, Lei R, Deng YF, Wang J, Li GF, Wang CN, Li ZH, Zhu SF. Discovery of novel inhibitors of RNA silencing suppressor P19 based on virtual screening. RSC Adv 2018; 8:10532-10540. [PMID: 35540466 PMCID: PMC9078884 DOI: 10.1039/c8ra01311j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Accepted: 03/06/2018] [Indexed: 11/21/2022] Open
Abstract
The combined virtual and experimental screening method is a efficient strategy to discover inhibitors of RNA silencing suppressor.
Collapse
Affiliation(s)
- Fan Hu
- College of Plant Protection
- China Agricultural University
- Beijing
- China
- Institute of Plant Quarantine
| | - Rong Lei
- Institute of Plant Quarantine
- Chinese Academy of Inspection and Quarantine
- Beijing
- China
| | - Yu-Fang Deng
- College of Plant Protection
- China Agricultural University
- Beijing
- China
- Institute of Plant Quarantine
| | - Jun Wang
- Institute of Plant Quarantine
- Chinese Academy of Inspection and Quarantine
- Beijing
- China
| | - Gui-Fen Li
- Institute of Plant Quarantine
- Chinese Academy of Inspection and Quarantine
- Beijing
- China
| | - Chao-Nan Wang
- College of Plant Protection
- China Agricultural University
- Beijing
- China
- Institute of Plant Quarantine
| | - Zhi-Hong Li
- College of Plant Protection
- China Agricultural University
- Beijing
- China
| | - Shui-Fang Zhu
- College of Plant Protection
- China Agricultural University
- Beijing
- China
- Institute of Plant Quarantine
| |
Collapse
|
13
|
Screening of pharmacokinetic properties of fifty dihydropyrimidin(thi)one derivatives using a combo of in vitro and in silico assays. Eur J Pharm Sci 2017; 109:334-346. [DOI: 10.1016/j.ejps.2017.08.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 08/16/2017] [Accepted: 08/18/2017] [Indexed: 11/19/2022]
|
14
|
Liu M, Zhao G, Cao S, Zhang Y, Li X, Lin X. Development of Certain Protein Kinase Inhibitors with the Components from Traditional Chinese Medicine. Front Pharmacol 2017; 7:523. [PMID: 28119606 PMCID: PMC5220067 DOI: 10.3389/fphar.2016.00523] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/15/2016] [Indexed: 12/27/2022] Open
Abstract
Traditional Chinese medicines (TCMs) have been used in China for more than two thousand years, and some of them have been confirmed to be effective in cancer treatment. Protein kinases play critical roles in control of cell growth, proliferation, migration, survival, and angiogenesis and mediate their biological effects through their catalytic activity. In recent years, numerous protein kinase inhibitors have been developed and are being used clinically. Anticancer TCMs represent a large class of bioactive substances, and some of them display anticancer activity via inhibiting protein kinases to affect the phosphoinositide 3-kinase, serine/threonine-specific protein kinases, pechanistic target of rapamycin (PI3K/AKT/mTOR), P38, mitogen-activated protein kinase (MAPK) and extracellular signal-regulated kinases (ERK) pathways. In the present article, we comprehensively reviewed several components isolated from anticancer TCMs that exhibited significantly inhibitory activity toward a range of protein kinases. These components, which belong to diverse structural classes, are reviewed herein, based upon the kinases that they inhibit. The prospects and problems in development of the anticancer TCMs are also discussed.
Collapse
Affiliation(s)
- Minghua Liu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University Luzhou, China
| | - Ge Zhao
- Department of Pharmacology, School of Pharmacy, Southwest Medical University Luzhou, China
| | - Shousong Cao
- Department of Pharmacology, School of Pharmacy, Southwest Medical University Luzhou, China
| | - Yangyang Zhang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University Luzhou, China
| | - Xiaofang Li
- Department of Pharmacology, School of Pharmacy, Southwest Medical University Luzhou, China
| | - Xiukun Lin
- Department of Pharmacology, School of Pharmacy, Southwest Medical University Luzhou, China
| |
Collapse
|