1
|
Kricha A, Bouchmaa N, Ben Mkaddem S, Abbaoui A, Ben Mrid R, El Fatimy R. Glioblastoma-associated macrophages: A key target in overcoming glioblastoma therapeutic resistance. Cytokine Growth Factor Rev 2024; 80:97-108. [PMID: 39510901 DOI: 10.1016/j.cytogfr.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 11/15/2024]
Abstract
Glioblastoma multiforme (GBM) is recognized as the most aggressive and malignant form of brain cancer, characterized by a highly heterogeneous phenotype, poor prognosis, and a median survival time of less than 16 months. Recent studies have highlighted the critical role of glioblastoma-associated macrophages (GAMs) in promoting tumor progression and resistance not only to immunotherapy but also to radiotherapy and chemotherapy. GAMs actively suppress immune responses, promote angiogenesis, facilitate tumor metastasis, and induce therapy resistance, through various mechanisms such as cytokines production, signaling pathways regulation, and angiogenesis. In this context, understanding these regulatory mechanisms is essential for developing efficient therapies. Preclinical studies have investigated diverse approaches to target these cells, both as monotherapies or in combination with other treatments. While these approaches have shown promise in strengthening antitumor immune responses in animal models, their clinical success remains to be fully determined. Herein, we provide a comprehensive overview of GAMs's role in GBM therapeutic resistance and summarizes existing approaches to target GAMs in overcoming tumor resistance.
Collapse
Affiliation(s)
- Aymane Kricha
- Institute of Biological Sciences (IBS), Faculty of Medical Sciences, Mohammed VI Polytechnic University (FMS-UM6P), Benguerir, Morocco.
| | - Najat Bouchmaa
- Institute of Biological Sciences (IBS), Faculty of Medical Sciences, Mohammed VI Polytechnic University (FMS-UM6P), Benguerir, Morocco.
| | - Sanae Ben Mkaddem
- Institute of Biological Sciences (IBS), Faculty of Medical Sciences, Mohammed VI Polytechnic University (FMS-UM6P), Benguerir, Morocco.
| | - Abdellatif Abbaoui
- Institute of Biological Sciences (IBS), Faculty of Medical Sciences, Mohammed VI Polytechnic University (FMS-UM6P), Benguerir, Morocco.
| | - Reda Ben Mrid
- Institute of Biological Sciences (IBS), Faculty of Medical Sciences, Mohammed VI Polytechnic University (FMS-UM6P), Benguerir, Morocco.
| | - Rachid El Fatimy
- Institute of Biological Sciences (IBS), Faculty of Medical Sciences, Mohammed VI Polytechnic University (FMS-UM6P), Benguerir, Morocco.
| |
Collapse
|
2
|
Dadario NB, Boyett DM, Teasley DE, Chabot PJ, Winans NJ, Argenziano MG, Sperring CP, Canoll P, Bruce JN. Unveiling the Inflammatory Landscape of Recurrent Glioblastoma through Histological-Based Assessments. Cancers (Basel) 2024; 16:3283. [PMID: 39409905 PMCID: PMC11476027 DOI: 10.3390/cancers16193283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
The glioblastoma (GBM) tumor microenvironment consists of a heterogeneous mixture of neoplastic and non-neoplastic cells, including immune cells. Tumor recurrence following standard-of-care therapy results in a rich landscape of inflammatory cells throughout the glioma-infiltrated cortex. Immune cells consisting of glioma-associated macrophages and microglia (GAMMs) overwhelmingly constitute the bulk of the recurrent glioblastoma (rGBM) microenvironment, in comparison to the highly cellular and proliferative tumor microenvironment characteristic of primary GBM. These immune cells dynamically interact within the tumor microenvironment and can contribute to disease progression and therapy resistance while also providing novel targets for emerging immunotherapies. Within these varying contexts, histological-based assessments of immune cells in rGBM, including immunohistochemistry (IHC) and immunofluorescence (IF), offer a critical way to visualize and examine the inflammatory landscape. Here, we exhaustively review the available body of literature on the inflammatory landscape in rGBM as identified through histological-based assessments. We highlight the heterogeneity of immune cells throughout the glioma-infiltrated cortex with a focus on microglia and macrophages, drawing insights from canonical and novel immune-cell histological markers to estimate cell phenotypes and function. Lastly, we discuss opportunities for immunomodulatory treatments aiming to harness the inflammatory landscape in rGBM.
Collapse
Affiliation(s)
- Nicholas B. Dadario
- Department of Neurological Surgery, Columbia University Irving Medical Center, NY-Presbyterian Hospital, New York, NY 10032, USA; (D.M.B.); (D.E.T.); (P.J.C.); (N.J.W.); (M.G.A.); (C.P.S.); (P.C.)
| | - Deborah M. Boyett
- Department of Neurological Surgery, Columbia University Irving Medical Center, NY-Presbyterian Hospital, New York, NY 10032, USA; (D.M.B.); (D.E.T.); (P.J.C.); (N.J.W.); (M.G.A.); (C.P.S.); (P.C.)
| | - Damian E. Teasley
- Department of Neurological Surgery, Columbia University Irving Medical Center, NY-Presbyterian Hospital, New York, NY 10032, USA; (D.M.B.); (D.E.T.); (P.J.C.); (N.J.W.); (M.G.A.); (C.P.S.); (P.C.)
| | - Peter J. Chabot
- Department of Neurological Surgery, Columbia University Irving Medical Center, NY-Presbyterian Hospital, New York, NY 10032, USA; (D.M.B.); (D.E.T.); (P.J.C.); (N.J.W.); (M.G.A.); (C.P.S.); (P.C.)
| | - Nathan J. Winans
- Department of Neurological Surgery, Columbia University Irving Medical Center, NY-Presbyterian Hospital, New York, NY 10032, USA; (D.M.B.); (D.E.T.); (P.J.C.); (N.J.W.); (M.G.A.); (C.P.S.); (P.C.)
| | - Michael G. Argenziano
- Department of Neurological Surgery, Columbia University Irving Medical Center, NY-Presbyterian Hospital, New York, NY 10032, USA; (D.M.B.); (D.E.T.); (P.J.C.); (N.J.W.); (M.G.A.); (C.P.S.); (P.C.)
| | - Colin P. Sperring
- Department of Neurological Surgery, Columbia University Irving Medical Center, NY-Presbyterian Hospital, New York, NY 10032, USA; (D.M.B.); (D.E.T.); (P.J.C.); (N.J.W.); (M.G.A.); (C.P.S.); (P.C.)
| | - Peter Canoll
- Department of Neurological Surgery, Columbia University Irving Medical Center, NY-Presbyterian Hospital, New York, NY 10032, USA; (D.M.B.); (D.E.T.); (P.J.C.); (N.J.W.); (M.G.A.); (C.P.S.); (P.C.)
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, NY-Presbyterian Hospital, New York, NY 10032, USA
| | - Jeffrey N. Bruce
- Department of Neurological Surgery, Columbia University Irving Medical Center, NY-Presbyterian Hospital, New York, NY 10032, USA; (D.M.B.); (D.E.T.); (P.J.C.); (N.J.W.); (M.G.A.); (C.P.S.); (P.C.)
| |
Collapse
|
3
|
Xu H, Russell SN, Steiner K, O'Neill E, Jones KI. Targeting PI3K-gamma in myeloid driven tumour immune suppression: a systematic review and meta-analysis of the preclinical literature. Cancer Immunol Immunother 2024; 73:204. [PMID: 39105848 PMCID: PMC11303654 DOI: 10.1007/s00262-024-03779-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 07/11/2024] [Indexed: 08/07/2024]
Abstract
The intricate interplay between immune and stromal cells within the tumour microenvironment (TME) significantly influences tumour progression. Myeloid cells, including tumour-associated macrophages (TAMs), neutrophils (TANs), and myeloid-derived suppressor cells (MDSCs), contribute to immune suppression in the TME (Nakamura and Smyth in Cell Mol Immunol 17(1):1-12 (2020). https://doi.org/10.1038/s41423-019-0306-1 ; DeNardo and Ruffell in Nat Rev Immunol 19(6):369-382 (2019). https://doi.org/10.1038/s41577-019-0127-6 ). This poses a significant challenge for novel immunotherapeutics that rely on host immunity to exert their effect. This systematic review explores the preclinical evidence surrounding the inhibition of phosphoinositide 3-kinase gamma (PI3Kγ) as a strategy to reverse myeloid-driven immune suppression in solid tumours. EMBASE, MEDLINE, and PubMed databases were searched on 6 October 2022 using keyword and subject heading terms to capture relevant studies. The studies, focusing on PI3Kγ inhibition in animal models, were subjected to predefined inclusion and exclusion criteria. Extracted data included tumour growth kinetics, survival endpoints, and immunological responses which were meta-analysed. PRISMA and MOOSE guidelines were followed. A total of 36 studies covering 73 animal models were included in the review and meta-analysis. Tumour models covered breast, colorectal, lung, skin, pancreas, brain, liver, prostate, head and neck, soft tissue, gastric, and oral cancer. The predominant PI3Kγ inhibitors were IPI-549 and TG100-115, demonstrating favourable specificity for the gamma isoform. Combination therapies, often involving chemotherapy, radiotherapy, immune checkpoint inhibitors, biological agents, or vaccines, were explored in 81% of studies. Analysis of tumour growth kinetics revealed a statistically significant though heterogeneous response to PI3Kγ monotherapy, whereas the tumour growth in combination treated groups were more consistently reduced. Survival analysis showed a pronounced increase in median overall survival with combination therapy. This systematic review provides a comprehensive analysis of preclinical studies investigating PI3Kγ inhibition in myeloid-driven tumour immune suppression. The identified studies underscore the potential of PI3Kγ inhibition in reshaping the TME by modulating myeloid cell functions. The combination of PI3Kγ inhibition with other therapeutic modalities demonstrated enhanced antitumour effects, suggesting a synergistic approach to overcome immune suppression. These findings support the potential of PI3Kγ-targeted therapies, particularly in combination regimens, as a promising avenue for future clinical exploration in diverse solid tumour types.
Collapse
Affiliation(s)
- Haonan Xu
- Department of Oncology, University of Oxford, Oxford, UK
| | | | | | - Eric O'Neill
- Department of Oncology, University of Oxford, Oxford, UK
| | - Keaton Ian Jones
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK.
| |
Collapse
|
4
|
Jolly KJ, Zhang F. IVT-mRNA reprogramming of myeloid cells for cancer immunotherapy. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2024; 100:247-288. [PMID: 39034054 DOI: 10.1016/bs.apha.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
In the past decade, in vitro transcribed messenger RNAs (IVT-mRNAs) have emerged as promising therapeutic molecules. The clinical success of COVID-19 mRNA vaccines developed by Pfizer-BioNTech and Moderna, have demonstrated that IVT-mRNAs can be safely and successfully used in a clinical setting, and efforts are underway to develop IVT-mRNAs for therapeutic applications. Current applications of mRNA-based therapy have been focused on (1) mRNA vaccines for infectious diseases and cancer treatment; (2) protein replacement therapy; (3) gene editing therapy; and (4) cell-reprogramming therapies. Due to the recent clinical progress of cell-based immunotherapies, the last direction-the use of IVT-mRNAs as a therapeutic approach to program immune cells for the treatment of cancer has received extensive attention from the cancer immunotherapy field. Myeloid cells are important components of our immune system, and they play critical roles in mediating disease progression and regulating immunity against diseases. In this chapter, we discussed the progress of using IVT-mRNAs as a therapeutic approach to program myeloid cells against cancer and other immune-related diseases. Towards this direction, we first reviewed the pharmacology of IVT-mRNAs and the biology of myeloid cells as well as myeloid cell-targeting therapeutics. We then presented a few cases of current IVT-mRNA-based approaches to target and reprogram myeloid cells for disease treatment and discussed the advantages and limitations of these approaches. Finally, we presented our considerations in designing mRNA-based approaches to target myeloid cells for disease treatment.
Collapse
Affiliation(s)
- Kevon J Jolly
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Fan Zhang
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, United States; Department of Chemical Engineering, College of Engineering, University of Florida, Gainesville, FL, United States; Department of Pharmacology & Therapeutics, College of Medicine, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
5
|
Genoud V, Kinnersley B, Brown NF, Ottaviani D, Mulholland P. Therapeutic Targeting of Glioblastoma and the Interactions with Its Microenvironment. Cancers (Basel) 2023; 15:5790. [PMID: 38136335 PMCID: PMC10741850 DOI: 10.3390/cancers15245790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/01/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Glioblastoma (GBM) is the most common primary malignant brain tumour, and it confers a dismal prognosis despite intensive multimodal treatments. Whilst historically, research has focussed on the evolution of GBM tumour cells themselves, there is growing recognition of the importance of studying the tumour microenvironment (TME). Improved characterisation of the interaction between GBM cells and the TME has led to a better understanding of therapeutic resistance and the identification of potential targets to block these escape mechanisms. This review describes the network of cells within the TME and proposes treatment strategies for simultaneously targeting GBM cells, the surrounding immune cells, and the crosstalk between them.
Collapse
Affiliation(s)
- Vassilis Genoud
- Glioblastoma Research Group, University College London, London WC1E 6DD, UK (B.K.)
- Department of Oncology, University College London Hospitals, London NW1 2PB, UK
- Department of Oncology, University Hospitals of Geneva, 1205 Geneva, Switzerland
- Centre for Translational Research in Onco-Haematology, University of Geneva, 1205 Geneva, Switzerland
| | - Ben Kinnersley
- Glioblastoma Research Group, University College London, London WC1E 6DD, UK (B.K.)
- Department of Oncology, University College London Hospitals, London NW1 2PB, UK
| | - Nicholas F. Brown
- Glioblastoma Research Group, University College London, London WC1E 6DD, UK (B.K.)
- Guy’s Cancer, Guy’s & St Thomas’ NHS Foundation Trust, London SE1 3SS, UK
| | - Diego Ottaviani
- Glioblastoma Research Group, University College London, London WC1E 6DD, UK (B.K.)
- Department of Oncology, University College London Hospitals, London NW1 2PB, UK
| | - Paul Mulholland
- Glioblastoma Research Group, University College London, London WC1E 6DD, UK (B.K.)
- Department of Oncology, University College London Hospitals, London NW1 2PB, UK
| |
Collapse
|
6
|
Zhang L, Jiang Y, Zhang G, Wei S. The diversity and dynamics of tumor-associated macrophages in recurrent glioblastoma. Front Immunol 2023; 14:1238233. [PMID: 37731483 PMCID: PMC10507272 DOI: 10.3389/fimmu.2023.1238233] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/21/2023] [Indexed: 09/22/2023] Open
Abstract
Despite tremendous efforts to exploit effective therapeutic strategies, most glioblastoma (GBM) inevitably relapse and become resistant to therapies, including radiotherapy and immunotherapy. The tumor microenvironment (TME) of recurrent GBM (rGBM) is highly immunosuppressive, dominated by tumor-associated macrophages (TAMs). TAMs consist of tissue-resident microglia and monocyte-derived macrophages (MDMs), which are essential for favoring tumor growth, invasion, angiogenesis, immune suppression, and therapeutic resistance; however, restricted by the absence of potent methods, the heterogeneity and plasticity of TAMs in rGBM remain incompletely investigated. Recent application of single-cell technologies, such as single-cell RNA-sequencing has enabled us to decipher the unforeseen diversity and dynamics of TAMs and to identify new subsets of TAMs which regulate anti-tumor immunity. Here, we first review hallmarks of the TME, progress and challenges of immunotherapy, and the biology of TAMs in the context of rGBM, including their origins, categories, and functions. Next, from a single-cell perspective, we highlight recent findings regarding the distinctions between tissue-resident microglia and MDMs, the identification and characterization of specific TAM subsets, and the dynamic alterations of TAMs during tumor progression and treatment. Last, we briefly discuss the potential of TAM-targeted strategies for combination immunotherapy in rGBM. We anticipate the comprehensive understanding of the diversity and dynamics of TAMs in rGBM will shed light on further improvement of immunotherapeutic efficacy in rGBM.
Collapse
Affiliation(s)
- Lingyun Zhang
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Yu Jiang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, China
| | - Gao Zhang
- Faculty of Dentistry, The University of Hong Kong, Sai Ying Pun, Hong Kong, Hong Kong SAR, China
| | - Shiyou Wei
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
7
|
Jahandideh A, Yarizadeh M, Noei-Khesht Masjedi M, Fatehnejad M, Jahandideh R, Soheili R, Eslami Y, Zokaei M, Ahmadvand A, Ghalamkarpour N, Kumar Pandey R, Nabi Afjadi M, Payandeh Z. Macrophage's role in solid tumors: two edges of a sword. Cancer Cell Int 2023; 23:150. [PMID: 37525217 PMCID: PMC10391843 DOI: 10.1186/s12935-023-02999-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 07/24/2023] [Indexed: 08/02/2023] Open
Abstract
The tumor microenvironment is overwhelmingly dictated by macrophages, intimately affiliated with tumors, exercising pivotal roles in multiple processes, including angiogenesis, extracellular matrix reconfiguration, cellular proliferation, metastasis, and immunosuppression. They further exhibit resilience to chemotherapy and immunotherapy via meticulous checkpoint blockades. When appropriately stimulated, macrophages can morph into a potent bidirectional component of the immune system, engulfing malignant cells and annihilating them with cytotoxic substances, thus rendering them intriguing candidates for therapeutic targets. As myelomonocytic cells relentlessly amass within tumor tissues, macrophages rise as prime contenders for cell therapy upon the development of chimeric antigen receptor effector cells. Given the significant incidence of macrophage infiltration correlated with an unfavorable prognosis and heightened resistance to chemotherapy in solid tumors, we delve into the intricate role of macrophages in cancer propagation and their promising potential in confronting four formidable cancer variants-namely, melanoma, colon, glioma, and breast cancers.
Collapse
Affiliation(s)
- Arian Jahandideh
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
- Usern Office, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahsa Yarizadeh
- Islamic Azad University, Tehran Medical Branch, Tehran, Iran
| | - Maryam Noei-Khesht Masjedi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Fatehnejad
- Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Romina Jahandideh
- Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran
| | - Roben Soheili
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Science, Islamic Azad University, Tehran, Iran
| | - Yeganeh Eslami
- Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Maryam Zokaei
- Department of Food Science and Technology, Faculty of Nutrition Science, Food Science and Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ardavan Ahmadvand
- Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nogol Ghalamkarpour
- Department of Clinical Laboratory Sciences, School of Allied Medicine, Student Research Committee, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Rajan Kumar Pandey
- Department Medical Biochemistry and Biophysics, Division Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden
| | - Mohsen Nabi Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Zahra Payandeh
- Department Medical Biochemistry and Biophysics, Division Medical Inflammation Research, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
8
|
Guo C, Yu C, Gao W, Ren D, Zhang Y, Zheng P. A novel classifier combining G protein-coupled receptors and the tumor microenvironment is associated with survival status in glioblastoma. Front Pharmacol 2023; 14:1093263. [PMID: 37560473 PMCID: PMC10407249 DOI: 10.3389/fphar.2023.1093263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 07/11/2023] [Indexed: 08/11/2023] Open
Abstract
Background: Numerous studies have highlighted the crucial role of G protein-coupled receptors (GPCRs) in tumor microenvironment (TME) remodeling and their correlation with tumor progression. However, the association between GPCRs and the TME in glioblastoma (GBM) remains largely unexplored. Methods: In this study, we investigated the expression profile of GPCRs in GBM using integrated data from single-cell RNA sequencing and bulk sequencing. Surgical samples obtained from meningioma and GBM patients underwent single-cell RNA sequencing to examine GPCR levels and cell-cell interactions. Tumor microenvironment (TME) score is calculated by the infiltrated immune cells with CIBERSORT. Results: Our findings revealed a predominantly increased expression of GPCRs in GBM, and demonstrated that the classification of GPCRs and TME is an independent risk factor in GBM. Patients with high GPCR expression in the tumor tissue and low TME score exhibited the worst outcomes, suggesting a potentially aggressive tumor phenotype. On the other hand, patients with low GPCR expression in the tumor tissue and high TME score showed significantly better outcomes, indicating a potentially more favorable tumor microenvironment. Furthermore, the study found that T cells with high GPCR levels displayed extensive cell-cell connections with other tumor and immune cells in the single cell RNA analysis, indicating their potential involvement in immune escape. Conclusion: In conclusion, GPCRs in combination with TME classification can serve as prognostic markers for GBM. GPCRs play an essential role in tumor progression and the TME in GBM.
Collapse
Affiliation(s)
- Chunyu Guo
- Department of Neurosurgery, Shanghai Pudong New area People’s Hospital, Shanghai, China
| | - Cong Yu
- Department of Neurosurgery, Shanghai Pudong New area People’s Hospital, Shanghai, China
| | - Weizhen Gao
- Department of Neurosurgery, Renji Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Dabin Ren
- Department of Neurosurgery, Shanghai Pudong New area People’s Hospital, Shanghai, China
| | - Yisong Zhang
- Department of Neurosurgery, Shanghai Pudong New area People’s Hospital, Shanghai, China
| | - Ping Zheng
- Department of Neurosurgery, Shanghai Pudong New area People’s Hospital, Shanghai, China
| |
Collapse
|
9
|
Agosti E, Panciani PP, Zeppieri M, De Maria L, Pasqualetti F, Tel A, Zanin L, Fontanella MM, Ius T. Tumor Microenvironment and Glioblastoma Cell Interplay as Promoters of Therapeutic Resistance. BIOLOGY 2023; 12:biology12050736. [PMID: 37237548 DOI: 10.3390/biology12050736] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/15/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023]
Abstract
The invasive nature of glioblastoma is problematic in a radical surgery approach and can be responsible for tumor recurrence. In order to create new therapeutic strategies, it is imperative to have a better understanding of the mechanisms behind tumor growth and invasion. The continuous cross-talk between glioma stem cells (GSCs) and the tumor microenvironment (TME) contributes to disease progression, which renders research in this field difficult and challenging. The main aim of the review was to assess the different possible mechanisms that could explain resistance to treatment promoted by TME and GSCs in glioblastoma, including the role of M2 macrophages, micro RNAs (miRNAs), and long non-coding RNAs (lncRNAs) from exosomes from the TME. A systematic review of the literature on the role of the TME in developing and promoting radioresistance and chemoresistance of GBM was performed according to PRISMA-P (Preferred Reporting Items for Systematic Review and Meta-Analysis Protocols) guidelines. A dedicated literature review search was also performed on the immunotherapeutic agents against the immune TME. We identified 367 papers using the reported keywords. The final qualitative analysis was conducted on 25 studies. A growing amount of evidence in the current literature supports the role of M2 macrophages and non-coding RNAs in promoting the mechanisms of chemo and radioresistance. A better insight into how GBM cells interact with TME is an essential step towards comprehending the mechanisms that give rise to resistance to standard treatment, which can help to pave the way for the development of novel therapeutic strategies for GBM patients.
Collapse
Affiliation(s)
- Edoardo Agosti
- Division of Neurosurgery, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Piazzale Spedali Civili 1, 25123 Brescia, Italy
| | - Pier Paolo Panciani
- Division of Neurosurgery, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Piazzale Spedali Civili 1, 25123 Brescia, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, Piazzale S. Maria della Misericordia 15, 33100 Udine, Italy
| | - Lucio De Maria
- Division of Neurosurgery, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Piazzale Spedali Civili 1, 25123 Brescia, Italy
| | - Francesco Pasqualetti
- Division of Radiation Oncology, Azienda Ospedaliero Universitaria Pisana, 56100 Pisa, Italy
- Department of Oncology, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Alessandro Tel
- Clinic of Maxillofacial Surgery, Head-Neck and NeuroScience Department, University Hospital of Udine, Piazzale S. Maria della Misericordia 15, 33100 Udine, Italy
| | - Luca Zanin
- Division of Neurosurgery, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Piazzale Spedali Civili 1, 25123 Brescia, Italy
| | - Marco Maria Fontanella
- Division of Neurosurgery, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Piazzale Spedali Civili 1, 25123 Brescia, Italy
| | - Tamara Ius
- Neurosurgery Unit, Head-Neck and NeuroScience Department, University Hospital of Udine, Piazzale S. Maria della Misericordia 15, 33100 Udine, Italy
| |
Collapse
|
10
|
Montemurro N, Pahwa B, Tayal A, Shukla A, De Jesus Encarnacion M, Ramirez I, Nurmukhametov R, Chavda V, De Carlo A. Macrophages in Recurrent Glioblastoma as a Prognostic Factor in the Synergistic System of the Tumor Microenvironment. Neurol Int 2023; 15:595-608. [PMID: 37218976 DOI: 10.3390/neurolint15020037] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 04/05/2023] [Accepted: 04/21/2023] [Indexed: 05/24/2023] Open
Abstract
Glioblastoma (GBM) is a common and highly malignant primary tumor of the central nervous system in adults. Ever more recent papers are focusing on understanding the role of the tumor microenvironment (TME) in affecting tumorigenesis and the subsequent prognosis. We assessed the impact of macrophages in the TME on the prognosis in patients with recurrent GBM. A PubMed, MEDLINE and Scopus review was conducted to identify all studies dealing with macrophages in the GBM microenvironment from January 2016 to December 2022. Glioma-associated macrophages (GAMs) act critically in enhancing tumor progression and can alter drug resistance, promoting resistance to radiotherapy and establishing an immunosuppressive environment. M1 macrophages are characterized by increased secretion of proinflammatory cytokines, such as IL-1ß, tumor necrosis factor (TNF), IL-27, matrix metalloproteinase (MMPs), CCL2, and VEGF (vascular endothelial growth factor), IGF1, that can lead to the destruction of the tissue. In contrast, M2 is supposed to participate in immunosuppression and tumor progression, which is formed after being exposed to the macrophage M-CSF, IL-10, IL-35 and the transforming growth factor-ß (TGF-β). Because there is currently no standard of care in recurrent GBM, novel identified targeted therapies based on the complex signaling and interactions between the glioma stem cells (GSCs) and the TME, especially resident microglia and bone-marrow-derived macrophages, may be helpful in improving the overall survival of these patients in the near future.
Collapse
Affiliation(s)
- Nicola Montemurro
- Department of Neurosurgery, Azienda Ospedaliero Universitaria Pisana (AOUP), University of Pisa, 56100 Pisa, Italy
| | - Bhavya Pahwa
- University College of Medical Sciences and GTB Hospital, New Delhi 110095, India
| | - Anish Tayal
- University College of Medical Sciences and GTB Hospital, New Delhi 110095, India
| | - Anushruti Shukla
- University College of Medical Sciences and GTB Hospital, New Delhi 110095, India
| | | | - Issael Ramirez
- Royal Melbourne Hospital, Melbourne, VIC 3000, Australia
| | - Renat Nurmukhametov
- Department of Spinal Surgery, Central Clinical Hospital of the Russian Academy of Sciences, 121359 Moscow, Russia
| | - Vishal Chavda
- Department of Pathology, Stanford of School of Medicine, Stanford University Medical Centre, Palo Alto, CA 94305, USA
| | - Antonella De Carlo
- Department of Neurosurgery, Azienda Ospedaliero Universitaria Pisana (AOUP), University of Pisa, 56100 Pisa, Italy
| |
Collapse
|
11
|
Barry ST, Gabrilovich DI, Sansom OJ, Campbell AD, Morton JP. Therapeutic targeting of tumour myeloid cells. Nat Rev Cancer 2023; 23:216-237. [PMID: 36747021 DOI: 10.1038/s41568-022-00546-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/21/2022] [Indexed: 02/08/2023]
Abstract
Myeloid cells are pivotal within the immunosuppressive tumour microenvironment. The accumulation of tumour-modified myeloid cells derived from monocytes or neutrophils - termed 'myeloid-derived suppressor cells' - and tumour-associated macrophages is associated with poor outcome and resistance to treatments such as chemotherapy and immune checkpoint inhibitors. Unfortunately, there has been little success in large-scale clinical trials of myeloid cell modulators, and only a few distinct strategies have been used to target suppressive myeloid cells clinically so far. Preclinical and translational studies have now elucidated specific functions for different myeloid cell subpopulations within the tumour microenvironment, revealing context-specific roles of different myeloid cell populations in disease progression and influencing response to therapy. To improve the success of myeloid cell-targeted therapies, it will be important to target tumour types and patient subsets in which myeloid cells represent the dominant driver of therapy resistance, as well as to determine the most efficacious treatment regimens and combination partners. This Review discusses what we can learn from work with the first generation of myeloid modulators and highlights recent developments in modelling context-specific roles for different myeloid cell subtypes, which can ultimately inform how to drive more successful clinical trials.
Collapse
Affiliation(s)
- Simon T Barry
- Bioscience, Early Oncology, AstraZeneca, Cambridge, UK.
| | | | - Owen J Sansom
- Cancer Research UK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | | | - Jennifer P Morton
- Cancer Research UK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
12
|
Sadhukhan P, Seiwert TY. The role of macrophages in the tumor microenvironment and tumor metabolism. Semin Immunopathol 2023; 45:187-201. [PMID: 37002376 DOI: 10.1007/s00281-023-00988-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/08/2023] [Indexed: 04/03/2023]
Abstract
The complexity and plasticity of the tumor microenvironment (TME) make it difficult to fully understand the intratumoral regulation of different cell types and their activities. Macrophages play a crucial role in the signaling dynamics of the TME. Among the different subtypes of macrophages, tumor-associated macrophages (TAMs) are often associated with poor prognosis, although some subtypes of TAMs can at the same time improve treatment responsiveness and lead to favorable clinical outcomes. TAMs are key regulators of cancer cell proliferation, metastasis, angiogenesis, extracellular matrix remodeling, tumor metabolism, and importantly immunosuppression in the TME by modulating various chemokines, cytokines, and growth factors. TAMs have been identified as a key contributor to resistance to chemotherapy and cancer immunotherapy. In this review article, we aim to discuss the mechanisms by which TAMs regulate innate and adaptive immune signaling in the TME and summarize recent preclinical research on the development of therapeutics targeting TAMs and tumor metabolism.
Collapse
Affiliation(s)
- Pritam Sadhukhan
- Johns Hopkins University, Skip Viragh Outpatient Cancer Building, Baltimore, MD, 21287, USA
| | - Tanguy Y Seiwert
- Johns Hopkins University, Skip Viragh Outpatient Cancer Building, Baltimore, MD, 21287, USA.
- Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, USA.
| |
Collapse
|
13
|
Li Y, Wang W, Hou X, Huang W, Zhang P, He Y, Wang B, Duan Q, Mao F, Guo D. Glioma-derived LRIG3 interacts with NETO2 in tumor-associated macrophages to modulate microenvironment and suppress tumor growth. Cell Death Dis 2023; 14:28. [PMID: 36639372 PMCID: PMC9839712 DOI: 10.1038/s41419-023-05555-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 12/22/2022] [Accepted: 01/04/2023] [Indexed: 01/15/2023]
Abstract
Tumor-associated macrophages (TAMs) account for 30-50% of glioma microenvironment. The interaction between glioma tumor cells and TAMs can promote tumor progression, but the intrinsic mechanisms remain unclear. Herein, we reported that soluble LRIG3 (sLRIG3) derived from glioma tumor cells can block the M2 polarization of TAMs via interacting with NETO2, thus suppressing GBM malignant progression. The expression or activity of ADAM17 in glioma cells was positively correlated with the expression of sLRIG3 in cell supernatant. Soluble LRIG3 can suppress the M2-like polarity transformation of TAMs and inhibit the growth of tumor. High expression of LRIG3 predicts a good prognosis in patients with glioma. Mass spectrometry and Co-immunoprecipitation showed that sLRIG3 interacts with the CUB1 domain of NETO2 in TAMs. Silencing or knockout of NETO2 could block the effect of sLRIG3, which inhibited the M2-like polarity transformation of TAMs and promoted GBM tumor growth. However, overexpressing His-target NETO2 with CUB1 deletion mutation does not fully recover the suppressive effects of sLRIG3 on the TAM M2-polarization in NETO2-Knockout TAMs. Our study revealed vital molecular crosstalk between GBM tumor cells and TAMs. Glioma cells mediated the M2 polarization of TAM through the sLRIG3-NETO2 pathway and inhibited the progression of GBM, suggesting that sLRIG3-NETO2 may be a potential target for GBM treatment.
Collapse
Affiliation(s)
- Youwei Li
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Wei Wang
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Xiaoshuang Hou
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Wenda Huang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Po Zhang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Yue He
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Baofeng Wang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Qiuhong Duan
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China
| | - Feng Mao
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| | - Dongsheng Guo
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.
| |
Collapse
|
14
|
Khan F, Pang L, Dunterman M, Lesniak MS, Heimberger AB, Chen P. Macrophages and microglia in glioblastoma: heterogeneity, plasticity, and therapy. J Clin Invest 2023; 133:163446. [PMID: 36594466 PMCID: PMC9797335 DOI: 10.1172/jci163446] [Citation(s) in RCA: 109] [Impact Index Per Article: 54.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Glioblastoma (GBM) is the most aggressive tumor in the central nervous system and contains a highly immunosuppressive tumor microenvironment (TME). Tumor-associated macrophages and microglia (TAMs) are a dominant population of immune cells in the GBM TME that contribute to most GBM hallmarks, including immunosuppression. The understanding of TAMs in GBM has been limited by the lack of powerful tools to characterize them. However, recent progress on single-cell technologies offers an opportunity to precisely characterize TAMs at the single-cell level and identify new TAM subpopulations with specific tumor-modulatory functions in GBM. In this Review, we discuss TAM heterogeneity and plasticity in the TME and summarize current TAM-targeted therapeutic potential in GBM. We anticipate that the use of single-cell technologies followed by functional studies will accelerate the development of novel and effective TAM-targeted therapeutics for GBM patients.
Collapse
|
15
|
Wolf S, Rannikko JH, Virtakoivu R, Cinelli P, Felmerer G, Burger A, Giovanoli P, Detmar M, Lindenblatt N, Hollmén M, Gousopoulos E. A distinct M2 macrophage infiltrate and transcriptomic profile decisively influence adipocyte differentiation in lipedema. Front Immunol 2022; 13:1004609. [PMID: 36605202 PMCID: PMC9809281 DOI: 10.3389/fimmu.2022.1004609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Lipedema is a chronic and progressive adipose tissue disorder, characterized by the painful and disproportionate increase of the subcutaneous fat in the lower and/or upper extremities. While distinct immune cell infiltration is a known hallmark of the disease, its role in the onset and development of lipedema remains unclear. To analyze the macrophage composition and involved signaling pathways, anatomically matched lipedema and control tissue samples were collected intra-operatively from gender- and BMI-matched patients, and the Stromal Vascular Fraction (SVF) was used for Cytometry by Time-of-Flight (CyTOF) and RNA sequencing. The phenotypic characterization of the immune component of lipedema versus control SVF using CyTOF revealed significantly increased numbers of CD163 macrophages. To gain further insight into this macrophage composition and molecular pathways, RNA sequencing of isolated CD11b+ cells was performed. The analysis suggested a significant modification of distinct gene ontology clusters in lipedema, including cytokine-mediated signaling activity, interleukin-1 receptor activity, extracellular matrix organization, and regulation of androgen receptor signaling. As distinct macrophage populations are known to affect adipose tissue differentiation and metabolism, we evaluated the effect of M2 to M1 macrophage polarization in lipedema using the selective PI3Kγ inhibitor IPI-549. Surprisingly, the differentiation of adipose tissue-derived stem cells with conditioned medium from IPI-549 treated SVF resulted in a significant decreased accumulation of lipids in lipedema versus control SVF. In conclusion, our results indicate that CD163+ macrophages are a critical component in lipedema and re-polarization of lipedema macrophages can normalize the differentiation of adipose-derived stem cells in vitro evaluated by the cellular lipid accumulation. These data open a new chapter in understanding lipedema pathophysiology and may indicate potential treatment options.
Collapse
Affiliation(s)
- Stefan Wolf
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | | | | | - Paolo Cinelli
- Department of Trauma Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Gunther Felmerer
- Division of Plastic Surgery, Department of Trauma Surgery, Orthopedics and Plastic Surgery, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
| | - Anna Burger
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Pietro Giovanoli
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Michael Detmar
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
| | - Nicole Lindenblatt
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Maija Hollmén
- MediCity Research Laboratory, University of Turku, Turku, Finland
| | - Epameinondas Gousopoulos
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland,*Correspondence: Epameinondas Gousopoulos,
| |
Collapse
|
16
|
Protein Kinase Inhibitors as a New Target for Immune System Modulation and Brain Cancer Management. Int J Mol Sci 2022; 23:ijms232415693. [PMID: 36555334 PMCID: PMC9778944 DOI: 10.3390/ijms232415693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
High-grade brain tumors are malignant tumors with poor survival and remain the most difficult tumors to treat. An important contributing factor to the development and progression of brain tumors is their ability to evade the immune system. Several immunotherapeutic strategies including vaccines and checkpoint inhibitors have been studied to improve the effectiveness of the immune system in destroying cancer cells. Recent studies have shown that kinase inhibitors, capable of inhibiting signal transduction cascades that affect cell proliferation, migration, and angiogenesis, have additional immunological effects. In this review, we explain the beneficial therapeutic effects of novel small-molecule kinase inhibitors and explore how, through different mechanisms, they increase the protective antitumor immune response in high-grade brain tumors.
Collapse
|
17
|
Li S, Xie X, Peng F, Du J, Peng C. Regulation of temozolomide resistance via lncRNAs: Clinical and biological properties of lncRNAs in gliomas (Review). Int J Oncol 2022; 61:101. [PMID: 35796022 PMCID: PMC9291250 DOI: 10.3892/ijo.2022.5391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/10/2022] [Indexed: 11/05/2022] Open
Abstract
Gliomas are a primary types of intracranial malignancies and are characterized by a poor prognosis due to aggressive recurrence profiles. Temozolomide (TMZ) is an auxiliary alkylating agent that is extensively used in conjunction with surgical resection and forms the mainstay of clinical treatment strategies for gliomas. However, the frequent occurrence of TMZ resistance in clinical practice limits its therapeutic efficacy. Accumulating evidence has demonstrated that long non‑coding RNAs (lncRNAs) can play key and varied roles in glioma progression. lncRNAs have been reported to inhibit glioma progression by targeting various signaling pathways. In addition, the differential expression of lncRNAs has also been found to mediate the resistance of glioma to several chemotherapeutic agents, particularly to TMZ. The present review article therefore summarizes the findings of previous studies in an aim to report the significance and function of lncRNAs in regulating the chemoresistance of gliomas. The present review may provide further insight into the clinical treatment of gliomas.
Collapse
Affiliation(s)
- Sui Li
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of The Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiaofang Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
| | - Fu Peng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of The Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, P.R. China
- Correspondence to: Dr Fu Peng or Professor Junrong Du, Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of The Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, 17 Renmin South Road, Chengdu, Sichuan 610041, P.R. China, E-mail: , E-mail:
| | - Junrong Du
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of The Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041, P.R. China
- Correspondence to: Dr Fu Peng or Professor Junrong Du, Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of The Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, 17 Renmin South Road, Chengdu, Sichuan 610041, P.R. China, E-mail: , E-mail:
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, P.R. China
| |
Collapse
|
18
|
Hypoxia-Driven M2-Polarized Macrophages Facilitate Cancer Aggressiveness and Temozolomide Resistance in Glioblastoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1614336. [PMID: 36046687 PMCID: PMC9423979 DOI: 10.1155/2022/1614336] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 05/10/2022] [Accepted: 07/22/2022] [Indexed: 12/18/2022]
Abstract
Hypoxia-induced M2 phenotypes of tumor associated macrophages (TAMs) promote the development and chemoresistance of multiple types of cancers, including glioblastoma (GBM). However, the detailed molecular mechanisms have not been fully understood. In this study, we firstly reported that hypoxic pressure promoted M2 macrophage generation, which further promoted cancer progression and temozolomide (TMZ) resistance in GBM through secreting vascular endothelial growth factor (VEGF). Specifically, the clinical data suggested that M2 macrophages were significantly enriched in GBM tissues compared with the adjacent normal tissues, and the following in vitro experiments validated that hypoxic pressure promoted M2-polarized macrophages through upregulating hypoxia-inducible factor-1α (HIF-1α). In addition, hypoxic M2 macrophages VEGF-dependently promoted cell proliferation, epithelial-mesenchymal transition (EMT), glioblastoma stem cell (GSC) properties, and TMZ resistance in GBM cells through activating the PI3K/Akt/Nrf2 pathway. Also, M2 macrophages secreted VEGF to accelerate angiogenesis in human umbilical vein endothelial cells (HUVECs) through interacting with its receptor VEGFR. In general, we concluded that hypoxic M2 macrophages contributed to cancer progression, stemness, drug resistance, and angiogenesis in GBM through secreting VEGF, and our data supported the notion that targeting hypoxia-associated M2 macrophages might be an effective treatment strategy for GBM in clinical practices.
Collapse
|
19
|
Wu M, Shi Y, Zhu L, Chen L, Zhao X, Xu C. Macrophages in Glioblastoma Development and Therapy: A Double-Edged Sword. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081225. [PMID: 36013403 PMCID: PMC9409650 DOI: 10.3390/life12081225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/17/2022]
Abstract
Glioblastoma (GBM) is one of the leading lethal tumors, featuring aggressive malignancy and poor outcome to current standard temozolomide (TMZ) or radio-based therapy. Developing immunotherapies, especially immune checkpoint inhibitors, have improved patient outcomes in other solid tumors but remain fatigued in GBM patients. Emerging evidence has shown that GBM-associated macrophages (GAMs), comprising brain-resident microglia and bone marrow-derived macrophages, act critically in boosting tumor progression, altering drug resistance, and establishing an immunosuppressive environment. Based on its crucial role, evaluations of the safety and efficacy of GAM-targeted therapy are ongoing, with promising (pre)clinical evidence updated. In this review, we summarized updated literature related to GAM nature, the interplay between GAMs and GBM cells, and GAM-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Mengwan Wu
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
- Department of Radiation Oncology, Sichuan Cancer Hospital, Chengdu 610041, China
| | - Ying Shi
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
- Key Laboratory of Cellular Physiology (Shanxi Medical University), Ministry of Education, Taiyuan 030001, China
- Department of Physiology, Shanxi Medical University, Taiyuan 030001, China
| | - Luyi Zhu
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Luoyi Chen
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Xinchen Zhao
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Chuan Xu
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
- Department of Radiation Oncology, Sichuan Cancer Hospital, Chengdu 610041, China
- Correspondence:
| |
Collapse
|
20
|
Zhao Z, Wang Z, Wu Y, Liao D, Zhao B. Comprehensive analysis of TAMs marker genes in glioma for predicting prognosis and immunotherapy response. Mol Immunol 2022; 144:78-95. [DOI: 10.1016/j.molimm.2022.02.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/05/2022] [Accepted: 02/10/2022] [Indexed: 12/17/2022]
|
21
|
Kai K, Komohara Y, Esumi S, Fujiwara Y, Yamamoto T, Uekawa K, Ohta K, Takezaki T, Kuroda J, Shinojima N, Hamasaki T, Mukasa A. Macrophage/microglia-derived IL-1β induces glioblastoma growth via the STAT3/NF-κB pathway. Hum Cell 2021; 35:226-237. [PMID: 34591282 DOI: 10.1007/s13577-021-00619-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/21/2021] [Indexed: 11/27/2022]
Abstract
Glioblastoma is a glioma characterized by highly malignant features. Numerous studies conducted on the relationship between glioblastoma and the microenvironment have indicated the significance of tumor-associated macrophages/microglia (TAMs) in glioblastoma progression. Since interleukin (IL)-1β secreted by TAMs has been suggested to promote glioblastoma growth, we attempted to elucidate the detailed mechanisms of IL-1β in glioblastoma growth in this study. A phospho-receptor tyrosine kinase array and RNA-sequencing studies indicated that IL-1β induced the activation of signal transducer and activator of transcription-3 and nuclear factor-kappa B signaling. Glioblastoma cells stimulated by IL-1β induced the production of IL-6 and CXCL8, which synergistically promoted glioblastoma growth via signal transducer and activator of transcription-3 and nuclear factor-kappa B signaling. By immunohistochemistry, IL-1β expression was seen on TAMs, especially in perinecrotic areas. These results suggest that IL-1β might be a useful target molecule for anti-glioblastoma therapy.
Collapse
Affiliation(s)
- Keitaro Kai
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Kumamoto Chuo-ku, Kumamoto, 860-8556, Japan.,Department of Neurosurgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Kumamoto Chuo-ku, Kumamoto, 860-8556, Japan. .,Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto, Japan.
| | - Shigeyuki Esumi
- Department of Morphological Neural Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yukio Fujiwara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Kumamoto Chuo-ku, Kumamoto, 860-8556, Japan
| | - Takahiro Yamamoto
- Department of Neurosurgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Ken Uekawa
- Department of Neurosurgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazutaka Ohta
- Department of Neurosurgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tatsuya Takezaki
- Department of Neurosurgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Junichiro Kuroda
- Department of Neurosurgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Naoki Shinojima
- Department of Neurosurgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tadashi Hamasaki
- Department of Neurosurgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Akitake Mukasa
- Department of Neurosurgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
22
|
Romero-Molina C, Navarro V, Jimenez S, Muñoz-Castro C, Sanchez-Mico MV, Gutierrez A, Vitorica J, Vizuete M. Should We Open Fire on Microglia? Depletion Models as Tools to Elucidate Microglial Role in Health and Alzheimer's Disease. Int J Mol Sci 2021; 22:9734. [PMID: 34575898 PMCID: PMC8471219 DOI: 10.3390/ijms22189734] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/01/2021] [Accepted: 09/02/2021] [Indexed: 12/20/2022] Open
Abstract
Microglia play a critical role in both homeostasis and disease, displaying a wide variety in terms of density, functional markers and transcriptomic profiles along the different brain regions as well as under injury or pathological conditions, such as Alzheimer's disease (AD). The generation of reliable models to study into a dysfunctional microglia context could provide new knowledge towards the contribution of these cells in AD. In this work, we included an overview of different microglial depletion approaches. We also reported unpublished data from our genetic microglial depletion model, Cx3cr1CreER/Csf1rflx/flx, in which we temporally controlled microglia depletion by either intraperitoneal (acute model) or oral (chronic model) tamoxifen administration. Our results reported a clear microglial repopulation, then pointing out that our model would mimic a context of microglial replacement instead of microglial dysfunction. Next, we evaluated the origin and pattern of microglial repopulation. Additionally, we also reviewed previous works assessing the effects of microglial depletion in the progression of Aβ and Tau pathologies, where controversial data are found, probably due to the heterogeneous and time-varying microglial phenotypes observed in AD. Despite that, microglial depletion represents a promising tool to assess microglial role in AD and design therapeutic strategies.
Collapse
Affiliation(s)
- Carmen Romero-Molina
- Departamento Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, 41012 Seville, Spain; (C.R.-M.); (V.N.); (S.J.); (C.M.-C.); (M.V.S.-M.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, 41012 Seville, Spain
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain;
| | - Victoria Navarro
- Departamento Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, 41012 Seville, Spain; (C.R.-M.); (V.N.); (S.J.); (C.M.-C.); (M.V.S.-M.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, 41012 Seville, Spain
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain;
| | - Sebastian Jimenez
- Departamento Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, 41012 Seville, Spain; (C.R.-M.); (V.N.); (S.J.); (C.M.-C.); (M.V.S.-M.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, 41012 Seville, Spain
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain;
| | - Clara Muñoz-Castro
- Departamento Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, 41012 Seville, Spain; (C.R.-M.); (V.N.); (S.J.); (C.M.-C.); (M.V.S.-M.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, 41012 Seville, Spain
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain;
| | - Maria V. Sanchez-Mico
- Departamento Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, 41012 Seville, Spain; (C.R.-M.); (V.N.); (S.J.); (C.M.-C.); (M.V.S.-M.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, 41012 Seville, Spain
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain;
| | - Antonia Gutierrez
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain;
- Departamento Biologia Celular, Genetica y Fisiologia, Instituto de Investigacion Biomedica de Malaga (IBIMA), Facultad de Ciencias, Universidad de Malaga, 29071 Malaga, Spain
| | - Javier Vitorica
- Departamento Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, 41012 Seville, Spain; (C.R.-M.); (V.N.); (S.J.); (C.M.-C.); (M.V.S.-M.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, 41012 Seville, Spain
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain;
| | - Marisa Vizuete
- Departamento Bioquimica y Biologia Molecular, Facultad de Farmacia, Universidad de Sevilla, 41012 Seville, Spain; (C.R.-M.); (V.N.); (S.J.); (C.M.-C.); (M.V.S.-M.)
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocio/CSIC/Universidad de Sevilla, 41012 Seville, Spain
- Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain;
| |
Collapse
|
23
|
Andersen RS, Anand A, Harwood DSL, Kristensen BW. Tumor-Associated Microglia and Macrophages in the Glioblastoma Microenvironment and Their Implications for Therapy. Cancers (Basel) 2021; 13:cancers13174255. [PMID: 34503065 PMCID: PMC8428223 DOI: 10.3390/cancers13174255] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 12/23/2022] Open
Abstract
Glioblastoma is the most frequent and malignant primary brain tumor. Standard of care includes surgery followed by radiation and temozolomide chemotherapy. Despite treatment, patients have a poor prognosis with a median survival of less than 15 months. The poor prognosis is associated with an increased abundance of tumor-associated microglia and macrophages (TAMs), which are known to play a role in creating a pro-tumorigenic environment and aiding tumor progression. Most treatment strategies are directed against glioblastoma cells; however, accumulating evidence suggests targeting of TAMs as a promising therapeutic strategy. While TAMs are typically dichotomously classified as M1 and M2 phenotypes, recent studies utilizing single cell technologies have identified expression pattern differences, which is beginning to give a deeper understanding of the heterogeneous subpopulations of TAMs in glioblastomas. In this review, we evaluate the role of TAMs in the glioblastoma microenvironment and discuss how their interactions with cancer cells have an extensive impact on glioblastoma progression and treatment resistance. Finally, we summarize the effects and challenges of therapeutic strategies, which specifically aim to target TAMs.
Collapse
Affiliation(s)
- Rikke Sick Andersen
- Department of Pathology, Odense University Hospital, 5000 Odense, Denmark; (R.S.A.); (A.A.)
| | - Atul Anand
- Department of Pathology, Odense University Hospital, 5000 Odense, Denmark; (R.S.A.); (A.A.)
- Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
| | - Dylan Scott Lykke Harwood
- Department of Pathology, The Bartholin Institute, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark;
- Department of Clinical Medicine and Biotech Research and Innovation Center (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark
| | - Bjarne Winther Kristensen
- Department of Pathology, Odense University Hospital, 5000 Odense, Denmark; (R.S.A.); (A.A.)
- Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
- Department of Pathology, The Bartholin Institute, Rigshospitalet, Copenhagen University Hospital, 2100 Copenhagen, Denmark;
- Department of Clinical Medicine and Biotech Research and Innovation Center (BRIC), University of Copenhagen, 2200 Copenhagen, Denmark
- Correspondence:
| |
Collapse
|
24
|
Tu S, Lin X, Qiu J, Zhou J, Wang H, Hu S, Yao Y, Wang Y, Deng Y, Zhou Y, Shao A. Crosstalk Between Tumor-Associated Microglia/Macrophages and CD8-Positive T Cells Plays a Key Role in Glioblastoma. Front Immunol 2021; 12:650105. [PMID: 34394072 PMCID: PMC8358794 DOI: 10.3389/fimmu.2021.650105] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 06/21/2021] [Indexed: 01/01/2023] Open
Abstract
Glioblastoma is considered to be the most malignant disease of the central nervous system, and it is often associated with poor survival. The immune microenvironment plays a key role in the development and treatment of glioblastoma. Among the different types of immune cells, tumor-associated microglia/macrophages (TAM/Ms) and CD8-positive (CD8+) T cells are the predominant immune cells, as well as the most active ones. Current studies have suggested that interaction between TAM/Ms and CD8+ T cells have numerous potential targets that will allow them to overcome malignancy in glioblastoma. In this review, we summarize the mechanism and function of TAM/Ms and CD8+ T cells involved in glioblastoma, as well as update on the relationship and crosstalk between these two cell types, to determine whether this association alters the immune status during glioblastoma development and affects optimal treatment. We focus on the molecular factors that are crucial to this interaction, and the role that this crosstalk plays in the biological processes underlying glioblastoma treatment, particularly with regard to immune therapy. We also discuss novel therapeutic targets that can aid in resolving reticular connections between TAM/Ms and CD8+ T cells, including depletion and reprogramming TAM/Ms and novel TAM/Ms-CD8+ T cell cofactors with potential translational usage. In addition, we highlight the challenges and discuss future perspectives of this crosstalk between TAM/Ms and CD8+ T cells.
Collapse
Affiliation(s)
- Sheng Tu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xu Lin
- Department of Thoracic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jili Qiu
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiaqi Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Hui Wang
- Department of Medical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shiyao Hu
- School of Medicine, Zhejiang University, Hangzhou, China
| | - Yihan Yao
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yali Wang
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yongchuan Deng
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yunxiang Zhou
- Department of Surgical Oncology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
25
|
Ishikawa E, Sugii N, Matsuda M, Kohzuki H, Tsurubuchi T, Akutsu H, Takano S, Mizumoto M, Sakurai H, Matsumura A. Maximum resection and immunotherapy improve glioblastoma patient survival: a retrospective single-institution prognostic analysis. BMC Neurol 2021; 21:282. [PMID: 34281518 PMCID: PMC8287820 DOI: 10.1186/s12883-021-02318-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/07/2021] [Indexed: 11/10/2022] Open
Abstract
Glioblastoma (GBM) is a refractory disease with a poor prognosis and various methods, including maximum resection and immunotherapy, have been tested to improve outcomes. In this retrospective study we analyzed the prognostic factors of 277 newly diagnosed GBM patients over 11 years of consecutive cases at our institution to evaluate the effect of these methods on prognosis. Various data, including the extent of removal (EOR) and type of adjuvant therapy, were examined and prognostic relationships were analyzed. The median overall survival (OS) of the entire 277-case cohort, 200 non-biopsy cases, and 77 biopsy cases was 16.6 months, 19.7 months, and 9.7 months, respectively. Gross total removal (GTR; 100% of EOR) was achieved in 32.9% of the cases. Univariate analysis revealed younger age, right side, higher Karnofsky performance status, GTR, intraoperative magnetic resonance imaging (MRI) use for removal, proton therapy, combination immunotherapy, and discharge to home as good prognostic factors. Intraoperative MRI use and EOR were closely related. In the multivariate analysis, GTR, proton therapy, and a combination of immunotherapies, including autologous formalin-fixed tumor vaccine, were the significant prognostic factors. A multivariate analysis of 91 GTR cases showed that immunotherapy contributed to prognostic improvements. The median OS and 5-year OS % values were 36.9 months and 43.3% in GTR cases receiving immunotherapy. In conclusion, GTR, proton therapy, and immunotherapy were good prognostic factors in single-center GBM cases. Tumor vaccine therapy for GTR cases achieved a notably high median survival time and long-term survival ratio, indicating its usefulness in GTR cases.
Collapse
Affiliation(s)
- Eiichi Ishikawa
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| | - Narushi Sugii
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Masahide Matsuda
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Hidehiro Kohzuki
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Takao Tsurubuchi
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Hiroyoshi Akutsu
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Shingo Takano
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Masashi Mizumoto
- Department of Radiation Oncology, Proton Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hideyuki Sakurai
- Department of Radiation Oncology, Proton Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Akira Matsumura
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| |
Collapse
|
26
|
Combination of p38 MAPK inhibitor with PD-L1 antibody effectively prolongs survivals of temozolomide-resistant glioma-bearing mice via reduction of infiltrating glioma-associated macrophages and PD-L1 expression on resident glioma-associated microglia. Brain Tumor Pathol 2021; 38:189-200. [PMID: 34231121 DOI: 10.1007/s10014-021-00404-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/14/2021] [Indexed: 01/22/2023]
Abstract
Current conventional treatment strategies for glioblastoma (GBM) have limited efficacy due to the rapid development of resistance to temozolomide (TMZ). It is particularly urgent to develop novel therapeutic strategies that can overcome TMZ resistance and provide patients with better prognoses. Here, a TMZ-resistant GBM cell strain and a mouse model of TMZ resistance are established as valuable tools to explore novel therapeutic strategies against TMZ resistance. Experimentally, p38MAPK inhibitor reduces the accumulation of F4/80+/CD11b+ macrophages/microglia in glioma and prolongs the survivals of glioma-bearing mice. Glioma-associated macrophages/microglia have a significanct expression of PD-L1. p38MAPK inhibitor in combination with PD-L1 antibody can effectively prolongs the survivals of TMZ-resistant GBM-bearing hosts, and differentially reduces the accumulation of circulating monocytes-derived tumor-associated macrophages and PD-L1 abundances of resident glioma-associated microglia. This combination therapy could be a treatment option for patients at the recurrence or chronic TMZ maintenance stages. A clinical study to confirm the safety and effectiveness of this combination therapy is warranted.
Collapse
|
27
|
Wei J, Wang Z, Wang W, Liu X, Wan J, Yuan Y, Li X, Ma L, Liu X. Oxidative Stress Activated by Sorafenib Alters the Temozolomide Sensitivity of Human Glioma Cells Through Autophagy and JAK2/STAT3-AIF Axis. Front Cell Dev Biol 2021; 9:660005. [PMID: 34277607 PMCID: PMC8282178 DOI: 10.3389/fcell.2021.660005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 05/17/2021] [Indexed: 12/19/2022] Open
Abstract
The development of temozolomide (TMZ) resistance in glioma leads to poor patient prognosis. Sorafenib, a novel diaryl urea compound and multikinase inhibitor, has the ability to effectively cross the blood-brain barrier. However, the effect of sorafenib on glioma cells and the molecular mechanism underlying the ability of sorafenib to enhance the antitumor effects of TMZ remain elusive. Here, we found that sorafenib could enhance the cytotoxic effects of TMZ in glioma cells in vitro and in vivo. Mechanistically, the combination of sorafenib and TMZ induced mitochondrial depolarization and apoptosis inducing factor (AIF) translocation from mitochondria to nuclei, and this process was dependent on STAT3 inhibition. Moreover, the combination of sorafenib and TMZ inhibited JAK2/STAT3 phosphorylation and STAT3 translocation to mitochondria. Inhibition of STAT3 activation promoted the autophagy-associated apoptosis induced by the combination of sorafenib and TMZ. Furthermore, the combined sorafenib and TMZ treatment induced oxidative stress while reactive oxygen species (ROS) clearance reversed the treatment-induced inhibition of JAK2/STAT3. The results indicate that sorafenib enhanced the temozolomide sensitivity of human glioma cells by inducing oxidative stress-mediated autophagy and JAK2/STAT3-AIF axis.
Collapse
Affiliation(s)
- Jianwei Wei
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhengfeng Wang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Weiwei Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoge Liu
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Junhu Wan
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yongjie Yuan
- Department of Interventional Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xueyuan Li
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liwei Ma
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xianzhi Liu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
28
|
Ma J, Chen CC, Li M. Macrophages/Microglia in the Glioblastoma Tumor Microenvironment. Int J Mol Sci 2021; 22:ijms22115775. [PMID: 34071306 PMCID: PMC8198046 DOI: 10.3390/ijms22115775] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/22/2021] [Accepted: 05/26/2021] [Indexed: 12/23/2022] Open
Abstract
The complex interaction between glioblastoma and its microenvironment has been recognized for decades. Among various immune profiles, the major population is tumor-associated macrophage, with microglia as its localized homolog. The present definition of such myeloid cells is based on a series of cell markers. These good sentinel cells experience significant changes, facilitating glioblastoma development and protecting it from therapeutic treatments. Huge, complicated mechanisms are involved during the overall processes. A lot of effort has been dedicated to crack the mysterious codes in macrophage/microglia recruiting, activating, reprogramming, and functioning. We have made our path. With more and more key factors identified, a lot of new therapeutic methods could be explored to break the ominous loop, to enhance tumor sensitivity to treatments, and to improve the prognosis of glioblastoma patients. However, it might be a synergistic system rather than a series of clear, stepwise events. There are still significant challenges before the light of truth can shine onto the field. Here, we summarize recent advances in this field, reviewing the path we have been on and where we are now.
Collapse
Affiliation(s)
| | | | - Ming Li
- Correspondence: (C.C.C.); (M.L.)
| |
Collapse
|
29
|
Ishikawa E, Miyazaki T, Takano S, Akutsu H. Anti-angiogenic and macrophage-based therapeutic strategies for glioma immunotherapy. Brain Tumor Pathol 2021; 38:149-155. [PMID: 33977360 DOI: 10.1007/s10014-021-00402-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 05/03/2021] [Indexed: 12/12/2022]
Abstract
As a new concept of glioma therapy, immunotherapy combined with standard therapies is a promising modality to improve glioma patient survival. VEGF and its signaling pathway molecules not only inhibit angiogenesis but also may reinforce the immunosuppressive tumor microenvironment, including promotion of the accumulation of immunosuppressive tumor-associated macrophages (TAMs). In this review, we discuss VEGF-targeted therapy as a new treatment option of the TAM-targeted therapy for high-grade gliomas, as well as other TAM-targeted therapies. The authors also discuss the potential of these therapies combined with conventional immunotherapies.
Collapse
Affiliation(s)
- Eiichi Ishikawa
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.
| | - Tsubasa Miyazaki
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan.,Cell-Medicine, Inc., Sengen 2-1-6, Tsukuba Science City, Ibaraki, 305-0047, Japan
| | - Shingo Takano
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| | - Hiroyoshi Akutsu
- Department of Neurosurgery, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8575, Japan
| |
Collapse
|
30
|
Peng Y, Chen F, Li S, Liu X, Wang C, Yu C, Li W. Tumor‐associated macrophages as treatment targets in glioma. BRAIN SCIENCE ADVANCES 2021. [DOI: 10.26599/bsa.2020.9050015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Gliomas, the most common primary tumors in the central nervous system (CNS), can be categorized into 4 grades according to the World Health Organization. The most malignant glioma type is grade Ⅳ, also named glioblastoma multiforme (GBM). However, the standard treatment of concurrent temozolomide (TMZ) chemotherapy and radiotherapy after maximum resection does not improve overall survival in patients with GBM. Targeting components of the CNS microenvironment represents a new strategy for improving the efficacy of glioma treatment. Most recent studies focused on T cells. However, there is a growing body of evidence that tumor‐associated macrophages (TAMs) play an important role in tumor progression and can be regulated by a wide array of cytokines or chemokines. New TAM‐associated immunotherapies may improve clinical outcomes by blocking tumor progression and prolonging survival. However, understanding the exact roles and possible mechanisms of TAMs in the tumor environment is necessary for developing this promising therapeutic target and identifying potential diagnostic markers for improved prognosis. This review summarizes the possible interactions between TAMs and glioma progression and discusses the potential therapeutic directions for TAM‐associated immunotherapies.
Collapse
Affiliation(s)
- Yichen Peng
- Department of Neuro‐Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Feng Chen
- Department of Neuro‐Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Shenglan Li
- Department of Neuro‐Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Xiu Liu
- Department of Neuro‐Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Can Wang
- Department of Neuro‐Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Chunna Yu
- Department of Neuro‐Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Wenbin Li
- Department of Neuro‐Oncology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| |
Collapse
|
31
|
Ou A, Yung WKA, Majd N. Molecular Mechanisms of Treatment Resistance in Glioblastoma. Int J Mol Sci 2020; 22:E351. [PMID: 33396284 PMCID: PMC7794986 DOI: 10.3390/ijms22010351] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 12/25/2020] [Accepted: 12/28/2020] [Indexed: 12/18/2022] Open
Abstract
Glioblastoma is the most common malignant primary brain tumor in adults and is almost invariably fatal. Despite our growing understanding of the various mechanisms underlying treatment failure, the standard-of-care therapy has not changed over the last two decades, signifying a great unmet need. The challenges of treating glioblastoma are many and include inadequate drug or agent delivery across the blood-brain barrier, abundant intra- and intertumoral heterogeneity, redundant signaling pathways, and an immunosuppressive microenvironment. Here, we review the innate and adaptive molecular mechanisms underlying glioblastoma's treatment resistance, emphasizing the intrinsic challenges therapeutic interventions must overcome-namely, the blood-brain barrier, tumoral heterogeneity, and microenvironment-and the mechanisms of resistance to conventional treatments, targeted therapy, and immunotherapy.
Collapse
Affiliation(s)
| | - W. K. Alfred Yung
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 431, Houston, TX 77030, USA;
| | - Nazanin Majd
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Unit 431, Houston, TX 77030, USA;
| |
Collapse
|
32
|
Tan YQ, Li YT, Yan TF, Xu Y, Liu BH, Yang JA, Yang X, Chen QX, Zhang HB. Six Immune Associated Genes Construct Prognostic Model Evaluate Low-Grade Glioma. Front Immunol 2020; 11:606164. [PMID: 33408717 PMCID: PMC7779629 DOI: 10.3389/fimmu.2020.606164] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/18/2020] [Indexed: 12/18/2022] Open
Abstract
Background The immunotherapy of Glioma has always been a research hotspot. Although tumor associated microglia/macrophages (TAMs) proves to be important in glioma progression and drug resistance, our knowledge about how TAMs influence glioma remains unclear. The relationship between glioma and TAMs still needs further study. Methods We collected the data of TAMs in glioma from NCBI Gene Expression Omnibus (GEO) that included 20 glioma samples and 15 control samples from four datasets. Six genes were screened from the Differential Expression Gene through Gene ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, protein-protein interaction (PPI) network and single-cell sequencing analysis. A risk score was then constructed based on the six genes and patients' overall survival rates of 669 patients from The Cancer Genome Atlas (TCGA). The efficacy of the risk score in prognosis and prediction was verified in Chinese Glioma Genome Atlas (CGGA). Results Six genes, including CD163, FPR3, LPAR5, P2ry12, PLAUR, SIGLEC1, that participate in signal transduction and plasma membrane were selected. Half of them, like CD163, FPR3, SIGLEC1, were mainly expression in M2 macrophages. FPR3 and SIGLEC1 were high expression genes in glioma associated with grades and IDH status. The overall survival rates of the high risk score group was significantly lower than that of the low risk score group, especially in LGG. Conclusion Joint usage of the 6 candidate genes may be an effective method to diagnose and evaluate the prognosis of glioma, especially in Low-grade glioma (LGG).
Collapse
Affiliation(s)
- Yin Qiu Tan
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yun Tao Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Teng Feng Yan
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yang Xu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bao Hui Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ji An Yang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xue Yang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qian Xue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hong Bo Zhang
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Guangzhou, China
| |
Collapse
|
33
|
Rahimi Koshkaki H, Minasi S, Ugolini A, Trevisi G, Napoletano C, Zizzari IG, Gessi M, Giangaspero F, Mangiola A, Nuti M, Buttarelli FR, Rughetti A. Immunohistochemical Characterization of Immune Infiltrate in Tumor Microenvironment of Glioblastoma. J Pers Med 2020; 10:E112. [PMID: 32899203 PMCID: PMC7564919 DOI: 10.3390/jpm10030112] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/29/2020] [Accepted: 09/01/2020] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most common primary malignant brain cancer in adults, with very limited therapeutic options. It is characterized by a severe immunosuppressive milieu mostly triggered by suppressive CD163+ tumor-associated macrophages (TAMs). The efficacy of immune checkpoint inhibitor interventions aimed at rescuing anti-tumor immunity has not been proved to date. Thus, it is critically important to investigate the immunomodulatory mechanisms acting within the GBM microenvironment for the better design of immunotherapeutic strategies. METHODS The immunohistochemical analysis of a panel of immune biomarkers (CD3, FoxP3, CD163, IDO, PDL-1, PD-1 and TIGIT) was performed in paired samples of the tumor core (TC) and peritumoral area (PTA) of nine GBM patients. RESULTS CD163+ cells were the most common cell type in both the PTA and TC. IDO and PDL-1 were expressed in most of the TC samples, frequently accompanied by TIGIT expression; on the contrary, they were almost absent in the PTA. CD3+ cells were present in both the TC and PTA, to a lesser extent than CD163+ cells; they often were accompanied by PD-1 expression, especially in the TC. FoxP3 was scarcely present. CONCLUSION Distinct inhibitory mechanisms can act simultaneously in both the TC and PTA to contribute to the strong immunosuppression observed within the GBM microenvironment. Nevertheless, the PTA shows strongly reduced immunosuppression when compared to the TC, thus representing a potential target for immunotherapies. Moreover, our results support the working hypothesis that immunosuppression and T-cell exhaustion can be simultaneously targeted to rescue anti-tumor immunity in GBM patients.
Collapse
Affiliation(s)
- Hassan Rahimi Koshkaki
- Department of Experimental Medicine, “Sapienza” University of Rome, Viale Regina Elena, 324-00161 Rome, Italy; (H.R.K.); (A.U.); (C.N.); (I.G.Z.); (M.N.)
| | - Simone Minasi
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, “Sapienza” University of Rome, Viale Regina Elena, 324-00161 Rome, Italy; (S.M.); (F.G.); (F.R.B.)
| | - Alessio Ugolini
- Department of Experimental Medicine, “Sapienza” University of Rome, Viale Regina Elena, 324-00161 Rome, Italy; (H.R.K.); (A.U.); (C.N.); (I.G.Z.); (M.N.)
| | - Gianluca Trevisi
- Neurosurgical Unit, Ospedale Santo Spirito, Via Fonte Romana, 8-65124 Pescara, Italy; (G.T.); (A.M.)
| | - Chiara Napoletano
- Department of Experimental Medicine, “Sapienza” University of Rome, Viale Regina Elena, 324-00161 Rome, Italy; (H.R.K.); (A.U.); (C.N.); (I.G.Z.); (M.N.)
| | - Ilaria G. Zizzari
- Department of Experimental Medicine, “Sapienza” University of Rome, Viale Regina Elena, 324-00161 Rome, Italy; (H.R.K.); (A.U.); (C.N.); (I.G.Z.); (M.N.)
| | - Marco Gessi
- Neuropathology Unit, Department of Pathology Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica S.Cuore, 00168 Roma, Italy;
| | - Felice Giangaspero
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, “Sapienza” University of Rome, Viale Regina Elena, 324-00161 Rome, Italy; (S.M.); (F.G.); (F.R.B.)
- IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Annunziato Mangiola
- Neurosurgical Unit, Ospedale Santo Spirito, Via Fonte Romana, 8-65124 Pescara, Italy; (G.T.); (A.M.)
- Department of Neurosciences, Imaging and Clinical Sciences, “G. d’Annunzio” University, via dei Vestini, 32-66013 Chieti, Italy
| | - Marianna Nuti
- Department of Experimental Medicine, “Sapienza” University of Rome, Viale Regina Elena, 324-00161 Rome, Italy; (H.R.K.); (A.U.); (C.N.); (I.G.Z.); (M.N.)
| | - Francesca R. Buttarelli
- Department of Radiological, Oncological and Anatomo-Pathological Sciences, “Sapienza” University of Rome, Viale Regina Elena, 324-00161 Rome, Italy; (S.M.); (F.G.); (F.R.B.)
| | - Aurelia Rughetti
- Department of Experimental Medicine, “Sapienza” University of Rome, Viale Regina Elena, 324-00161 Rome, Italy; (H.R.K.); (A.U.); (C.N.); (I.G.Z.); (M.N.)
| |
Collapse
|
34
|
Therapeutic Strategies for Overcoming Immunotherapy Resistance Mediated by Immunosuppressive Factors of the Glioblastoma Microenvironment. Cancers (Basel) 2020; 12:cancers12071960. [PMID: 32707672 PMCID: PMC7409093 DOI: 10.3390/cancers12071960] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/13/2020] [Accepted: 07/15/2020] [Indexed: 12/15/2022] Open
Abstract
Various mechanisms of treatment resistance have been reported for glioblastoma (GBM) and other tumors. Resistance to immunotherapy in GBM patients may be caused by acquisition of immunosuppressive ability by tumor cells and an altered tumor microenvironment. Although novel strategies using an immune-checkpoint inhibitor (ICI), such as anti-programmed cell death-1 antibody, have been clinically proven to be effective in many types of malignant tumors, such strategies may be insufficient to prevent regrowth in recurrent GBM. The main cause of GBM recurrence may be the existence of an immunosuppressive tumor microenvironment involving immunosuppressive cytokines, extracellular vesicles, chemokines produced by glioma and glioma-initiating cells, immunosuppressive cells, etc. Among these, recent research has paid attention to various immunosuppressive cells—including M2-type macrophages and myeloid-derived suppressor cells—that cause immunosuppression in GBM microenvironments. Here, we review the epidemiological features, tumor immune microenvironment, and associations between the expression of immune checkpoint molecules and the prognosis of GBM. We also reviewed various ongoing or future immunotherapies for GBM. Various strategies, such as a combination of ICI therapies, might overcome these immunosuppressive mechanisms in the GBM microenvironment.
Collapse
|