1
|
Togo H, Terada K, Ujitsugu A, Hirose Y, Takeuchi H, Kusunoki M. Fabrication Scaffold with High Dimensional Control for Spheroids with Undifferentiated iPS Cell Properties. Cells 2023; 12:278. [PMID: 36672213 PMCID: PMC9857117 DOI: 10.3390/cells12020278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
Spheroids are expected to aid the establishment of an in vitro-based cell culture system that can realistically reproduce cellular dynamics in vivo. We developed a fluoropolymer scaffold with an extracellular matrix (ECM) dot array and confirmed the possibility of mass-producing spheroids with uniform dimensions. Controlling the quality of ECM dots is important as it ensures spheroid uniformity, but issues such as pattern deviation and ECM drying persist in the conventional microstamping method. In this study, these problems were overcome via ECM dot printing using a resin mask with dot-patterned holes. For dot diameters of φ 300 μm, 400 μm, and 600 μm, the average spheroid diameters of human iPS cells (hiPSCs) were φ 260.8 μm, 292.4 μm, and 330.7 μm, respectively. The standard deviation when each average was normalized to 100 was 14.1%. A high throughput of 89.9% for colony formation rate to the number of dots and 89.3% for spheroid collection rate was achieved. The cells proliferated on ECM dots, and the colonies could be naturally detached from the scaffold without the use of enzymes, so there was almost no stimulation of the cells. Thus, the undifferentiated nature of hiPSCs was maintained until day 4. Therefore, this method is expected to be useful in drug discovery and regenerative medicine.
Collapse
Affiliation(s)
- Hidetaka Togo
- Graduate School of Biology-Oriented-Science and Technology, Kindai University, 930 Nishimitani, Kinokawa 649-6493, Wakayama, Japan
| | - Kento Terada
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu 514-8507, Mie, Japan
| | - Akira Ujitsugu
- Faculty of Biology-Oriented-Science and Technology, Kindai University, 930 Nishimitani, Kinokawa 649-6493, Wakayama, Japan
| | - Yudai Hirose
- Graduate School of Biology-Oriented-Science and Technology, Kindai University, 930 Nishimitani, Kinokawa 649-6493, Wakayama, Japan
| | - Hiroki Takeuchi
- Department of Obstetrics and Gynecology, Graduate School of Medicine, Mie University, 2-174 Edobashi, Tsu 514-8507, Mie, Japan
| | - Masanobu Kusunoki
- Graduate School of Biology-Oriented-Science and Technology, Kindai University, 930 Nishimitani, Kinokawa 649-6493, Wakayama, Japan
- Faculty of Biology-Oriented-Science and Technology, Kindai University, 930 Nishimitani, Kinokawa 649-6493, Wakayama, Japan
| |
Collapse
|
2
|
Tasiopoulos CP, Widhe M, Hedhammar M. Recombinant Spider Silk Functionalized with a Motif from Fibronectin Mediates Cell Adhesion and Growth on Polymeric Substrates by Entrapping Cells During Self-Assembly. ACS APPLIED MATERIALS & INTERFACES 2018; 10:14531-14539. [PMID: 29641180 DOI: 10.1021/acsami.8b02647] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
In vitro endothelialization of synthetic grafts or engineered vascular constructs is considered a promising alternative to overcome shortcomings in the availability of autologous vessels and in-graft complications with synthetics. A number of cell-seeding techniques have been implemented to render vascular grafts accessible for cells to attach, proliferate, and spread over the surface area. Nonetheless, seeding efficiency and the time needed for cells to adhere varies dramatically. Herein, we investigated a novel cell-seeding approach (denoted co-seeding) that enables cells to bind to a motif from fibronectin included in a recombinant spider silk protein. Entrapment of cells occurs at the same time as the silk assembles into a nanofibrillar coating on various substrates. Cell adhesion analysis showed that the technique can markedly improve cell-seeding efficiency to nonfunctionalized polystyrene surfaces, as well as establish cell attachment and growth of human dermal microvascular endothelial cells on bare polyethylene terephthalate and polytetrafluoroethylene (PTFE) substrates. Scanning electron microscopy images revealed a uniform endothelial cell layer and cell-substratum compliance with the functionalized silk protein to PTFE surfaces. The co-seeding technique holds a great promise as a method to reliably and quickly cellularize engineered vascular constructs as well as to in vitro endothelialize commercially available cardiovascular grafts.
Collapse
Affiliation(s)
- Christos Panagiotis Tasiopoulos
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Division of Protein Science , AlbaNova University Center, KTH-Royal Institute of Technology , Stockholm 114 21 , Sweden
| | - Mona Widhe
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Division of Protein Science , AlbaNova University Center, KTH-Royal Institute of Technology , Stockholm 114 21 , Sweden
| | - My Hedhammar
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Division of Protein Science , AlbaNova University Center, KTH-Royal Institute of Technology , Stockholm 114 21 , Sweden
| |
Collapse
|
3
|
Hanna JM, Keenan JE, Wang H, Andersen ND, Gaca JG, Lombard FW, Welsby IJ, Hughes GC. Use of human fibrinogen concentrate during proximal aortic reconstruction with deep hypothermic circulatory arrest. J Thorac Cardiovasc Surg 2016; 151:376-82. [PMID: 26428473 PMCID: PMC5429587 DOI: 10.1016/j.jtcvs.2015.08.079] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 08/11/2015] [Accepted: 08/23/2015] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Human fibrinogen concentrate (HFC) is approved by the Food and Drug Administration for use at 70 mg/kg to treat congenital afibrinogenemia. We sought to determine whether this dose of HFC increases fibrinogen levels in the setting of high-risk bleeding associated with aortic reconstruction and deep hypothermic circulatory arrest (DHCA). METHODS This was a prospective, pilot, off-label study in which 22 patients undergoing elective proximal aortic reconstruction with DHCA were administered 70 mg/kg HFC upon separation from cardiopulmonary bypass (CPB). Fibrinogen levels were measured at baseline, just before, and 10 minutes after HFC administration, on skin closure, and the day after surgery. The primary study outcome was the difference in fibrinogen level immediately after separation from CPB, when HFC was administered, and the fibrinogen level 10 minutes following HFC administration. Additionally, postoperative thromboembolic events were assessed as a safety analysis. RESULTS The mean baseline fibrinogen level was 317 ± 49 mg/dL and fell to 235 ± 39 mg/dL just before separation from CPB. After HFC administration, the fibrinogen level rose to 331 ± 41 mg/dL (P < .001) and averaged 372 ± 45 mg/dL the next day. No postoperative thromboembolic complications occurred. CONCLUSIONS Administration of 70 mg/kg HFC upon separation from CPB raises fibrinogen levels by approximately 100 mg/dL without an apparent increase in thrombotic complications during proximal aortic reconstruction with DHCA. Further prospective study in a larger cohort of patients will be needed to definitively determine the safety and evaluate the efficacy of HFC as a hemostatic adjunct during these procedures.
Collapse
Affiliation(s)
- Jennifer M Hanna
- Division of Cardiovascular and Thoracic Surgery, Department of Surgery, Duke University Medical Center, Durham, NC
| | - Jeffrey E Keenan
- Division of Cardiovascular and Thoracic Surgery, Department of Surgery, Duke University Medical Center, Durham, NC
| | - Hanghang Wang
- Division of Cardiovascular and Thoracic Surgery, Department of Surgery, Duke University Medical Center, Durham, NC
| | - Nicholas D Andersen
- Division of Cardiovascular and Thoracic Surgery, Department of Surgery, Duke University Medical Center, Durham, NC
| | - Jeffrey G Gaca
- Division of Cardiovascular and Thoracic Surgery, Department of Surgery, Duke University Medical Center, Durham, NC
| | - Frederick W Lombard
- Division of Cardiac Anesthesiology, Department of Anesthesiology, Duke University Medical Center, Durham, NC
| | - Ian J Welsby
- Division of Cardiac Anesthesiology, Department of Anesthesiology, Duke University Medical Center, Durham, NC.
| | - G Chad Hughes
- Division of Cardiovascular and Thoracic Surgery, Department of Surgery, Duke University Medical Center, Durham, NC
| |
Collapse
|
4
|
Savoji H, Hadjizadeh A, Maire M, Ajji A, Wertheimer MR, Lerouge S. Electrospun Nanofiber Scaffolds and Plasma Polymerization: A Promising Combination Towards Complete, Stable Endothelial Lining for Vascular Grafts. Macromol Biosci 2014; 14:1084-95. [DOI: 10.1002/mabi.201300545] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 02/10/2014] [Indexed: 12/31/2022]
Affiliation(s)
- Houman Savoji
- Laboratory of Endovascular Biomaterials (LBeV); Research Centre, Centre Hospitalier de l'Université de Montréal (CRCHUM); 900 Saint Denis Street Montreal QC H2X 0A9 Canada
- Institute of Biomedical Engineering; École Polytechnique de Montréal; Montreal QC H3C 3A7 Canada
| | - Afra Hadjizadeh
- Department of Chemical Engineering; École Polytechnique de Montréal; Montreal QC H3C 3A7 Canada
| | - Marion Maire
- Laboratory of Endovascular Biomaterials (LBeV); Research Centre, Centre Hospitalier de l'Université de Montréal (CRCHUM); 900 Saint Denis Street Montreal QC H2X 0A9 Canada
| | - Abdellah Ajji
- Institute of Biomedical Engineering; École Polytechnique de Montréal; Montreal QC H3C 3A7 Canada
- Department of Chemical Engineering; École Polytechnique de Montréal; Montreal QC H3C 3A7 Canada
| | - Michael R. Wertheimer
- Institute of Biomedical Engineering; École Polytechnique de Montréal; Montreal QC H3C 3A7 Canada
- Department of Engineering Physics; École Polytechnique de Montréal; Montreal QC H3C 3A7 Canada
| | - Sophie Lerouge
- Laboratory of Endovascular Biomaterials (LBeV); Research Centre, Centre Hospitalier de l'Université de Montréal (CRCHUM); 900 Saint Denis Street Montreal QC H2X 0A9 Canada
- Department of Mechanical Engineering; École de technologie supérieure; Montreal QC H3C 1K3 Canada
| |
Collapse
|
5
|
Pfeiffer D, Stefanitsch C, Wankhammer K, Müller M, Dreyer L, Krolitzki B, Zernetsch H, Glasmacher B, Lindner C, Lass A, Schwarz M, Muckenauer W, Lang I. Endothelialization of electrospun polycaprolactone (PCL) small caliber vascular grafts spun from different polymer blends. J Biomed Mater Res A 2014; 102:4500-9. [PMID: 24532056 DOI: 10.1002/jbm.a.35123] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 01/31/2014] [Accepted: 02/11/2014] [Indexed: 11/09/2022]
Abstract
Small caliber vascular grafts represent a challenge to material scientists. In contrast to large caliber grafts, prostheses with diameter <6 mm, lead to increased hemodynamic disturbances and thrombogenic complications. Thus, endothelialization of small caliber grafts should create a compatible interface for hemodynamic processes. The purpose of our study was to compare different compositions of electrospun scaffolds with conventional ePTFE grafts with an inner diameter of 4 mm as well as different pre-coatings to create an optimized physiological interface for endothelialization. Polycaprolactone, polylactide, and polyethylenglycol (PCL/PLA and PCL/PLA/PEG) electrospun grafts and ePTFE grafts were pre-coated with blood, gelatine or fibronectin and seeded with endothelial cells from the human term placenta. Best results were obtained with fibronectin-coated PCL/PLA/PEG grafts. Here, the number of attached viable cells was 78-81% higher than on fibronectin pre-treated ePTFE grafts. Cells attached to PCL/PLA/PEG grafts appeared in physiological cobblestone morphology. Viability analysis showed a high cell viability of more than 98%. Fibronectin-coated PCL/PLA/PEG grafts may be a promising improvement to conventionally used ePTFE grafts.
Collapse
Affiliation(s)
- D Pfeiffer
- Institute of Cell Biology, Histology, and Embryology, Medical University Graz, Graz, Austria; Center of Biomedical Technology Department for Health Sciences and Biomedicine, Danube University Krems, Krems, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Avci-Adali M, Kobba J, Neumann B, Lescan M, Perle N, Wilhelm N, Wiedmaier H, Schlensak C, Wendel HP. Application of a rotating bioreactor consisting of low-cost and ready-to-use medical disposables forin vitroevaluation of the endothelialization efficiency of small-caliber vascular prostheses. J Biomed Mater Res B Appl Biomater 2013; 101:1061-8. [DOI: 10.1002/jbm.b.32916] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 11/30/2012] [Accepted: 01/30/2013] [Indexed: 11/08/2022]
|
7
|
Tefft BJ, Kopacz AM, Liu WK, Liu SQ. Enhancing Endothelial Cell Retention on ePTFE Constructs by siRNA-Mediated SHP-1 Gene Silencing. J Nanotechnol Eng Med 2011. [DOI: 10.1115/1.4003273] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Polymeric vascular grafts hold great promise for vascular reconstruction, but the lack of endothelial cells renders these grafts susceptible to intimal hyperplasia and restenosis, precluding widespread clinical applications. The purpose of this study is to establish a stable endothelium on expanded polytetrafluoroethylene (ePTFE) membrane by small interfering RNA (siRNA)-induced suppression of the cell adhesion inhibitor SH2 domain-containing protein tyrosine phosphatase-1 (SHP-1). Human umbilical vein endothelial cells (HUVECs) were treated with scrambled siRNA as a control or SHP-1 specific siRNA. Treated cells were seeded onto fibronectin-coated ePTFE scaffolds and exposed to a physiological range of pulsatile fluid shear stresses for 1 h in a variable-width parallel plate flow chamber. Retention of cells was measured and compared between various shear stress levels and between groups treated with scrambled siRNA and SHP-1 specific siRNA. HUVECs seeded on ePTFE membrane exhibited shear stress-dependent retention. Exposure to physiological shear stress (10 dyn/cm2) induced a reduction in the retention of scrambled siRNA treated cells from 100% to 85% at 1 h. Increased shear stress (20 dyn/cm2) further reduced retention of scrambled siRNA treated cells to 55% at 1 h. SHP-1 knockdown mediated by siRNA enhanced endothelial cell retention from approximately 60% to 85% after 1 h of exposure to average shear stresses in the range of 15–30 dyn/cm2. This study demonstrates that siRNA-mediated gene silencing may be an effective strategy for improving the retention of endothelial cells within vascular grafts.
Collapse
Affiliation(s)
- Brandon J. Tefft
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Tech E310, Evanston, IL 60208
| | - Adrian M. Kopacz
- Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Tech B224, Evanston, IL 60208
| | - Wing Kam Liu
- Department of Mechanical Engineering, Northwestern University, 2145 Sheridan Road, Tech B224, Evanston, IL 60208
| | - Shu Q. Liu
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Tech E310, Evanston, IL 60208
| |
Collapse
|
8
|
Moby V, Labrude P, Kadi A, Bordenave L, Stoltz JF, Menu P. Polyelectrolyte multilayer film and human mesenchymal stem cells: An attractive alternative in vascular engineering applications. J Biomed Mater Res A 2010; 96:313-9. [DOI: 10.1002/jbm.a.32981] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 09/01/2010] [Accepted: 09/02/2010] [Indexed: 01/16/2023]
|
9
|
Kim G, Kim H, Kim IJ, Kim JR, Lee JI, Ree M. Bacterial adhesion, cell adhesion and biocompatibility of Nafion films. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2009; 20:1687-707. [PMID: 19723436 DOI: 10.1163/156856208x386273] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We investigated bioadhesion (bacterial and cell adhesion) and biocompatibility of poly(tetrafluoroethylene-co-perfluoro-3,6-dioxa-4-methyl-7-octenesulfonic acid) (Nafion) and compared the results with those obtained with poly(vinylidene fluoride-co-hexafluoropropylene) (PVFHFP). When incubated with bacteria for 4 h to 7 days, Nafion film exhibited scarce bacterial adhesion at 6 h, after which the adhesion gradually increasing to relatively low levels. In contrast, significant bacterial adhesion to PVFHFP film was observed at 4 h, and much higher adhesion levels were shown thereafter. Although HEp-2 human cells adhered normally to both films, reaching confluence in 7-8 days, the cells adhered to Nafion appeared more lively and stable than those to PVFHFP. Subcutaneous implantation in mice revealed that Nafion elicited a mild acute inflammatory reaction without chronic inflammation or tissue necrosis, indicating excellent biocompatibility in mice. PVFHFP, however, provoked a moderate and prolonged acute inflammatory response. These differences in the biological characteristics of Nafion and PVFHFP films may be attributable to the differences in the chemical and physical natures of these polymer films. Nafion film provided a sufficiently solid support, expressing a high surface charge density and good water-wettability. In summary, Nafion is suitable for use in biomedical applications that require biocompatibility with a reduced possibility of post-operative infections.
Collapse
Affiliation(s)
- G Kim
- Department of Chemistry, Pohang University of Science and Technology, Pohang 790-784, South Korea
| | | | | | | | | | | |
Collapse
|
10
|
Rahe-Meyer N, Solomon C, Winterhalter M, Piepenbrock S, Tanaka K, Haverich A, Pichlmaier M. Thromboelastometry-guided administration of fibrinogen concentrate for the treatment of excessive intraoperative bleeding in thoracoabdominal aortic aneurysm surgery. J Thorac Cardiovasc Surg 2009; 138:694-702. [DOI: 10.1016/j.jtcvs.2008.11.065] [Citation(s) in RCA: 182] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 10/28/2008] [Accepted: 11/22/2008] [Indexed: 01/09/2023]
|
11
|
Moby V, Boura C, Kerdjoudj H, Voegel JC, Marchal L, Dumas D, Schaaf P, Stoltz JF, Menu P. Poly(styrenesulfonate)/poly(allylamine) multilayers: a route to favor endothelial cell growth on expanded poly(tetrafluoroethylene) vascular grafts. Biomacromolecules 2007; 8:2156-60. [PMID: 17585807 DOI: 10.1021/bm070348n] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Small-diameter synthetic vascular grafts of expanded poly(tetrafluoroethylene) (ePTFE) polymer concern one of the most common alternatives for the replacement of diseased vessels. However, high failure rates arise especially due to the lack of endothelial cells (ECs). EC seeding was developed to build a monolayer on the luminal surface. Because ECs show little or no adhesion on synthetic prostheses, it is necessary to promote their retention. On ePTFE surfaces we successfully deposited polyelectrolyte multilayer films (PMFs) consisting of poly(ethylenimine) (PEI), poly(sodium 4-styrenesulfonate) (PSS), and poly(allylamine hydrochloride) (PAH) to obtain PEI-(PSS-PAH)3 films. EC adhesion and spreading on modified ePTFE were assessed by scanning electron and confocal microscopies. Cell viability was evaluated by Alamar Blue assay. After 7 days of culture, the ePTFE modified with PMF exhibited improvements of EC viability as compared to that of the controls (nonmodified ePTFE) or even ePTFE coated by a PAH monolayer (p < 0.05). Moreover, the spreading of ECs was largely enhanced compared to that of the same controls, resulting in a healthy confluent cell monolayer formation. Positive staining for the von Willebrand factor confirmed the EC phenotype. Promoting EC attachment and function on ePTFE modified with PMFs could become in the future a promising treatment for synthetic small-diameter vascular grafts.
Collapse
Affiliation(s)
- Vanessa Moby
- Mécanique et Ingénierie Cellulaire et Tissulaire, LEMTA-UMR CNRS 7563, Université Henri Poincaré - Nancy 1, Faculté de Médecine, Vandoeuvre-lès-Nancy, France
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Anamelechi CC, Truskey GA, Reichert WM. Mylar and Teflon-AF as cell culture substrates for studying endothelial cell adhesion. Biomaterials 2005; 26:6887-96. [PMID: 15990164 DOI: 10.1016/j.biomaterials.2005.04.027] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2004] [Accepted: 04/10/2005] [Indexed: 11/22/2022]
Abstract
The textured and opaque nature of Dacron and ePTFE has prevented the use of these fabrics in conventional cell culture techniques normally employed to optimize cell attachment and retention. This lack of optimization has led, in part, to the poor performance of endothelialization strategies for improving vascular graft patency. Here we show that thin, transparent films of Mylar and Teflon-AF are viable in vitro cell culture mimics of Dacron and ePTFE vascular graft materials, particularly for the study of protein mediated endothelial cell (EC) attachment, spreading and adhesion. Glass substrates were used as controls. X-ray photoelectron spectroscopy (XPS) and contact angle analysis showed that Mylar and Teflon-AF have surface chemistries that closely match Dacron and ePTFE. (125)I radiolabeling was used to quantify fibronectin (FN) adsorption, and FN and biotinylated-BSA "dual ligand" co-adsorption onto glass, Mylar and Teflon-AF substrates. Native human umbilical vein endothelial cells (HUVEC) and streptavidin-incubated biotinylated-HUVEC (SA-b-HUVEC) spreading was measured using phase contrast microscopy. Cell retention and adhesion was determined using phase contrast microscopy under laminar flow. All surfaces lacking protein pre-treatment, regardless of surface type, showed the lowest degree of cell spreading and retention. Dual ligand treated Mylar films showed significantly greater SA-b-HUVEC spreading up to 2 h, but were similar to HUVEC on FN treated Mylar at longer times; whereas SA-b-HUVEC spreading on dual ligand treated Teflon-AF was never significantly different from HUVEC on FN treated Teflon-AF at any time point. SA-b-HUVEC retention was significantly greater on dual ligand treated Mylar compared to HUVEC on FN treated Mylar over the entire range of shear stresses tested (3.54-28.3 dynes/cm(2)); whereas SA-b-HUVEC retention to dual ligand and HUVEC retention to FN treated Teflon-AF gave similar results at each shear stress, with only the mid-range of stresses showing significant difference in cell retention to Teflon-AF.
Collapse
Affiliation(s)
- Charles C Anamelechi
- Department of Biomedical Engineering, Duke University, Durham, NC 27708-0281, USA
| | | | | |
Collapse
|
13
|
Renshaw KM, Orr DE, Burg KJL. Design and evaluation of a novel flow chamber for measuring cell adhesion to absorbable polymer films. Biotechnol Prog 2005; 21:538-45. [PMID: 15801795 DOI: 10.1021/bp049664t] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
There is great interest in improving cellular attachment to synthetic materials, particularly for developing small diameter tissue-engineered vascular grafts. However, limited research has been conducted to evaluate the adhesion characteristics of different cell types to absorbable substrates. Tissue engineered vessels typically fail as a result of delamination of the endothelial cell layer when exposed to fluid or blood flow. The focus of this research was to design and evaluate a flow chamber, using fibroblasts, smooth muscle cells, and endothelial cells, to probe the bounds of the system. A flow chamber was designed and fabricated to compare the relative adhesion characteristics of cells to absorbable polymer films. A preliminary investigation of mouse fibroblast (3T3M) adhesion to semicrystalline poly-L-lactide (PLL) films was conducted to determine general operating specifications. Cell coverage on films was evaluated using a live-dead assay and image analysis; following exposure to flow, tests were similarly conducted. Based on these results, additional studies were conducted to compare the adhesion of rat aortic smooth muscle cells (SMC) and endothelial cells (EC) on PLL films.
Collapse
Affiliation(s)
- Kelly M Renshaw
- Department of Bioengineering, Clemson University, Clemson, South Carolina 29634, USA
| | | | | |
Collapse
|