1
|
Hussain SS, Kingsley D. Ethnomedicinal breakthroughs in snake bite therapy: From folklore to forefront. Toxicol Rep 2024; 13:101795. [PMID: 39582926 PMCID: PMC11583806 DOI: 10.1016/j.toxrep.2024.101795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/26/2024] Open
Abstract
Snakebite envenomation is a critical public health issue, especially in tropical regions like India, resulting in significant morbidity and mortality. This review explores the potential of ethnomedicinal herbs as adjunct therapies to conventional antivenoms, addressing challenges such as the high cost, limited availability, and side effects of traditional antivenoms. The study emphasizes regional and species-specific variations in snake venom that complicate antivenom development and highlights the pharmacological potential of certain medicinal plants in mitigating venom effects. These plants offer an affordable, accessible alternative, though their efficacy can vary due to regional venom differences. Additionally, the review discusses the role of bioinformatics in advancing antivenom research, aiming to combine traditional knowledge with modern science to develop effective and accessible snakebite treatments in resource-limited settings.
Collapse
Affiliation(s)
- Sana S. Hussain
- Department of Integrative Biology, School of BioSciences and Technology, VIT, Vellore, India
| | - Danie Kingsley
- Department of Integrative Biology, School of BioSciences and Technology, VIT, Vellore, India
| |
Collapse
|
2
|
Kalath H, Vishwakarma R, Banjan B, Ramakrishnan K, Koshy AJ, Raju R, Rehman N, Revikumar A. In-silico studies on evaluating the liver-protective effectiveness of a polyherbal formulation in preventing hepatocellular carcinoma progression. In Silico Pharmacol 2024; 12:109. [PMID: 39569037 PMCID: PMC11574239 DOI: 10.1007/s40203-024-00285-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/01/2024] [Indexed: 11/22/2024] Open
Abstract
Liv-52, an herbal formulation consisting of seven distinct plants and Mandur Bhasma, is recognized for its hepatoprotective, anti-inflammatory, and antioxidant properties. To investigate the pharmacological potential of each phytochemical from these plants, we conducted ADMET analysis, molecular docking, and molecular dynamic simulations to identify potent molecules capable of inhibiting the interaction between Alpha-fetoprotein (AFP) and Cysteine aspartyl protease 3 (Caspase-3/CASP3). In our study, we have used molecular docking of all the compounds against AFP and filtered them on the basis of ADME properties. Among the compounds analyzed, (-) Syringaresinol from Solanum nigrum, exhibited good binding interactions with AFP, the highest binding free energy, and maintained stability throughout the simulation along with favorable drug likeness properties based on ADME and Toxicity analysis. These findings have strongly indicated that (-) Syringaresinol is a potential inhibitor of AFP, providing a promising therapeutic avenue for hepatocellular carcinoma (HCC) treatment by inhibiting the interaction between AFP and CASP3, thereby reinstating normal CASP3 activity. Further in vitro studies are imperative to validate the therapeutic efficacy of (-) Syringaresinol as an AFP inhibitor, potentially impeding the progression of HCC. Supplementary Information The online version contains supplementary material available at 10.1007/s40203-024-00285-2.
Collapse
Affiliation(s)
- Haritha Kalath
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore, 575018 Karnataka India
| | - Riya Vishwakarma
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore, 575018 Karnataka India
| | - Bhavya Banjan
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore, 575018 Karnataka India
| | - Krishnapriya Ramakrishnan
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore, 575018 Karnataka India
| | - Abel John Koshy
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore, 575018 Karnataka India
| | - Rajesh Raju
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore, 575018 Karnataka India
| | - Niyas Rehman
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore, 575018 Karnataka India
| | - Amjesh Revikumar
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore, 575018 Karnataka India
- Kerala Genome Data Centre, Kerala Development and Innovation Strategic Council, Vazhuthacaud, Thiruvananthapuram, 695014 Kerala India
| |
Collapse
|
3
|
Diniz EADS, da Silva DP, Ferreira SDS, Fernandes-Pedrosa MDF, Vieira DS. Temperature effect in the inhibition of PLA 2 activity of Bothrops brazili venom by Rosmarinic and Chlorogenic acids, experimental and computational approaches. J Biomol Struct Dyn 2024; 42:5238-5252. [PMID: 37378497 DOI: 10.1080/07391102.2023.2226912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023]
Abstract
Myotoxicity caused by snakebite envenoming emerges as one of the main problems of ophidic accidents as it is not well neutralized by the current serum therapy. A promising alternative is to search for efficient small molecule inhibitors that can act against multiple venom components. Phospholipase A2 (PLA2) is frequently found in snake venom and is usually associated with myotoxicity. Thus it represents an excellent target for the search of new treatments. This work reports the effect of temperature in the inhibition of catalytic properties of PLA2 from Bothrops brazili venom by Rosmarinic (RSM) and Chlorogenic (CHL) acids through experimental and computational approaches. Three temperatures were evaluated (25, 37 and 50 °C). In the experimental section, enzymatic assays showed that RSM is a better inhibitor in all three temperatures. At 50 °C, the inhibition efficiency decayed significantly for both acids. Docking studies revealed that both ligands bind to the hydrophobic channel of the protein dimer where the phospholipid binds in the catalytic process, interacting with several functional residues. In this context, RSM presents better interaction energies due to stronger interactions with chain B of the dimer. Molecular dynamics simulations showed that RSM can establish selective interactions with ARG112B of PLA2, which is located next to residues of the putative Membrane Disruption Site in PLA2-like structures. The affinity of RSM and CHL acids towards PLA2 is mainly driven by electrostatic interactions, especially salt bridge interactions established with residues ARG33B (for CHL) and ARG112B (RSM) and hydrogen bonds with residue ASP89A. The inability of CHL to establish a stable interaction with ARG112B was identified as the reason for its lower inhibition efficiency compared to RSM at the three temperatures. Furthermore, extensive structural analysis was performed to explain the lower inhibition efficiency at 50 °C for both ligands. The analysis performed in this work provides important information for the future design of new inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Diana Pontes da Silva
- Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), College of Pharmacy, Federal University of Rio Grande do Norte, Avenue General Gustavo Cordeiro de Farias, Petrópolis, Natal, Brazil
| | - Sarah de Sousa Ferreira
- Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), College of Pharmacy, Federal University of Rio Grande do Norte, Avenue General Gustavo Cordeiro de Farias, Petrópolis, Natal, Brazil
| | - Matheus de Freitas Fernandes-Pedrosa
- Laboratory of Technology and Pharmaceutical Biotechnology (Tecbiofar), College of Pharmacy, Federal University of Rio Grande do Norte, Avenue General Gustavo Cordeiro de Farias, Petrópolis, Natal, Brazil
| | - Davi Serradella Vieira
- Institute of Chemistry, Federal University of Rio Grande do Norte, Av Senador Salgado Filho, Natal-RN, Brazil
| |
Collapse
|
4
|
Rao QR, Rao JB, Zhao M. The specialized sesquiterpenoids produced by the genus Elephantopus L.: Chemistry, biological activities and structure-activity relationship exploration. PHYTOCHEMISTRY 2024; 221:114041. [PMID: 38442848 DOI: 10.1016/j.phytochem.2024.114041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 02/23/2024] [Accepted: 02/25/2024] [Indexed: 03/07/2024]
Abstract
The genus Elephantopus L. is a valuable resource rich in sesquiterpenoids with structural diversity and various bioactivities, showing great potential for applications in medicinal field and biological industry. Up to now, over 129 sesquiterpenoids have been isolated and identified from this plant genus, including 114 germacrane-type, 7 guaianolide-type, 5 eudesmane-type, 1 elemanolide-type, and 2 bis-sesquiterpenoids. These sesquiterpenoids were reported to show a diverse range of pharmacological properties, including cytotoxic, anti-tumor, anti-inflammatory, antimicrobial, and antiprotozoal. Consequently, some of them were identified as active scaffolds in the design and development of drugs. Considering that there is currently no overview available that covers the sesquiterpenoids and their biological activities in the Elephantopus genus, this article aims to comprehensively review the chemical structures, biosynthetic pathways, pharmacological properties, and structure-activity relationship of sesquiterpenoids found in the Elephantopus genus, which will establish a theoretical framework that can guide further research and exploration of sesquiterpenoids from Elephantopus plants as promising therapeutic agents.
Collapse
Affiliation(s)
- Qian-Ru Rao
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China; Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Maternal & Child Nutrition Center, West China Second University Hospital, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Jian-Bo Rao
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Chinese Medicine, Nanchang, 330004, People's Republic of China
| | - Min Zhao
- Department of Urology, Institute of Urology (Laboratory of Reconstructive Urology), West China Hospital, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
5
|
Kalath H, Koshy AJ, Banjan B, Soman S, Hosadevasthana G, Raju R, Rehman N, Revikumar A. In-silico studies of Brassica oleracea active compounds and their role in thyroid peroxidase activity. J Biomol Struct Dyn 2023; 42:12417-12433. [PMID: 37870072 DOI: 10.1080/07391102.2023.2270601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/07/2023] [Indexed: 10/24/2023]
Abstract
Cabbage, a leafy vegetable that is widely consumed across the globe, holds a significant place within the Brassica family. For almost a century, its potential anti-thyroid effects have captured attention. The presence of compounds such as thiocyanate and goitrin in cabbage has been extensively investigated for their ability to impede sodium-iodide symporter and thyroid peroxidase (TPO) activities. The present study is focused on uncovering the active constituents in cabbage that could interact with TPO, while also examining their stability under cooking temperatures. Employing molecular docking and molecular dynamic simulation techniques, we quantified the binding strength of phytochemicals present in cabbage with the target. Out of the 60 compounds identified in cabbage leaves, only 18 exhibited docking scores surpassing those of the commercially available anti-thyroid drug, methimazole. These chosen compounds were studied for binding free energy and pharmacokinetic properties. A specific compound, gamma-Terpinene, classified as a monoterpene, emerged as noteworthy due to its alignment with all criteria and the highest observed binding free energy compared to others. Furthermore, we explored the stability of gamma-Terpinene at 373.15K (cooking temperature) and observed its susceptibility to degradation. This might contribute to the relatively diminished anti-thyroid effects of cabbage when consumed in cooked form. Consequently, our findings suggest that the consumption of cooked cabbage could be more conducive to maintaining normal thyroid function, as opposed to its raw counterpart.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Haritha Kalath
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore, India
| | - Abel John Koshy
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore, India
| | - Bhavya Banjan
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore, India
| | - Sowmya Soman
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore, India
| | - Gururaja Hosadevasthana
- Yenepoya Ayurveda Medical College & Hospital, Yenepoya (Deemed to be University), Naringana, Mangalore, Karnataka, India
| | - Rajesh Raju
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore, India
| | - Niyas Rehman
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore, India
| | - Amjesh Revikumar
- Centre for Integrative Omics Data Science (CIODS), Yenepoya (Deemed to be University), Mangalore, India
- Kerala Genome Data Centre, Kerala Development and Innovation Strategic Council, Vazhuthacaud, Thiruvananthapuram, Kerala, India
| |
Collapse
|
6
|
S S, V S, I JM, P VM, P LK, Nair AS, R SP, Oommen OV. In silico screening of the phytochemicals present in Clitoria ternatea L. as the inhibitors of snake venom phospholipase A 2 (PLA 2). J Biomol Struct Dyn 2023; 41:7874-7883. [PMID: 36153001 DOI: 10.1080/07391102.2022.2126889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 09/15/2022] [Indexed: 10/14/2022]
Abstract
Millions of people suffer from snake bite envenomation, and its management is a challenge, even today. Medicinal plants have attracted the researcher's attention for their outstanding advantages in treating many diseases, including snake venom poisoning. Clitoria ternatea L, is a plant popularly known for its various pharmacological effects especially, anti-snake venom property. However, the molecular mechanism behind this is poorly understood. It is reported that snake venom PLA2 is an extensively studied toxic factor. This study is meant to screen the compound's capability to act as inhibitors of the Daboia russelli snake venom PLA2 through molecular docking and dynamics studies. Our results show that among the 27 compounds taken for the study, only Kaempferol showed good interaction profile with the conserved catalytic active site residues, His48 and Asp49. The pharmacophore features of the compound also demonstrate its exact fitting at the binding pocket. Further RMSD, RMSF, Rg, and hydrogen bond analysis confirmed the stable binding of Kaempferol with PLA2 through molecular dynamic simulations for 100 ns. In addition, the MM/PBSA binding free energy calculation of the complex was also affirming the docking results. The binding free energy (BFE) of Kaempferolis better than the reference compound. ADME and Lipinski's rule of five reveals its drug like properties.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Suveena S
- Centre for Venom Informatics, Department of Computational Biology & Bioinformatics, University of Kerala, Trivandrum, Kerala, India
| | - Saraswathy V
- Centre for Venom Informatics, Department of Computational Biology & Bioinformatics, University of Kerala, Trivandrum, Kerala, India
| | - Junaida M I
- Centre for Venom Informatics, Department of Computational Biology & Bioinformatics, University of Kerala, Trivandrum, Kerala, India
| | - Vinod M P
- Centre for Venom Informatics, Department of Computational Biology & Bioinformatics, University of Kerala, Trivandrum, Kerala, India
| | - Laladhas K P
- Department of Zoology, St.Stephen's College, Kollam, Kerala, India
| | - Achuthsankar S Nair
- Centre for Venom Informatics, Department of Computational Biology & Bioinformatics, University of Kerala, Trivandrum, Kerala, India
| | - Sudhakaran P R
- Centre for Venom Informatics, Department of Computational Biology & Bioinformatics, University of Kerala, Trivandrum, Kerala, India
| | - Oommen V Oommen
- Centre for Venom Informatics, Department of Computational Biology & Bioinformatics, University of Kerala, Trivandrum, Kerala, India
| |
Collapse
|
7
|
Castro-Amorim J, Novo de Oliveira A, Da Silva SL, Soares AM, Mukherjee AK, Ramos MJ, Fernandes PA. Catalytically Active Snake Venom PLA 2 Enzymes: An Overview of Its Elusive Mechanisms of Reaction. J Med Chem 2023; 66:5364-5376. [PMID: 37018514 PMCID: PMC10150362 DOI: 10.1021/acs.jmedchem.3c00097] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Snake venom-secreted phospholipase A2 (svPLA2) enzymes, both catalytically active and inactive, are a central component in envenoming. These are responsible for disrupting the cell membrane's integrity, inducing a wide range of pharmacological effects, such as the necrosis of the bitten limb, cardiorespiratory arrest, edema, and anticoagulation. Although extensively characterized, the reaction mechanisms of enzymatic svPLA2 are still to be thoroughly understood. This review presents and analyses the most plausible reaction mechanisms for svPLA2, such as the "single-water mechanism" or the "assisted-water mechanism" initially proposed for the homologous human PLA2. All of the mechanistic possibilities are characterized by a highly conserved Asp/His/water triad and a Ca2+ cofactor. The extraordinary increase in activity induced by binding to a lipid-water interface, known as "interfacial activation," critical for the PLA2s activity, is also discussed. Finally, a potential catalytic mechanism for the postulated noncatalytic PLA2-like proteins is anticipated.
Collapse
Affiliation(s)
- Juliana Castro-Amorim
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Ana Novo de Oliveira
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Saulo Luís Da Silva
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Andreimar M Soares
- Laboratory of Biotechnology of Proteins and Bioactive Compounds (LABIOPROT), Oswaldo Cruz Foundation, National Institute of Epidemiology in the Western Amazon (INCT-EpiAmO), Porto Velho, Rondônia 76812-245, Brazil
- Sao Lucas Universitary Center (UniSL), Porto Velho, Rondônia 76805-846, Brazil
| | - Ashis K Mukherjee
- Microbial Biotechnology and Protein Research Laboratory, Department of Molecular Biology and Biotechnology, Tezpur University, Tezpur 784028, Assam, India
- Division of Life Sciences, Institute of Advanced Studies in Science and Technology, Vigyan Path, Garchuk, Paschim Boragaon, Guwahati 781035, Assam, India
| | - Maria João Ramos
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Pedro A Fernandes
- LAQV, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| |
Collapse
|
8
|
Liaqat A, Mallhi TH, Khan YH, Khokhar A, Chaman S, Ali M. Anti-Snake Venom Property of Medicinal Plants: A Comprehensive Review of Literature. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e191124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
| | | | | | | | - Sadia Chaman
- University of Veterinary and Animal Sciences, Pakistan
| | | |
Collapse
|
9
|
Gutiérrez JM, Albulescu LO, Clare RH, Casewell NR, Abd El-Aziz TM, Escalante T, Rucavado A. The Search for Natural and Synthetic Inhibitors That Would Complement Antivenoms as Therapeutics for Snakebite Envenoming. Toxins (Basel) 2021; 13:451. [PMID: 34209691 PMCID: PMC8309910 DOI: 10.3390/toxins13070451] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/23/2021] [Accepted: 06/27/2021] [Indexed: 12/28/2022] Open
Abstract
A global strategy, under the coordination of the World Health Organization, is being unfolded to reduce the impact of snakebite envenoming. One of the pillars of this strategy is to ensure safe and effective treatments. The mainstay in the therapy of snakebite envenoming is the administration of animal-derived antivenoms. In addition, new therapeutic options are being explored, including recombinant antibodies and natural and synthetic toxin inhibitors. In this review, snake venom toxins are classified in terms of their abundance and toxicity, and priority actions are being proposed in the search for snake venom metalloproteinase (SVMP), phospholipase A2 (PLA2), three-finger toxin (3FTx), and serine proteinase (SVSP) inhibitors. Natural inhibitors include compounds isolated from plants, animal sera, and mast cells, whereas synthetic inhibitors comprise a wide range of molecules of a variable chemical nature. Some of the most promising inhibitors, especially SVMP and PLA2 inhibitors, have been developed for other diseases and are being repurposed for snakebite envenoming. In addition, the search for drugs aimed at controlling endogenous processes generated in the course of envenoming is being pursued. The present review summarizes some of the most promising developments in this field and discusses issues that need to be considered for the effective translation of this knowledge to improve therapies for tackling snakebite envenoming.
Collapse
Affiliation(s)
- José María Gutiérrez
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José 11501, Costa Rica; (T.E.); (A.R.)
| | - Laura-Oana Albulescu
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (L.-O.A.); (R.H.C.); (N.R.C.)
| | - Rachel H. Clare
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (L.-O.A.); (R.H.C.); (N.R.C.)
| | - Nicholas R. Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK; (L.-O.A.); (R.H.C.); (N.R.C.)
| | - Tarek Mohamed Abd El-Aziz
- Zoology Department, Faculty of Science, Minia University, El-Minia 61519, Egypt;
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA
| | - Teresa Escalante
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José 11501, Costa Rica; (T.E.); (A.R.)
| | - Alexandra Rucavado
- Facultad de Microbiología, Instituto Clodomiro Picado, Universidad de Costa Rica, San José 11501, Costa Rica; (T.E.); (A.R.)
| |
Collapse
|
10
|
Rallabandi HR, Mekapogu M, Natesan K, Saindane M, Dhupal M, Swamy MK, Vasamsetti BMK. Computational Methods Used in Phytocompound-Based Drug Discovery. PLANT-DERIVED BIOACTIVES 2020:549-573. [DOI: 10.1007/978-981-15-2361-8_25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
11
|
Exploring the effect of aplidin on low molecular weight protein tyrosine phosphatase by molecular docking and molecular dynamic simulation study. Comput Biol Chem 2019; 83:107123. [PMID: 31561070 DOI: 10.1016/j.compbiolchem.2019.107123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 07/26/2019] [Accepted: 09/04/2019] [Indexed: 12/24/2022]
Abstract
The low molecular weight protein tyrosine phosphatase (LMW-PTP) could regulate many signaling pathways, and it had drawn attention as a potential target for cancer. As previous report has indicated that the aplidin could inhibit the LMW-PTP, and thus, the relevant cancer caused by the abnormal regulation of the LMW-PTP could be remission. However, the molecular mechanism of inhibition of the LMW-PTP by the aplidin had not been fully understood. In this study, various computational approaches, namely molecular docking, MDs and post-dynamic analyses were utilized to explore the effect of the aplidin on the LMW-PTP. The results suggested that the intramolecular interactions of the residues in the two sides of the active site (Ser43-Ala55 and Pro121-Asn134) and the P-loop region (Leu13-Ser19) in the LMW-PTP was disturbed owing to the aplidin, meanwhile, the π-π interaction between Tyr131 and Tyr132 might be broken. The Asn15 might be the key residue to break the residues interactions. In a word, this study may provide more information for understanding the effect of inhibition of the aplidin on the LMW-PTP.
Collapse
|