1
|
Wang Z, Liu S, Shi Z, Lu D, Li Z, Zhu Z. Electrochemical biosensor based on RNA aptamer and ferrocenecarboxylic acid signal probe for C-reactive protein detection. Talanta 2024; 277:126318. [PMID: 38810381 DOI: 10.1016/j.talanta.2024.126318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/05/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024]
Abstract
Monitoring health-related biomarkers using fast and facile detection techniques provides key physicochemical information for disease diagnosis or reflects body health status. Among them, electrochemical detection of various bio-macromolecules, e.g., the C-reactive protein (CRP), is of great interest in offering potential diagnosis for acute inflammation caused by infections, heart diseases, etc. Herein, a novel electrochemical aptamer biosensor was constructed from Ti3C2Tx MXene and in-situ reduced Au NPs for thiolated-RNA aptamer immobilization and CRP protein detection using Fc(COOH) as the signal probe. The sensory performances for CRP detection were optimized based on working conditions, including the incubation times and the pH. The large surface area offered by Ti3C2Tx MXene and high electrical conductivity originating from Au NPs endowed the as-fabricated aptamer biosensor with a decent sensitivity for CRP in a wide linear range of 0.05-80.0 ng/mL, good selectivity over interfering substances, and a low detection limit of 0.026 ng/mL. Such aptamer biosensors also detected CRP in serum samples using the spike & recovery method with reasonable recovery rates. The results demonstrated the potential of the as-fabricated electrochemical aptamer biosensor for fast and facile CRP detection in practical applications.
Collapse
Affiliation(s)
- Zifeng Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Shuyuan Liu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Zhuo Shi
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Dingxi Lu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Zhanhong Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China
| | - Zhigang Zhu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, 200093, China.
| |
Collapse
|
2
|
Barry SCL, Franke C, Mulaudzi T, Pokpas K, Ajayi RF. Review on Surface-Modified Electrodes for the Enhanced Electrochemical Detection of Selective Serotonin Reuptake Inhibitors (SSRIs). MICROMACHINES 2023; 14:1334. [PMID: 37512646 PMCID: PMC10386609 DOI: 10.3390/mi14071334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 07/30/2023]
Abstract
Selective serotonin re-uptake inhibitors (SSRIs) are one of the most commonly prescribed classes of antidepressants used for the treatment of moderate to severe depressive disorder, personality disorders and various phobias. This class of antidepressants was created with improved margins of safety. However, genetic polymorphism may be responsible for the high variability in patients' responses to treatment, ranging from failure to delayed therapeutic responses to severe adverse effects of treatment. It is crucial that the appropriate amount of SSRI drugs is administered to ensure the optimum therapeutic efficacy and intervention to minimise severe and toxic effects in patients, which may be the result of accidental and deliberate cases of poisoning. Determining SSRI concentration in human fluids and the environment with high sensitivity, specificity and reproducibility, and at a low cost and real-time monitoring, is imperative. Electrochemical sensors with advanced functional materials have drawn the attention of researchers as a result of these advantages over conventional techniques. This review article aims to present functional materials such as polymers, carbon nanomaterials, metal nanomaterials as well as composites for surface modification of electrodes for sensitive detection and quantification of SSRIs, including fluoxetine, citalopram, paroxetine, fluvoxamine and sertraline. Sensor fabrication, sensor/analyte interactions, design rationale and properties of functional material and the electrocatalytic effect of the modified electrode on SSRI detection are discussed.
Collapse
Affiliation(s)
- Simone C L Barry
- SensorLab Laboratories, Chemistry Department, University of the Western Cape, Bellville 7535, South Africa
| | - Candice Franke
- SensorLab Laboratories, Chemistry Department, University of the Western Cape, Bellville 7535, South Africa
| | - Takalani Mulaudzi
- Biotechnology Department, Life Sciences Building, University of the Western Cape, Bellville 7535, South Africa
| | - Keagan Pokpas
- SensorLab Laboratories, Chemistry Department, University of the Western Cape, Bellville 7535, South Africa
| | - Rachel Fanelwa Ajayi
- SensorLab Laboratories, Chemistry Department, University of the Western Cape, Bellville 7535, South Africa
| |
Collapse
|
3
|
Caldevilla R, Morais SL, Cruz A, Delerue-Matos C, Moreira F, Pacheco JG, Santos M, Barroso MF. Electrochemical Chemically Based Sensors and Emerging Enzymatic Biosensors for Antidepressant Drug Detection: A Review. Int J Mol Sci 2023; 24:ijms24108480. [PMID: 37239826 DOI: 10.3390/ijms24108480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/18/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Major depressive disorder is a widespread condition with antidepressants as the main pharmacological treatment. However, some patients experience concerning adverse reactions or have an inadequate response to treatment. Analytical chromatographic techniques, among other techniques, are valuable tools for investigating medication complications, including those associated with antidepressants. Nevertheless, there is a growing need to address the limitations associated with these techniques. In recent years, electrochemical (bio)sensors have garnered significant attention due to their lower cost, portability, and precision. Electrochemical (bio)sensors can be used for various applications related to depression, such as monitoring the levels of antidepressants in biological and in environmental samples. They can provide accurate and rapid results, which could facilitate personalized treatment and improve patient outcomes. This state-of-the-art literature review aims to explore the latest advancements in the electrochemical detection of antidepressants. The review focuses on two types of electrochemical sensors: Chemically modified sensors and enzyme-based biosensors. The referred papers are carefully categorized according to their respective sensor type. The review examines the differences between the two sensing methods, highlights their unique features and limitations, and provides an in-depth analysis of each sensor.
Collapse
Affiliation(s)
- Renato Caldevilla
- CISA|ESS, Centro de Investigação em Saúde e Ambiente, Escola Superior de Saúde, Polytechnic Institute of Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal
- REQUIMTE-LAQV, School of Engineering, Polytechnic Institute of Porto, R. Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal
| | - Stephanie L Morais
- REQUIMTE-LAQV, School of Engineering, Polytechnic Institute of Porto, R. Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal
| | - Agostinho Cruz
- CISA|ESS, Centro de Investigação em Saúde e Ambiente, Escola Superior de Saúde, Polytechnic Institute of Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal
| | - Cristina Delerue-Matos
- REQUIMTE-LAQV, School of Engineering, Polytechnic Institute of Porto, R. Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal
| | - Fernando Moreira
- CISA|ESS, Centro de Investigação em Saúde e Ambiente, Escola Superior de Saúde, Polytechnic Institute of Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal
| | - João G Pacheco
- REQUIMTE-LAQV, School of Engineering, Polytechnic Institute of Porto, R. Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal
| | - Marlene Santos
- CISA|ESS, Centro de Investigação em Saúde e Ambiente, Escola Superior de Saúde, Polytechnic Institute of Porto, Rua Dr. António Bernardino de Almeida, 400, 4200-072 Porto, Portugal
- Molecular Oncology and Viral Pathology Group, Research Center, Portuguese Oncology Institute of Porto-Francisco Gentil, R. Dr. António Bernardino de Almeida 865, 4200-072 Porto, Portugal
| | - Maria Fátima Barroso
- REQUIMTE-LAQV, School of Engineering, Polytechnic Institute of Porto, R. Dr. António Bernardino de Almeida 431, 4200-072 Porto, Portugal
| |
Collapse
|
4
|
Nimal R, Nur Unal D, Erkmen C, Kurbanoglu S, Siddiq M, Eren G, Shah A, Uslu B. Elucidating the interaction of antidepressant drug paroxetine with ct-dsDNA: A comparative study by electrochemical, spectroscopic, and molecular docking approaches. Bioelectrochemistry 2023; 149:108285. [PMID: 36240548 DOI: 10.1016/j.bioelechem.2022.108285] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 09/28/2022] [Accepted: 10/02/2022] [Indexed: 11/05/2022]
Abstract
This study is designed to investigate the interaction of phenylpiperidine derivative drug paroxetine, which is an effective serotonin reuptake inhibitor and biomolecules through electrochemical, fluorescence spectroscopy, and molecular docking methods. The interaction between paroxetine and biomolecules was investigated by differential pulse voltammetry according to the decrease in deoxyguanosine anodic oxidation signal of double-stranded calf thymus DNA. Fluorescence spectroscopy studies were performed by titrating paroxetine against double-stranded calf thymus DNA solution at four different temperatures. The fluorescent results showed that paroxetine had a great affinity to bind with double-stranded calf thymus DNA. Interaction studies demonstrate that paroxetine binds to double-stranded calf thymus DNA via intercalation binding mode, and the binding constant values were calculated as 7.24 × 104 M-1 and 1.52 × 104 M-1 at 25 °C, based on voltammetric and spectroscopic results, respectively. Moreover, with the aim of elucidating the interaction mechanism between paroxetine and double-stranded calf thymus DNA, electrochemical and fluorescence spectroscopy studies along with molecular docking analysis were made.
Collapse
Affiliation(s)
- Rafia Nimal
- Quaid-i-Azam University, Department of Chemistry, Islamabad 45320, Pakistan; Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560 Ankara, Turkey
| | - Didem Nur Unal
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560 Ankara, Turkey; Ankara University, The Graduate School of Health Sciences, Ankara 06110, Turkey
| | - Cem Erkmen
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560 Ankara, Turkey; Ankara University, The Graduate School of Health Sciences, Ankara 06110, Turkey
| | - Sevinc Kurbanoglu
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560 Ankara, Turkey
| | - Muhammad Siddiq
- Quaid-i-Azam University, Department of Chemistry, Islamabad 45320, Pakistan
| | - Gokcen Eren
- Gazi University, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 06330 Ankara, Turkey
| | - Afzal Shah
- Quaid-i-Azam University, Department of Chemistry, Islamabad 45320, Pakistan
| | - Bengi Uslu
- Ankara University, Faculty of Pharmacy, Department of Analytical Chemistry, 06560 Ankara, Turkey.
| |
Collapse
|
5
|
Zamani M, Wilhelm T, Furst AL. Perspective-Electrochemical Sensors for Neurotransmitters and Psychiatrics: Steps toward Physiological Mental Health Monitoring. JOURNAL OF THE ELECTROCHEMICAL SOCIETY 2022; 169:047513. [PMID: 37577452 PMCID: PMC10421614 DOI: 10.1149/1945-7111/ac5e42] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Therapeutic monitoring of neurotransmitters (NTs) and psychiatric medications is essential for the diagnosis and treatment of mental illness. However, in-vivo monitoring of NTs in humans as well as continuous physiological monitoring of psychiatrics have yet to be realized. In pursuit of this goal, there has been a plethora of work to develop electrochemical sensors for both in-vivo NT monitoring as well as in-vitro detection of psychiatric medications. We review these sensors here while discussing next steps needed to achieve concurrent, continuous physiological monitoring of NTs and psychiatric medications as part of a closed-loop feedback system that guides medication administration.
Collapse
Affiliation(s)
- Marjon Zamani
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts—02139, United States of America
| | - Tatum Wilhelm
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts—02139, United States of America
| | - Ariel L. Furst
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts—02139, United States of America
| |
Collapse
|
6
|
Sundaresan P, Lee TY. Optimized ultra-sonication synthesis of activated-graphite-encapsulated 2D nanorod-like stannous tungstate for electrochemical determination of imipramine. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Martins FCOL, Pimenta LC, De Souza D. Antidepressants determination using an electroanalytical approach: A review of methods. J Pharm Biomed Anal 2021; 206:114365. [PMID: 34555633 DOI: 10.1016/j.jpba.2021.114365] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/02/2021] [Accepted: 09/04/2021] [Indexed: 01/07/2023]
Abstract
Antidepressants are the pharmaceutical compounds used in the treatment of depression, anxiety disorders and all related disturbances promoted by genetic factors, environmental problems or modern lifestyles. Nonetheless, the inadequate ingestion of antidepressants provokes adverse effects in the human body and can contaminate the environment. For this reason, it is necessary to identify and quantify these compounds in biological fluids, natural water, wastewater, and pharmaceutical formulations. Consequently, this review presents the main electroanalytical techniques used in the analysis of antidepressants, indicating the advantages, which include low cost, suitable analytical parameters, simplified sample preparation steps, easy operation and reduced time for completion of the analysis. Reports in specialized literature, published from 2000 to 2020, are presented and some are discussed, demonstrating that the electroanalytical techniques can be employed, with success, in the determination of antidepressants, indicating alternative methodologies to improve analytical parameters and minimize the use and generation of toxic residues.
Collapse
Affiliation(s)
- Fernanda C O L Martins
- Green Analytical Chemistry Group (GEQAV), College of Agriculture "Luiz de Queiroz", São Paulo University, PO Box 9, Piracicaba, SP 13418-970, Brazil
| | - Laura C Pimenta
- Laboratory of Electroanalytical Applied to Biotechnology and Food Engineering (LEABE), Chemistry Institute, Uberlândia Federal University, Major Jerônimo street, 566, Patos de Minas, MG 38700-002, Brazil
| | - Djenaine De Souza
- Laboratory of Electroanalytical Applied to Biotechnology and Food Engineering (LEABE), Chemistry Institute, Uberlândia Federal University, Major Jerônimo street, 566, Patos de Minas, MG 38700-002, Brazil.
| |
Collapse
|
8
|
Blanco E, Rocha L, Pozo MD, Vázquez L, Petit-Domínguez MD, Casero E, Quintana C. A supramolecular hybrid sensor based on cucurbit[8]uril, 2D-molibdenum disulphide and diamond nanoparticles towards methyl viologen analysis. Anal Chim Acta 2021; 1182:338940. [PMID: 34602204 DOI: 10.1016/j.aca.2021.338940] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/20/2021] [Accepted: 08/10/2021] [Indexed: 11/15/2022]
Abstract
We develop an electrochemical sensor by using 2D-transition metal dichalcogenides (TMD), specifically MoS2, and nanoparticles stabilized with cucurbit[8]uril (CB[8]) incorporated together with them. Two different nanoparticles are assayed: diamond nanoparticles (DNPs) and gold nanoparticles (AuNp). 0D materials, together with TMD, provide increased conductivity and active surface while the macrocycle CB[8] affords selectivity towards the guest methyl viologen (MV2+), also named paraquat. Glassy Carbon (GC) electrodes are modified by drop-casting of suspensions of MoS2, followed by either a CB[8]-DNPs hybrid dispersion or a CB[8]-AuNp suspension. Atomic force microscopy is employed for the morphological characterization of the electrochemical sensor surface while cyclic voltammetry and electrochemical impedance spectroscopy techniques allow the electrochemical characterization of the sensor. The well-stablished signals of CB[8]-encapsulated MV2+ arise in voltammetric measurements when the macrocycle modifies the 0D-materials. Once the sensor construction and differential pulse voltammetry parameters have been optimized for quantification purposes, calibration procedures are performed with the platform GC/MoS2/CB[8]-DNPs. This sensing platform shows linear relations between peak intensity and the MV2+ concentration in the linear concentration range of (0.73-8.0) · 10-6 M with a limit of detection of 2.2 · 10-7 M. Analyses of river water samples fortified with MV2+ at the μM level shows recoveries of 100% with RSD values of 6.4% (n = 3).
Collapse
Affiliation(s)
- Elías Blanco
- Departamento de Química Analítica y Análisis Instrumental, Facultad de Ciencias, C/ Francisco Tomás y Valiente, Nº7, Campus de Excelencia de La Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Laura Rocha
- Departamento de Química Analítica y Análisis Instrumental, Facultad de Ciencias, C/ Francisco Tomás y Valiente, Nº7, Campus de Excelencia de La Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - María Del Pozo
- Departamento de Química Analítica y Análisis Instrumental, Facultad de Ciencias, C/ Francisco Tomás y Valiente, Nº7, Campus de Excelencia de La Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Luis Vázquez
- ESISNA Group, Instituto de Ciencia de Materiales de Madrid (CSIC), C/ Sor Juana Inés de La Cruz, Nº3. Campus de Excelencia de La Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - María Dolores Petit-Domínguez
- Departamento de Química Analítica y Análisis Instrumental, Facultad de Ciencias, C/ Francisco Tomás y Valiente, Nº7, Campus de Excelencia de La Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Elena Casero
- Departamento de Química Analítica y Análisis Instrumental, Facultad de Ciencias, C/ Francisco Tomás y Valiente, Nº7, Campus de Excelencia de La Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Carmen Quintana
- Departamento de Química Analítica y Análisis Instrumental, Facultad de Ciencias, C/ Francisco Tomás y Valiente, Nº7, Campus de Excelencia de La Universidad Autónoma de Madrid, 28049, Madrid, Spain.
| |
Collapse
|
9
|
Yamuna A, Chen TW, Chen SM, Al-Mohaimeed AM, Al-Onazi WA, Elshikh MS. Selective electrochemical detection of antidepressant drug imipramine in blood serum and urine samples using an antimony telluride-graphite nanofiber electrode. Mikrochim Acta 2021; 188:60. [PMID: 33511456 DOI: 10.1007/s00604-021-04722-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/19/2021] [Indexed: 10/22/2022]
Abstract
A high-performance imipramine (IMPR) sensor has been developed based on metal chalcogenide-carbon composite materials. The antimony telluride-graphite nanofiber (Sb2Te3-GNF, hereafter SBT-GNF) composite was synthesized by the hydrothermal method and confirmed by X-ray powder diffraction (XRD) pattern. The morphology, crystalline lattice, and chemical states were characterized by HRTEM, SAED, and XPS analysis. The characterizations confirmed the formation of an effective composite, SBT-GNF. The SBT-GNF was fabricated as a disposable sensor electrode with a screen-printed carbon electrode (SPCE) and examined for the detection of IMPR by differential pulse voltammetry (DPV). The electroanalytical results of SBT-GNF are compared with the SBT and GNF, and the rational design of effective composite is discussed. SBT-GNF/SPCE showed a good linear range (0.01‑51.8 μM), sensitivity (1.35 ± 0.1 μA μM-1 cm-2), and low LOD (4 ± 2 nM). Moreover, the SBT-GNF/SPCE revealed high selectivity and high tolerance limit against potential interfering compounds in blood serum and urine samples. Therefore, this electrochemical sensor can be applicable for the detection of tricyclic antidepressant drug IMPR in clinical and pharmaceutical analysis.
Collapse
Affiliation(s)
- Annamalai Yamuna
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan
| | - Tse-Wei Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan.,Research and Development Center for Smart Textile Technology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan.,Department of Materials, Imperial College London, London, SW72AZ, UK
| | - Shen-Ming Chen
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No. 1, Section 3, Chung-Hsiao East Road, Taipei, 106, Taiwan.
| | - Amal M Al-Mohaimeed
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia
| | - Wedad A Al-Onazi
- Department of Chemistry, College of Science, King Saud University, P.O. Box 22452, Riyadh, 11495, Saudi Arabia
| | - Mohamed Soliman Elshikh
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
10
|
Yang X, Niu X, Mo Z, Liu N, Guo R, Zhao P, Liu Z, Ouyang M. The Synthesis of Chitosan Decorated Reduced Graphene Oxide‐Ferrocene Nanocomposite and its Application in Electrochemical Detection Rhodamine B. ELECTROANAL 2019. [DOI: 10.1002/elan.201800880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Xing Yang
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou 730070 China
| | - Xiaohui Niu
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou 730070 China
| | - Zunli Mo
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou 730070 China
| | - Nijuan Liu
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou 730070 China
| | - Ruibin Guo
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou 730070 China
| | - Pan Zhao
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou 730070 China
| | - Zhenyu Liu
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou 730070 China
| | - Meixuan Ouyang
- Research Center of Gansu Military and Civilian Integration Advanced Structural Materials, Key Laboratory of Eco-Environment-Related Polymer Materials, Ministry of Education of China, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou 730070 China
| |
Collapse
|