1
|
Srivastava A, Harijan M, Prasad R, Singh M. Dual template (epitope) imprinted electrode for sensing bacterial protein with high selectivity. J Mol Recognit 2024; 37:e3087. [PMID: 38686731 DOI: 10.1002/jmr.3087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 04/03/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024]
Abstract
Epitope imprinting has shown better prospects to synthesize synthetic receptors for proteins. Here, dual epitope imprinted polymer electrode (DEIP) matrix was fabricated on gold surface of electrochemical quartz crystal microbalance (EQCM) for recognition of target epitope sequence in blood samples of patients suffering from brain fever. Epitope sequences from outer membrane protein Por B of Neisseria meningitidis (MC58) bacteria predicted through immunoinformatic tools were chosen for imprinting. Self-assembled monolayers (SAM) of cysteine appended epitope sequences on gold nanoparticles were subjected to polymerization prior to electrodeposition on gold coated EQCM electrode. The polymeric matrix was woven around the cysteine appended epitope SAMs through multiple monomers (3-sulfo propyl methacrylate potassium salt (3-SPMAP), benzyl methacrylate (BMA)) and crosslinker (N, N'-methylene-bis-acrylamide). On extraction of the peptide sequences, imprinted cavities were able to selectively and specifically bind targeted epitope sequences in laboratory samples as well as 'real' samples of patients. Selectivity of sensor was examined through mismatched peptide sequences and certain plasma proteins also. The sensor was able to show specific binding towards the blood samples of infected patients, even in the presence of 'matrix' and other plasma proteins such as albumin and globulin. Even other peptide sequences, similar to epitope sequences only with one or two amino acid mismatches were also unable to show any binding. The analytical performance of DEIP-EQCM sensor was tested through selectivity, specificity, matrix effect, detection limit (0.68-1.01 nM), quantification limit (2.05-3.05 nM) and reproducibility (RSD ~ 5%). Hence, a diagnostic tool for bacterium causing meningitis is successfully fabricated in a facile manner which will broaden the clinical access and make efficient population screening feasible.
Collapse
Affiliation(s)
- Akriti Srivastava
- Department of Chemistry, MMV, Banaras Hindu University, Varanasi, India
| | - Manjeet Harijan
- Department of Chemistry, MMV, Banaras Hindu University, Varanasi, India
| | - Rajniti Prasad
- Department of Paediatrics, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Meenakshi Singh
- Department of Chemistry, MMV, Banaras Hindu University, Varanasi, India
| |
Collapse
|
2
|
Tavakoli H, Hirth E, Luo M, Sharma Timilsina S, Dou M, Dominguez DC, Li X. A microfluidic fully paper-based analytical device integrated with loop-mediated isothermal amplification and nano-biosensors for rapid, sensitive, and specific quantitative detection of infectious diseases. LAB ON A CHIP 2022; 22:4693-4704. [PMID: 36349548 PMCID: PMC9701502 DOI: 10.1039/d2lc00834c] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Bacterial meningitis, an infection of the membranes (meninges) and cerebrospinal fluid (CSF) surrounding the brain and spinal cord, is one of the major causes of death and disability worldwide. Higher case-fatality rates and short survival times have been reported in developing countries. Hence, a quick, straightforward, and low-cost approach is in great demand for the diagnosis of meningitis. In this research, a microfluidic fully paper-based analytical device (μFPAD) integrated with loop-mediated isothermal amplification (LAMP) and ssDNA-functionalized graphene oxide (GO) nano-biosensors was developed for the first time for a simple, rapid, low-cost, and quantitative detection of the main meningitis-causing bacteria, Neisseria meningitidis (N. meningitidis). The results can be successfully read within 1 hour with the limit of detection (LOD) of 6 DNA copies per detection zone. This paper device also offers versatile functions by providing a qualitative diagnostic analysis (i.e., a yes or no answer), confirmatory testing, and quantitative analysis. These features make the presented μFPAD capable of a simple, highly sensitive, and specific diagnosis of N. meningitis. Furthermore, this microfluidic approach has great potential in the rapid detection of a wide variety of different other pathogens in low-resource settings.
Collapse
Affiliation(s)
- Hamed Tavakoli
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas, 79968, USA.
| | - Elisabeth Hirth
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas, 79968, USA.
- Department of Chemistry, University of Aalen, Beethovenstraße 1, 73430 Aalen, Germany
| | - Man Luo
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas, 79968, USA.
| | - Sanjay Sharma Timilsina
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas, 79968, USA.
| | - Maowei Dou
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas, 79968, USA.
| | - Delfina C Dominguez
- College of Health Sciences, University of Texas at El Paso, El Paso, TX, USA
| | - XiuJun Li
- Department of Chemistry and Biochemistry, University of Texas at El Paso, El Paso, Texas, 79968, USA.
- Border Biomedical Research Center, Biomedical Engineering, University of Texas at El Paso, El Paso, 79968, USA
- Environmental Science and Engineering, University of Texas at El Paso, El Paso, 79968, USA
| |
Collapse
|
3
|
de Castro ACH, Kochi LT, Flauzino JMR, Soares MMCN, Alves VA, da Silva LA, Madurro JM, Brito-Madurro AG. Electrochemical Biosensor for Sensitive Detection of Hepatitis B in Human Plasma. Appl Biochem Biotechnol 2022; 194:2604-2619. [PMID: 35182331 DOI: 10.1007/s12010-022-03829-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 01/21/2022] [Indexed: 11/27/2022]
Abstract
In this work, we report the construction of a novel electrochemical device for molecular diagnosis of hepatitis B virus in the blood plasma of infected patients, using graphite electrodes functionalized with poly(4-aminophenol) and sensitized with a specific DNA probe. The recognition of genomic DNA was evaluated by electrochemical techniques (DPV and EIS) and scanning electron microscopy. The genosensor was efficient in detecting genomic DNA with a linear range from 1.176 to 4.825 μg mL-1 and detection limit of 35.69 ng mL-1 (4.63 IU ml-1 or 25.93 copies.ml-1), which is better than the 10.00 IU ml-1 limit of reference method, real-time PCR, used in point of care. EIS analysis shows that the genosensor resistance increased exponentially with the concentration of the genomic DNA target. This novel platform has advantages to its applicability in real samples, such as good sensitivity, selectivity, low sample volume, and fast assay time (36 min), thus interesting for application in the diagnosis of hepatitis B virus in blood plasma. Also, the ease of synthesis of the low-cost polymer by electrosynthesis directly on the electrode surface allows the translation of the platform to portable devices.
Collapse
Affiliation(s)
| | | | | | | | | | | | - João Marcos Madurro
- Institute of Chemistry, Federal University of Uberlândia, Uberlândia, Brazil
| | | |
Collapse
|
4
|
Flauzino JMR, Nguyen EP, Yang Q, Rosati G, Panáček D, Brito-Madurro AG, Madurro JM, Bakandritsos A, Otyepka M, Merkoçi A. Label-free and reagentless electrochemical genosensor based on graphene acid for meat adulteration detection. Biosens Bioelectron 2022; 195:113628. [PMID: 34543917 DOI: 10.1016/j.bios.2021.113628] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/31/2021] [Accepted: 09/09/2021] [Indexed: 12/25/2022]
Abstract
With the increased demand for beef in emerging markets, the development of quality-control diagnostics that are fast, cheap and easy to handle is essential. Especially where beef must be free from pork residues, due to religious, cultural or allergic reasons, the availability of such diagnostic tools is crucial. In this work, we report a label-free impedimetric genosensor for the sensitive detection of pork residues in meat, by leveraging the biosensing capabilities of graphene acid - a densely and selectively functionalized graphene derivative. A single stranded DNA probe, specific for the pork mitochondrial genome, was immobilized onto carbon screen-printed electrodes modified with graphene acid. It was demonstrated that graphene acid improved the charge transport properties of the electrode, following a simple and rapid electrode modification and detection protocol. Using non-faradaic electrochemical impedance spectroscopy, which does not require any electrochemical indicators or redox pairs, the detection of pork residues in beef was achieved in less than 45 min (including sample preparation), with a limit of detection of 9% w/w pork content in beef samples. Importantly, the sample did not need to be purified or amplified, and the biosensor retained its performance properties unchanged for at least 4 weeks. This set of features places the present pork DNA sensor among the most attractive for further development and commercialization. Furthermore, it paves the way for the development of sensitive and selective point-of-need sensing devices for label-free, fast, simple and reliable monitoring of meat purity.
Collapse
Affiliation(s)
- José M R Flauzino
- Institute of Biotechnology, Federal University of Uberlândia, 38405-319, Uberlândia, MG, Brazil; Catalan Institute of Nanoscience and Nanotechnology, Autonomous University of Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Emily P Nguyen
- Catalan Institute of Nanoscience and Nanotechnology, Autonomous University of Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Qiuyue Yang
- Catalan Institute of Nanoscience and Nanotechnology, Autonomous University of Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - Giulio Rosati
- Catalan Institute of Nanoscience and Nanotechnology, Autonomous University of Barcelona, 08193, Bellaterra, Barcelona, Spain
| | - David Panáček
- Catalan Institute of Nanoscience and Nanotechnology, Autonomous University of Barcelona, 08193, Bellaterra, Barcelona, Spain; Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 241/27, 783 71, Olomouc, Czech Republic; Department of Physical Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 1192/12, 771 46, Olomouc, Czech Republic
| | - Ana G Brito-Madurro
- Institute of Biotechnology, Federal University of Uberlândia, 38405-319, Uberlândia, MG, Brazil
| | - João M Madurro
- Institute of Biotechnology, Federal University of Uberlândia, 38405-319, Uberlândia, MG, Brazil; Institute of Chemistry, Federal University of Uberlândia, 38400-902, Uberlândia, MG, Brazil
| | - Aristides Bakandritsos
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 241/27, 783 71, Olomouc, Czech Republic; Nanotechnology Centre, Centre of Energy and Environmental Technologies, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava-Poruba, Czech Republic
| | - Michal Otyepka
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 241/27, 783 71, Olomouc, Czech Republic; IT4Innovations, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava-Poruba, Czech Republic
| | - Arben Merkoçi
- Catalan Institute of Nanoscience and Nanotechnology, Autonomous University of Barcelona, 08193, Bellaterra, Barcelona, Spain.
| |
Collapse
|
5
|
Moço AC, Neto JA, de Moraes DD, Guedes PH, Brussasco JG, Flauzino JM, Luz LF, Soares MM, Madurro JM, Brito-Madurro AG. Carbon ink-based electrodes modified with nanocomposite as a platform for electrochemical detection of HIV RNA. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
6
|
Flauzino JMR, Peres RCS, Alves LM, Vieira JG, Dos Santos JG, Brito-Madurro AG, Madurro JM. DNA electrochemical biosensor for detection of Alicyclobacillus acidoterrestris utilizing Hoechst 33258 as indicator. Bioelectrochemistry 2021; 140:107801. [PMID: 33789176 DOI: 10.1016/j.bioelechem.2021.107801] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/10/2021] [Accepted: 03/14/2021] [Indexed: 01/18/2023]
Abstract
Alicyclobacillus acidoterrestris is an acidophilic and thermophilic bacterium present in the soil, often associated with the spoilage of acidic juices, such as orange juice. Their spores resist pasteurization and, when reactivated, modify the organoleptic properties of the juice, making it unsuitable for consumption, due mainly to production of guaiacol. Biosensors are detection devices that respond quickly and are easy to handle, with great potential for use in the juice production chain. In this context, this work reports an electrochemical genosensor for detection of A. acidoterrestris, based on a graphite electrode modified with electrochemically reduced graphene oxide, a polymer derived from 3-hydroxybenzoic acid and a specific DNA probe sequence complementary with the genomic DNA of A. acidoterrestris. Detection of the target was performed by monitoring the oxidation peak of the Hoechst 33258, a common DNA stainer. The genosensor detection limit was 12 ng mL-1 and it kept 77% of response after ten weeks, and a test showed that orange juice does not interfere with bacteria lysate detection. This biosensor is the first platform for electrochemical detection of the genomic DNA of A. acidoterrestris in the literature, and the first to use Hoechst 33258 as indicator with whole genomic DNA molecules.
Collapse
Affiliation(s)
- José M R Flauzino
- Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, Brazil.
| | - Rafaela C S Peres
- Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, Brazil
| | - Lívia M Alves
- Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, Brazil
| | - Jussara G Vieira
- Institute of Chemistry, Federal University of Uberlandia, Uberlandia, Brazil
| | - Júlia G Dos Santos
- Faculty of Chemistry Engineering, Federal University of Uberlândia, Uberlandia, Brazil
| | - Ana G Brito-Madurro
- Institute of Biotechnology, Federal University of Uberlandia, Uberlandia, Brazil
| | - João M Madurro
- Institute of Chemistry, Federal University of Uberlandia, Uberlandia, Brazil
| |
Collapse
|
7
|
Babaie P, Saadati A, Hasanzadeh M. Recent progress and challenges on the bioassay of pathogenic bacteria. J Biomed Mater Res B Appl Biomater 2020; 109:548-571. [PMID: 32924292 DOI: 10.1002/jbm.b.34723] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/20/2020] [Accepted: 09/02/2020] [Indexed: 12/19/2022]
Abstract
The present review (containing 242 references) illustrates the importance and application of optical and electrochemical methods as well as their performance improvement using various methods for the detection of pathogenic bacteria. The application of advanced nanomaterials including hyper branched nanopolymers, carbon-based materials and silver, gold and so on. nanoparticles for biosensing of pathogenic bacteria was also investigated. In addition, a summary of the applications of nanoparticle-based electrochemical biosensors for the identification of pathogenic bacteria has been provided and their advantages, detriments and future development capabilities was argued. Therefore, the main focus in the present review is to investigate the role of nanomaterials in the development of biosensors for the detection of pathogenic bacteria. In addition, type of nanoparticles, analytes, methods of detection and injection, sensitivity, matrix and method of tagging are also argued in detail. As a result, we have collected electrochemical and optical biosensors designed to detect pathogenic bacteria, and argued outstanding features, research opportunities, potential and prospects for their development, according to recently published research articles.
Collapse
Affiliation(s)
- Parinaz Babaie
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Food and Drug safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arezoo Saadati
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
8
|
Segatto MS, Soler FS, Oliveira CAP, Brito-Madurro AG, Madurro JM. Novel electrochemical platform based on copolymer poly(aniline-4-aminophenol) for application in immunosensor for thyroid hormones. J Solid State Electrochem 2020. [DOI: 10.1007/s10008-020-04672-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
de Castro ACH, Alves LM, Siquieroli ACS, Madurro JM, Brito-Madurro AG. Label-free electrochemical immunosensor for detection of oncomarker CA125 in serum. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104746] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Steinmetz M, Lima D, Viana AG, Fujiwara ST, Pessôa CA, Etto RM, Wohnrath K. A sensitive label-free impedimetric DNA biosensor based on silsesquioxane-functionalized gold nanoparticles for Zika Virus detection. Biosens Bioelectron 2019; 141:111351. [DOI: 10.1016/j.bios.2019.111351] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 01/08/2023]
|
11
|
Garcia-Melo LF, Álvarez-González I, Madrigal-Bujaidar E, Madrigal-Santillán EO, Morales-González JA, Pineda Cruces RN, Campoy Ramírez JA, Matsumura PD, Aguilar-Santamaría MDLA, Batina N. Construction of an electrochemical genosensor based on screen-printed gold electrodes (SPGE) for detection of a mutation in the adenomatous polyposis coli gene. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.03.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|