1
|
Neha, Verma C, Kaur N. Fluorenone-naphthyl encapsulated dual sensor for recognition of F - and Hg 2+: Syngenetic effect with drug sobisis and molecular docking studies. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 325:125042. [PMID: 39232312 DOI: 10.1016/j.saa.2024.125042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 07/22/2024] [Accepted: 08/24/2024] [Indexed: 09/06/2024]
Abstract
A novel fluorenone-naphthyl pendant sensor (FTU) possessing thiourea functionality has been synthesized via a simple condensation method and utilized for the recognition of F- and Hg2+ ions in the solution of CH3CN. The addition of F- and Hg2+ ions to the FTU solution led to the appearance of red-shifted absorption bands at 340 and 315 nm, respectively. On the other hand, in the fluorescence spectrum, the two-fold decrease in fluorescence intensity of probe FTU was observed with F- ions; while complete quenching of the fluorescence intensity was noticed with Hg2+ ions at 423 nm. The limit of detection values of F- and Hg2+ ions were found to be 1.02 & 29.1 nM, respectively, measured by UV-vis studies and 0.0185 & 0.81 nM, respectively, measured by fluorescence studies, which are less than recommended by WHO. DFT computational assessments and 1H NMR titration experiments pointed to F- induced deprotonation of thiourea NH signals. However, the chelation-enhanced quenching effect (CHEQ) was held responsible for fluorescence quenching with Hg2+ addition. Moreover, the in-situ formed FTU + F- complex was utilized for secondary sensing of drug sobisis. Furthermore, the real-world applicability of sensor FTU has been successfully scrutinized for the recognition of F- ions in the toothpaste samples. In addition, molecular docking studies revealed that FTU exhibited excellent antibacterial potency towards different gram-positive as well as negative strains.
Collapse
Affiliation(s)
- Neha
- Department of Chemistry, Panjab University, Chandigarh 160014, India
| | - Chetan Verma
- Department of Chemistry, Panjab University, Chandigarh 160014, India
| | - Navneet Kaur
- Department of Chemistry, Panjab University, Chandigarh 160014, India.
| |
Collapse
|
2
|
Paciotti R, Re N, Storchi L. Combining the Fragment Molecular Orbital and GRID Approaches for the Prediction of Ligand-Metalloenzyme Binding Affinity: The Case Study of hCA II Inhibitors. Molecules 2024; 29:3600. [PMID: 39125005 PMCID: PMC11313991 DOI: 10.3390/molecules29153600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/18/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Polarization and charge-transfer interactions play an important role in ligand-receptor complexes containing metals, and only quantum mechanics methods can adequately describe their contribution to the binding energy. In this work, we selected a set of benzenesulfonamide ligands of human Carbonic Anhydrase II (hCA II)-an important druggable target containing a Zn2+ ion in the active site-as a case study to predict the binding free energy in metalloprotein-ligand complexes and designed specialized computational methods that combine the ab initio fragment molecular orbital (FMO) method and GRID approach. To reproduce the experimental binding free energy in these systems, we adopted a machine-learning approach, here named formula generator (FG), considering different FMO energy terms, the hydrophobic interaction energy (computed by GRID) and logP. The main advantage of the FG approach is that it can find nonlinear relations between the energy terms used to predict the binding free energy, explicitly showing their mathematical relation. This work showed the effectiveness of the FG approach, and therefore, it might represent an important tool for the development of new scoring functions. Indeed, our scoring function showed a high correlation with the experimental binding free energy (R2 = 0.76-0.95, RMSE = 0.34-0.18), revealing a nonlinear relation between energy terms and highlighting the relevant role played by hydrophobic contacts. These results, along with the FMO characterization of ligand-receptor interactions, represent important information to support the design of new and potent hCA II inhibitors.
Collapse
Affiliation(s)
- Roberto Paciotti
- Department of Pharmacy, Università “G. D’Annunzio” Di Chieti-Pescara, 66100 Chieti, Italy; (N.R.); (L.S.)
| | | | | |
Collapse
|
3
|
Paciotti R, Marrone A. A computational insight on the aromatic amino acids conjugation with [Cp*Rh(H 2O) 3] 2+ by using the meta-dynamics/FMO3 approach. J Mol Model 2023; 30:4. [PMID: 38082186 PMCID: PMC10713709 DOI: 10.1007/s00894-023-05794-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023]
Abstract
CONTEXT Rh(III) complexes demonstrated to exert promising pharmacological effects with potential applications as anti-cancer, anti-bacterial, and antimicrobial agents. One important Rh(III)-ligand is the pentamethylcyclopentadienyl (Cp*) group forming in water the [Cp*Rh(H2O)3]2+ complex. Among of its attractive chemical properties is the ability to react specifically with Tyr amino acid side chain of G-protein-coupled receptor (GPCR) peptides by means of highly chemoselective bioconjugation reaction, at room temperature and at pH 5-6. In this computational work, in order to deepen the mechanism of this chemoselective conjugation, we study the ligand exchange reaction between [Cp*Rh(H2O)3]2+ and three small molecules, namely p-cresol, 3-methylimidazole, and toluene, selected as mimetic of aromatic side chains of tyrosine (Tyr), tryptophan (Trp) and phenylalanine (Phe), respectively. Our outcomes suggest that the high selectivity for Tyr side chain might be related to OH group able to affect both thermodynamic and kinetic of ligand exchange reaction, due to its ability to act as both H bond acceptor and donor. These mechanistic aspects can be used to design new metal drugs containing the [Cp*Rh]2+ scaffold targeting specifically Tyr residues involved in biological/pathological processes such as phosphorylation by means of Tyr-kinase enzyme and protein-protein interactions. METHODS The geometry of three encounter complexes and product adducts were optimized at the B3LYP//CPCM/ωB97X-D level of theory, adopting the 6-311+G(d,p) basis set for all non-metal atoms and the LANL2DZ pseudopotential for the Rh atom. Meta-dynamics RMSD (MTD(RMSD)) calculations at GFN2-xTB level of theory were performed in NVT conditions at 298.15 K to investigate the bioconjugation reactions (simulation time: 100 ps; integration step 2.0; implicit solvent model: GBSA). The MTD(RMSD) simulation was performed in two replicates for each encounter complex. Final representative subsets of 100 structures for each run were gained with a sampling rate of 1 ps and analyzed by performing single point calculations using the FMO3 method at RI-MP2/6-311G//PCM[1] level of theory, adopting the MCP-TZP core potential for Rh atom.
Collapse
Affiliation(s)
- Roberto Paciotti
- Department of Pharmacy, Università "G. D'Annunzio" Di Chieti-Pescara, I-66100, Chieti, Italy.
| | - Alessandro Marrone
- Department of Pharmacy, Università "G. D'Annunzio" Di Chieti-Pescara, I-66100, Chieti, Italy
| |
Collapse
|
4
|
Paciotti R, Marrone A, Coletti C, Re N. Improving the accuracy of the FMO binding affinity prediction of ligand-receptor complexes containing metals. J Comput Aided Mol Des 2023; 37:707-719. [PMID: 37743428 PMCID: PMC10618332 DOI: 10.1007/s10822-023-00532-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 09/07/2023] [Indexed: 09/26/2023]
Abstract
Polarization and charge transfer strongly characterize the ligand-receptor interaction when metal atoms are present, as for the Au(I)-biscarbene/DNA G-quadruplex complexes. In a previous work (J Comput Aided Mol Des2022, 36, 851-866) we used the ab initio FMO2 method at the RI-MP2/6-31G* level of theory with the PCM [1] solvation approach to calculate the binding energy (ΔEFMO) of two Au(I)-biscarbene derivatives, [Au(9-methylcaffein-8-ylidene)2]+ and [Au(1,3-dimethylbenzimidazole-2-ylidene)2]+, able to interact with DNA G-quadruplex motif. We found that ΔEFMO and ligand-receptor pair interaction energies (EINT) show very large negative values making the direct comparison with experimental data difficult and related this issue to the overestimation of the embedded charge transfer energy between fragments containing metal atoms. In this work, to improve the accuracy of the FMO method for predicting the binding affinity of metal-based ligands interacting with DNA G-quadruplex (Gq), we assess the effect of the following computational features: (i) the electron correlation, considering the Hartree-Fock (HF) and a post-HF method, namely RI-MP2; (ii) the two (FMO2) and three-body (FMO3) approaches; (iii) the basis set size (polarization functions and double-ζ vs. triple-ζ) and (iv) the embedding electrostatic potential (ESP). Moreover, the partial screening method was systematically adopted to simulate the solvent screening effect for each calculation. We found that the use of the ESP computed using the screened point charges for all atoms (ESP-SPTC) has a critical impact on the accuracy of both ΔEFMO and EINT, eliminating the overestimation of charge transfer energy and leading to energy values with magnitude comparable with typical experimental binding energies. With this computational approach, EINT values describe the binding efficiency of metal-based binders to DNA Gq more accurately than ΔEFMO. Therefore, to study the binding process of metal containing systems with the FMO method, the adoption of partial screening solvent method combined with ESP-SPCT should be considered. This computational protocol is suggested for FMO calculations on biological systems containing metals, especially when the adoption of the default ESP treatment leads to questionable results.
Collapse
Affiliation(s)
- R Paciotti
- Department of Pharmacy, Università "G. D'Annunzio" Di Chieti-Pescara, Chieti, Italy.
| | - A Marrone
- Department of Pharmacy, Università "G. D'Annunzio" Di Chieti-Pescara, Chieti, Italy
| | - C Coletti
- Department of Pharmacy, Università "G. D'Annunzio" Di Chieti-Pescara, Chieti, Italy
| | - N Re
- Department of Pharmacy, Università "G. D'Annunzio" Di Chieti-Pescara, Chieti, Italy
| |
Collapse
|
5
|
Corinti D, Paciotti R, Coletti C, Re N, Chiavarino B, Frison G, Crestoni ME, Fornarini S. IRMPD spectroscopy and quantum-chemical simulations of the reaction products of cisplatin with the dipeptide CysGly. J Inorg Biochem 2023; 247:112342. [PMID: 37536163 DOI: 10.1016/j.jinorgbio.2023.112342] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/10/2023] [Accepted: 07/24/2023] [Indexed: 08/05/2023]
Abstract
The inorganic antineoplastic drug cisplatin was made to react in solution with the dipeptide cysteinylglycine (CysGly), chosen as a functional model of glutathione, and the reaction products were analyzed using electrospray ionization mass spectrometry (ESI-MS). Selected complexes, i.e., the primary substitution product cis-[PtCl(NH3)2(CysGly)]+ and the chelate cis-[PtCl(NH3)(CysGly)]+, were submitted to IR multiple photon dissociation (IRMPD) spectroscopy obtaining their vibrational features. The experimental IR ion spectra were compared with the calculated IR absorptions of different plausible isomeric families, finding CysGly to bind preferentially platinum(II) via its deprotonated thiolic group in the monovalent complex, cis-[PtCl(NH3)2(CysGly)]+, and to evolve in the S,N-bound chelate structure cis-[PtCl(NH3)(CysGly)]+ through the SH and NH2 functionality of the cysteine residue. Moreover, our findings indicate that the platination reaction does not affect the CysGly peptide bond, which remains in its trans configuration. These results provide additional insights into the reactivity of Pt(II)-complexes with glutathione which is involved in cellular cisplatin resistance.
Collapse
Affiliation(s)
- Davide Corinti
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma "La Sapienza", I-00185 Roma, Italy.
| | - Roberto Paciotti
- Dipartimento di Farmacia, Università G. D'Annunzio Chieti-Pescara, Via dei Vestini 31, Chieti I-66100, Italy.
| | - Cecilia Coletti
- Dipartimento di Farmacia, Università G. D'Annunzio Chieti-Pescara, Via dei Vestini 31, Chieti I-66100, Italy
| | - Nazzareno Re
- Dipartimento di Farmacia, Università G. D'Annunzio Chieti-Pescara, Via dei Vestini 31, Chieti I-66100, Italy
| | - Barbara Chiavarino
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma "La Sapienza", I-00185 Roma, Italy
| | - Gilles Frison
- Sorbonne Université, CNRS, Laboratoire de Chimie Théorique, LCT, F-75005 Paris, France
| | - Maria Elisa Crestoni
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma "La Sapienza", I-00185 Roma, Italy
| | - Simonetta Fornarini
- Dipartimento di Chimica e Tecnologie del Farmaco, Università di Roma "La Sapienza", I-00185 Roma, Italy
| |
Collapse
|
6
|
Tolbatov I, Marrone A, Shepard W, Chiaverini L, Upadhyay Kahaly M, La Mendola D, Marzo T, Ciccone L. Inorganic Drugs as a Tool for Protein Structure Solving and Studies on Conformational Changes. Chemistry 2023; 29:e202202937. [PMID: 36477932 DOI: 10.1002/chem.202202937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/12/2022]
Abstract
Inorganic drugs are capable of tight interactions with proteins through coordination towards aminoacidic residues, and this feature is recognized as a key aspect for their pharmacological action. However, the "protein metalation process" is exploitable for solving the phase problem and structural resolution. In fact, the use of inorganic drugs bearing specific metal centers and ligands capable to drive the binding towards the desired portions of the protein target could represent a very intriguing and fruitful strategy. In this context, a theoretical approach may further contribute to solve protein structures and their refinement. Here, we delineate the main features of a reliable experimental-theoretical integrated approach, based on the use of metallodrugs, for protein structure solving.
Collapse
Affiliation(s)
- Iogann Tolbatov
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Avgda. Països Catalans, 16, 43007, Tarragona, Spain
| | - Alessandro Marrone
- Department of Pharmacy, University "G. D'Annunzio" Chieti-Pescara, Via dei Vestini, 31, 66100, Chieti, Italy
| | - William Shepard
- Department PROXIMA2 A, Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192, Gif-sur-Yvette, France
| | - Lorenzo Chiaverini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | | | - Diego La Mendola
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Tiziano Marzo
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
| | - Lidia Ciccone
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126, Pisa, Italy
- Department PROXIMA2 A, Synchrotron SOLEIL, L'Orme des Merisiers, Saint-Aubin, BP 48, 91192, Gif-sur-Yvette, France
| |
Collapse
|
7
|
Tolbatov I, Storchi L, Marrone A. Structural Reshaping of the Zinc-Finger Domain of the SARS-CoV-2 nsp13 Protein Using Bismuth(III) Ions: A Multilevel Computational Study. Inorg Chem 2022; 61:15664-15677. [PMID: 36125417 PMCID: PMC9514052 DOI: 10.1021/acs.inorgchem.2c02685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Indexed: 11/29/2022]
Abstract
The identification of novel therapeutics against the pandemic SARS-CoV-2 infection is an indispensable new address of current scientific research. In the search for anti-SARS-CoV-2 agents as alternatives to the vaccine or immune therapeutics whose efficacy naturally degrades with the occurrence of new variants, the salts of Bi3+ have been found to decrease the activity of the Zn2+-dependent non-structural protein 13 (nsp13) helicase, a key component of the SARS-CoV-2 molecular tool kit. Here, we present a multilevel computational investigation based on the articulation of DFT calculations, classical MD simulations, and MIF analyses, focused on the examination of the effects of Bi3+/Zn2+ exchange on the structure and molecular interaction features of the nsp13 protein. Our calculations confirmed that Bi3+ ions can replace Zn2+ in the zinc-finger metal centers and cause slight but appreciable structural modifications in the zinc-binding domain of nsp13. Nevertheless, by employing an in-house-developed ATOMIF tool, we evidenced that such a Bi3+/Zn2+ exchange may decrease the extension of a specific hydrophobic portion of nsp13, responsible for the interaction with the nsp12 protein. The present study provides for a detailed, atomistic insight into the potential anti-SARS-CoV-2 activity of Bi3+ and, more generally, evidences the hampering of the nsp13-nsp12 interaction as a plausible therapeutic strategy.
Collapse
Affiliation(s)
- Iogann Tolbatov
- Institut
de Chimie Moleculaire de L’Université de Bourgogne (ICMUB),
Université de Bourgogne Franche-Comté (UBFC), Avenue Alain Savary 9, Dijon 21000, France
| | - Loriano Storchi
- Dipartimento
di Farmacia, Università“G
D’Annunzio” di Chieti-Pescara, Via Dei Vestini 31, Chieti 66100, Italy
| | - Alessandro Marrone
- Dipartimento
di Farmacia, Università“G
D’Annunzio” di Chieti-Pescara, Via Dei Vestini 31, Chieti 66100, Italy
| |
Collapse
|