1
|
Liang K, Ding C, Li J, Yao X, Yu J, Wu H, Chen L, Zhang M. A Review of Advanced Abdominal Wall Hernia Patch Materials. Adv Healthc Mater 2024; 13:e2303506. [PMID: 38055999 DOI: 10.1002/adhm.202303506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/05/2023] [Indexed: 12/08/2023]
Abstract
Tension-free abdominal wall hernia patch materials (AWHPMs) play an important role in the repair of abdominal wall defects (AWDs), which have a recurrence rate of <1%. Nevertheless, there are still significant challenges in the development of tailored, biomimetic, and extracellular matrix (ECM)-like AWHPMs that satisfy the clinical demands of abdominal wall repair (AWR) while effectively handling post-operative complications associated with abdominal hernias, such as intra-abdominal visceral adhesion and abnormal healing. This extensive review presents a comprehensive guide to the high-end fabrication and the precise selection of these advanced AWHPMs. The review begins by briefly introducing the structures, sources, and properties of AWHPMs, and critically evaluates the advantages and disadvantages of different types of AWHPMs for AWR applications. The review subsequently summarizes and elaborates upon state-of-the-art AWHPM fabrication methods and their key characteristics (e.g., mechanical, physicochemical, and biological properties in vitro/vivo). This review uses compelling examples to demonstrate that advanced AWHPMs with multiple functionalities (e.g., anti-deformation, anti-inflammation, anti-adhesion, pro-healing properties, etc.) can meet the fundamental clinical demands required to successfully repair AWDs. In particular, there have been several developments in the enhancement of biomimetic AWHPMs with multiple properties, and additional breakthroughs are expected in the near future.
Collapse
Affiliation(s)
- Kaiwen Liang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, P. R. China
| | - Cuicui Ding
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian, 350118, P. R. China
| | - Jingyi Li
- School of Basic Medicine, Fujian Medical University, Fuzhou, Fujian, 350122, P. R. China
| | - Xiao Yao
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian, 350118, P. R. China
| | - Jingjing Yu
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian, 350118, P. R. China
| | - Hui Wu
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, P. R. China
| | - Lihui Chen
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, P. R. China
| | - Min Zhang
- College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, P. R. China
- National Forestry & Grassland Administration Key Laboratory for Plant Fiber Functional Materials, Fuzhou, Fujian, 350000, P. R. China
| |
Collapse
|
2
|
Amirazad H, Dadashpour M, Zarghami N. Application of decellularized bone matrix as a bioscaffold in bone tissue engineering. J Biol Eng 2022; 16:1. [PMID: 34986859 PMCID: PMC8734306 DOI: 10.1186/s13036-021-00282-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/02/2021] [Indexed: 02/06/2023] Open
Abstract
Autologous bone grafts are commonly used as the gold standard to repair and regenerate diseased bones. However, they are strongly associated with postoperative complications, especially at the donor site, and increased surgical costs. In an effort to overcome these limitations, tissue engineering (TE) has been proposed as an alternative to promote bone repair. The successful outcome of tissue engineering depends on the microstructure and composition of the materials used as scaffold. Decellularized bone matrix-based biomaterials have been applied as bioscaffolds in bone tissue engineering. These biomaterials play an important role in providing the mechanical and physical microenvironment needed by cells to proliferate and survive. Decellularized extracellular matrix (dECM) can be used as a powder, hydrogel and electrospun scaffolds. These bioscaffolds mimic the native microenvironment due to their structure similar to the original tissue. The aim of this review is to highlight the bone decellularization techniques. Herein we discuss: (1) bone structure; (2) properties of an ideal scaffold; (3) the potential of decellularized bone as bioscaffolds; (4) terminal sterilization of decellularized bone; (5) cell removing confirmation in decellularized tissues; and (6) post decellularization procedures. Finally, the improvement of bone formation by dECM and the immunogenicity aspect of using the decellularized bone matrix are presented, to illustrate how novel dECM-based materials can be used as bioscaffold in tissue engineering. A comprehensive understanding of tissue engineering may allow for better incorporation of therapeutic approaches in bone defects allowing for bone repair and regeneration.
Collapse
Affiliation(s)
- Halimeh Amirazad
- Department of Medical Biotechnology, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Dadashpour
- Department of Biotechnology, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Biotechnology Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Nosratollah Zarghami
- Deparment of Medical Biochemistry, Faculty of Medicine, Istanbul Aydin Universioty, Istanbul, Turkey
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Fan Z, Zhao X, Li J, Ji R, Shi Y. Cell-based therapies for reinforcing the treatment efficacy of meshes in abdominal wall hernias:A systematic review and meta-analysis. Asian J Surg 2021; 45:1667-1677. [PMID: 34635415 DOI: 10.1016/j.asjsur.2021.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/27/2021] [Accepted: 09/29/2021] [Indexed: 11/02/2022] Open
Abstract
To achieve a tension-free repair and reduce the recurrence rate of abdominal wall hernias (AWHs), various kinds of meshes have been applied in surgery. However, these meshes are reported to have problems with adhesion, infection, chronic pain and foreign body sensation. Recently, the introduction of cellular components on meshes seems to provide a new alternative to resolve these problems. This study aimed to evaluate the treatment efficacy of meshes seeded with cells (mesh-cell group) for AWHs, compared to meshes without cells (mesh group). Cochrane Library, Web of Science and PubMed were searched for studies that provided data about meshes, cells and AWHs. Twenty-six studies involving 578 animals were included. We found that the mesh-cell group could better control hernia recurrent than the mesh group (OR = 0.25, 95% CI = 0.15-0.42). Although the mesh-cell group did not reduce the incidence of adhesions (OR = 0.67, 95% CI = 0.26-1.74), it alleviated the extent of adhesions (WMD = -1.48, 95% CI = -1.86 to -1.10). In addition, the capillary density of mesh-cell group was also higher than that of mesh group (WMD = 26.27, 95% CI = 14.45-38.09). For incidence of infection, the two groups had no significant differences (OR = 0.94, 95% CI = 0.39-2.31). On the basis of our current evidence, AWHs were likely to receive a satisfied outcome in animal models when treated by meshes seeded with cells. Future studies with human trial data are needed to validate these findings.
Collapse
Affiliation(s)
- Zun Fan
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xin Zhao
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Jiacheng Li
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Renting Ji
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yang Shi
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
4
|
Extracellular matrix-based biomaterials as adipose-derived stem cell delivery vehicles in wound healing: a comparative study between a collagen scaffold and two xenografts. Stem Cell Res Ther 2020; 11:510. [PMID: 33246508 PMCID: PMC7694925 DOI: 10.1186/s13287-020-02021-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/06/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Stem cell therapies represent a promising tool in regenerative medicine. Considering the drawbacks of direct stem cell injections (e.g. poor cell localisation), extracellular matrix-based biomaterials (e.g. scaffolds and tissue grafts), due to their compositional biofunctionality and cytocompatibility, are under investigation as potential stem cell carriers. METHODS The present study assessed the potential of three commercially available extracellular matrix-based biomaterials [a collagen/glycosaminoglycan scaffold (Integra™ Matrix Wound Dressing), a decellularised porcine peritoneum (XenoMEM™) and a porcine urinary bladder (MatriStem™)] as human adipose-derived stem cell delivery vehicles. RESULTS Both tissue grafts induced significantly (p < 0.01) higher human adipose-derived stem cell proliferation in vitro over the collagen scaffold, especially when the cells were seeded on the basement membrane side. Human adipose-derived stem cell phenotype and trilineage differentiation potential was preserved in all biomaterials. In a splinted wound healing nude mouse model, in comparison to sham, biomaterials alone and cells alone groups, all biomaterials seeded with human adipose-derived stem cells showed a moderate improvement of wound closure, a significantly (p < 0.05) lower wound gap and scar index and a significantly (p < 0.05) higher proportion of mature collagen deposition and angiogenesis (the highest, p < 0.01, was observed for the cell loaded at the basement membrane XenoMEM™ group). All cell-loaded biomaterial groups retained more cells at the implantation side than the direct injection group, even though they were loaded with half of the cells than the cell injection group. CONCLUSIONS This study further advocates the use of extracellular matrix-based biomaterials (in particular porcine peritoneum) as human adipose-derived stem cell delivery vehicles. Comparative analysis of a collagen scaffold (Integra™ Matrix Wound Dressing) and two tissue grafts [decellularised porcine peritoneum (XenoMEM™) and porcine urinary bladder (MatriStem™)] as human adipose-derived stem cells carriers.
Collapse
|
5
|
Marinaro F, Casado JG, Blázquez R, Brun MV, Marcos R, Santos M, Duque FJ, López E, Álvarez V, Usón A, Sánchez-Margallo FM. Laparoscopy for the Treatment of Congenital Hernia: Use of Surgical Meshes and Mesenchymal Stem Cells in a Clinically Relevant Animal Model. Front Pharmacol 2020; 11:01332. [PMID: 33101010 PMCID: PMC7546355 DOI: 10.3389/fphar.2020.01332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 08/11/2020] [Indexed: 12/20/2022] Open
Abstract
More than a century has passed since the first surgical mesh for hernia repair was developed, and, to date, this is still the most widely used method despite the great number of complications it poses. The purpose of this study was to combine stem cell therapy and laparoscopy for the treatment of congenital hernia in a swine animal model. Porcine bone marrow-derived mesenchymal stem cells (MSCs) were seeded on polypropylene surgical meshes using a fibrin sealant solution as a vehicle. Meshes with (cell group) or without (control group) MSCs were implanted through laparoscopy in Large White pigs with congenital abdominal hernia after the approximation of hernia borders (implantation day). A successive laparoscopic biopsy of the mesh and its surrounding tissues was performed a week after implantation, and surgical meshes were excised a month after implantation. Ultrasonography was used to measure hernia sizes. Flow cytometry, histological, and gene expression analyses of the biopsy and necropsy samples were performed. The fibrin sealant solution was easy to prepare and preserved the viability of MSCs in the surgical meshes. Ultrasonography demonstrated a significant reduction in hernia size 1 week after implantation in the cell group relative to that on the day of implantation (p < 0.05). Flow cytometry of the mesh-infiltrated cells showed a non-significant increase of M2 macrophages when the cell group was compared with the control group 1 week after implantation. A significant decrease in the gene expression of VEGF and a significant increase in TNF expression were determined in the cell group 1 month after implantation compared with gene expressions in the control group (p < 0.05). Here, we propose an easy and feasible method to combine stem cell therapy and minimally invasive surgical techniques for hernia repair. In this study, stem cell therapy did not show a great immunomodulatory or regenerative effect in overcoming hernia-related complications. However, our clinically relevant animal model with congenital hernia closely resembles the clinical human condition. Further studies should be focused on this valuable animal model to evaluate stem cell therapies in hernia surgery.
Collapse
Affiliation(s)
- Federica Marinaro
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Javier G Casado
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain.,CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| | - Rebeca Blázquez
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain.,CIBER de Enfermedades Cardiovasculares, Madrid, Spain
| | - Mauricio Veloso Brun
- Department of Small Animal Clinics, Center of Rural Science, Federal University of Santa Maria (UFSM), Santa Maria, Brazil
| | - Ricardo Marcos
- Laboratory of Histology and Embryology, Department of Microscopy, Abel Salazar Institute of Biomedical Sciences, University of Porto, Porto, Portugal
| | - Marta Santos
- Laboratory of Histology and Embryology, Department of Microscopy, Abel Salazar Institute of Biomedical Sciences, University of Porto, Porto, Portugal
| | - Francisco Javier Duque
- Animal Medicine Department, Faculty of Veterinary Medicine, University of Extremadura, Cáceres, Spain
| | - Esther López
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Verónica Álvarez
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Alejandra Usón
- Stem Cell Therapy Unit, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| | - Francisco Miguel Sánchez-Margallo
- CIBER de Enfermedades Cardiovasculares, Madrid, Spain.,Scientific Direction, Jesús Usón Minimally Invasive Surgery Centre, Cáceres, Spain
| |
Collapse
|
6
|
Yang JZ, Qiu LH, Xiong SH, Dang JL, Rong XK, Hou MM, Wang K, Yu Z, Yi CG. Decellularized adipose matrix provides an inductive microenvironment for stem cells in tissue regeneration. World J Stem Cells 2020; 12:585-603. [PMID: 32843915 PMCID: PMC7415251 DOI: 10.4252/wjsc.v12.i7.585] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 05/27/2020] [Accepted: 05/30/2020] [Indexed: 02/06/2023] Open
Abstract
Stem cells play a key role in tissue regeneration due to their self-renewal and multidirectional differentiation, which are continuously regulated by signals from the extracellular matrix (ECM) microenvironment. Therefore, the unique biological and physical characteristics of the ECM are important determinants of stem cell behavior. Although the acellular ECM of specific tissues and organs (such as the skin, heart, cartilage, and lung) can mimic the natural microenvironment required for stem cell differentiation, the lack of donor sources restricts their development. With the rapid development of adipose tissue engineering, decellularized adipose matrix (DAM) has attracted much attention due to its wide range of sources and good regeneration capacity. Protocols for DAM preparation involve various physical, chemical, and biological methods. Different combinations of these methods may have different impacts on the structure and composition of DAM, which in turn interfere with the growth and differentiation of stem cells. This is a narrative review about DAM. We summarize the methods for decellularizing and sterilizing adipose tissue, and the impact of these methods on the biological and physical properties of DAM. In addition, we also analyze the application of different forms of DAM with or without stem cells in tissue regeneration (such as adipose tissue), repair (such as wounds, cartilage, bone, and nerves), in vitro bionic systems, clinical trials, and other disease research.
Collapse
Affiliation(s)
- Ji-Zhong Yang
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Li-Hong Qiu
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Shao-Heng Xiong
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Juan-Li Dang
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Xiang-Ke Rong
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Meng-Meng Hou
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Kai Wang
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Zhou Yu
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| | - Cheng-Gang Yi
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, Shaanxi Province, China
| |
Collapse
|
7
|
Grünherz L, Sanchez-Macedo N, Frueh FS, McLuckie M, Lindenblatt N. Nanofat applications: from clinical esthetics to regenerative research. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2019. [DOI: 10.1016/j.cobme.2019.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
8
|
Cui H, Chai Y, Yu Y. Progress in developing decellularized bioscaffolds for enhancing skin construction. J Biomed Mater Res A 2019; 107:1849-1859. [PMID: 30942934 DOI: 10.1002/jbm.a.36688] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 01/22/2019] [Accepted: 03/19/2019] [Indexed: 01/11/2023]
Affiliation(s)
- Haomin Cui
- Department of Orthopedic SurgeryShanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai China
| | - Yimin Chai
- Department of Orthopedic SurgeryShanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai China
| | - Yaling Yu
- Department of Orthopedic SurgeryShanghai Jiao Tong University Affiliated Sixth People's Hospital Shanghai China
| |
Collapse
|
9
|
Cao G, Huang Y, Li K, Fan Y, Xie H, Li X. Small intestinal submucosa: superiority, limitations and solutions, and its potential to address bottlenecks in tissue repair. J Mater Chem B 2019; 7:5038-5055. [PMID: 31432871 DOI: 10.1039/c9tb00530g] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Small intestinal submucosa (SIS) has attracted much attention in tissue repair because it can provide plentiful bioactive factors and a biomimetic three-dimensional microenvironment to induce desired cellular functions.
Collapse
Affiliation(s)
- Guangxiu Cao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education
- School of Biological Science and Medical Engineering
- Beihang University
- Beijing 100083
- China
| | - Yan Huang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education
- School of Biological Science and Medical Engineering
- Beihang University
- Beijing 100083
- China
| | - Kun Li
- State Key Laboratory of Powder Metallurgy
- Central South University
- Changsha 410083
- China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education
- School of Biological Science and Medical Engineering
- Beihang University
- Beijing 100083
- China
| | - Huiqi Xie
- Laboratory of Stem Cell and Tissue Engineering
- State Key Laboratory of Biotherapy and Cancer Center
- West China Hospital
- Sichuan University and Collaborative Innovation Center of Biotherapy
- Chengdu 610041
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education
- School of Biological Science and Medical Engineering
- Beihang University
- Beijing 100083
- China
| |
Collapse
|
10
|
Terazawa T, Furukoshi M, Nakayama Y. One-year follow-up study of iBTA-induced allogenic biosheet for repair of abdominal wall defects in a beagle model: a pilot study. Hernia 2018; 23:149-155. [PMID: 30506241 DOI: 10.1007/s10029-018-1866-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 11/25/2018] [Indexed: 11/30/2022]
Abstract
PURPOSE We evaluated the usefulness of biosheet, an in-body tissue-engineered collagenous membrane, as a novel repair material for abdominal wall defects in a beagle model. METHODS Biosheets were prepared by embedding molds into subcutaneous pouches in two beagle dogs for 2 months, with subsequent storage in 70% ethanol. The obtained biosheets (thickness 0.5 mm, size 25 cm2) were implanted to replace same-size defects in the abdominal wall of two beagles in an allogenic manner. RESULTS The biosheets were not stressed during suturing and did not split; moreover, patch implantation into the defective wound was easy. No complications such as anastomotic leaks or infections occurred during implantation. One year post-implantation, the thickness of the biosheet implantation section increased to approximately 2.5 mm, corresponding to approximately 70% of the native abdominal wall. A section of the abdominal wall muscle elongated from the periphery of the newly formed collagen layer, and the peritoneum was entirely formed on the peritoneal cavity surface, resulting in partial regeneration of the three-layered abdominal wall. The mechanical strength of the newly formed wall was approximately fivefold higher than the native wall. The elasticity of the biosheet in the low-strain region decreased to approximately 10% post-implantation, similar to the native wall. CONCLUSIONS This pilot study demonstrated that biosheet maintained the abdominal wall without any complications for 1 year post-implantation, and partial regeneration was observed. Although this experiment was limited to two cases, the results indicated that biosheet may serve as a reliable abdominal wall restorative material.
Collapse
Affiliation(s)
- T Terazawa
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center Research Institute, 5-7-1, Fujishirodai, Suita, Osaka, 565-8565, Japan.,Division of Cell Engineering, Graduate School of Chemical Science and Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan.,Biotube Co., Ltd, 2-13-11 Shinkawa, Chuo, Tokyo, 104-0033, Japan
| | - M Furukoshi
- Department of Regenerative Medicine and Tissue Engineering, National Cerebral and Cardiovascular Center Research Institute, 5-7-1, Fujishirodai, Suita, Osaka, 565-8565, Japan.,Division of Cell Engineering, Graduate School of Chemical Science and Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido, 060-8628, Japan
| | - Y Nakayama
- Biotube Co., Ltd, 2-13-11 Shinkawa, Chuo, Tokyo, 104-0033, Japan.
| |
Collapse
|
11
|
Hintze JM, Tchoukalova YD, Sista R, Shah MK, Zhang N, Lott DG. Development of xeno-free epithelial differentiation media for adherent, non-expanded adipose stromal vascular cell cultures. Biochem Biophys Res Commun 2018; 503:3128-3133. [PMID: 30166060 DOI: 10.1016/j.bbrc.2018.08.104] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 08/15/2018] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Reconstruction of respiratory epithelium is critical for the fabrication of bioengineered airway implants. Epithelial differentiation is typically achieved using bovine pituitary extract (BPE). Due to the xenogenic nature and undefined composition of BPE, an alternative for human clinical applications, devoid of BPE, must be developed. The goal of this study was to develop two different BPE-free media, with and without select pituitary hormone (PH), which could initiate epithelial differentiation for use in human implantation. METHODS The ability of the two BPE-free media to initiate epithelial differentiation of adherent, non-expanded stromal-vascular cells grown on porcine small intestinal submucosa was compared to traditional BPE-containing media (M1). Nanostring® was used to measure differences in gene expression of stemness (MSC), basal cell (basal), and ciliated markers (muco-cil), and staining was performed support the gene data. RESULTS Compared to baseline, both BPE-free media upregulated epithelial and stemness genes, however this was to a lower degree than BPE-containing media. In general, the expression of basal cell markers (COL17A1, DSG3, ITGA6, KRT6A, LOXL2) and secreted mucous proteins (PLUNC, MUC5B, SCGB2A1) was upregulated. The gene expression of ciliated markers C9orf24, TUBA3 and DNCL2B but not of the key transcription factor for cilagenesis FOXJ1 were upregulated, indicating that mucus-secreting cell differentiation occurs more rapidly than ciliogenesis. The ability of the adherent stromal vascular cells to upregulate gene expression of both epithelial and stemness markers suggests maintenance of the self-renewal capacity of undifferentiated and/or basal cell-like cells contributing to proliferation and ensuring a persisting source of cells for regenerative medicine applications. CONCLUSION This study provides the initial step to defining a BPE-free epithelial differentiation medium for clinical translation. Thus, either of the proposed BPE-free medium are viable alternatives to BPE-containing medium for partial epithelial differentiation for human translational applications.
Collapse
Affiliation(s)
- Justin M Hintze
- Head and Neck Regeneration Program, Center for Regenerative Medicine, Mayo Clinic, USA
| | - Yourka D Tchoukalova
- Head and Neck Regeneration Program, Center for Regenerative Medicine, Mayo Clinic, USA
| | - Ramachandra Sista
- Department of Pulmonary and Critical Care Medicine, Mayo Clinic, Phoenix, AZ, USA
| | - Manisha K Shah
- Head and Neck Regeneration Program, Center for Regenerative Medicine, Mayo Clinic, USA
| | - Nan Zhang
- Department of Biostatistics, Mayo Clinic, Scottsdale, AZ, USA
| | - David G Lott
- Head and Neck Regeneration Program, Center for Regenerative Medicine, Mayo Clinic, USA; Department of Otolaryngology - Head and Neck Surgery, Mayo Clinic, Phoenix, AZ, USA.
| |
Collapse
|
12
|
Abstract
Prior publications of the Surgical Clinics of North America have highlighted the technical challenges of abdominal wall reconstruction. This article provides an update on synthetic, biologic, and biosynthetic mesh research since the 2013 Surgical Clinics of North America hernia publication and highlights the future of mesh research. This update features research that has been conducted since the prior publication to guide surgeons to choose the best and most appropriate mesh for their patients.
Collapse
Affiliation(s)
- Brent D Matthews
- Department of Surgery, Carolinas Medical Center, 1000 Blythe Boulevard, 2nd Floor Administrative Suites, Charlotte, NC 28203, USA
| | - Lauren Paton
- Department of Surgery, Carolinas Medical Center, 1000 Blythe Boulevard, Medical Education Building 6A, Charlotte, NC 28203, USA.
| |
Collapse
|
13
|
Serruya MD, Harris JP, Adewole DO, Struzyna LA, Burrell JC, Nemes A, Petrov D, Kraft RH, Chen HI, Wolf JA, Cullen DK. Engineered Axonal Tracts as "Living Electrodes" for Synaptic-Based Modulation of Neural Circuitry. ADVANCED FUNCTIONAL MATERIALS 2018; 28:1701183. [PMID: 34045935 PMCID: PMC8152180 DOI: 10.1002/adfm.201701183] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Brain-computer interface and neuromodulation strategies relying on penetrating non-organic electrodes/optrodes are limited by an inflammatory foreign body response that ultimately diminishes performance. A novel "biohybrid" strategy is advanced, whereby living neurons, biomaterials, and microelectrode/optical technology are used together to provide a biologically-based vehicle to probe and modulate nervous-system activity. Microtissue engineering techniques are employed to create axon-based "living electrodes", which are columnar microstructures comprised of neuronal population(s) projecting long axonal tracts within the lumen of a hydrogel designed to chaperone delivery into the brain. Upon microinjection, the axonal segment penetrates to prescribed depth for synaptic integration with local host neurons, with the perikaryal segment remaining externalized below conforming electrical-optical arrays. In this paradigm, only the biological component ultimately remains in the brain, potentially attenuating a chronic foreign-body response. Axon-based living electrodes are constructed using multiple neuronal subtypes, each with differential capacity to stimulate, inhibit, and/or modulate neural circuitry based on specificity uniquely afforded by synaptic integration, yet ultimately computer controlled by optical/electrical components on the brain surface. Current efforts are assessing the efficacy of this biohybrid interface for targeted, synaptic-based neuromodulation, and the specificity, spatial density and long-term fidelity versus conventional microelectronic or optical substrates alone.
Collapse
Affiliation(s)
- Mijail D Serruya
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - James P Harris
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| | - Dayo O Adewole
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Laura A Struzyna
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Justin C Burrell
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| | - Ashley Nemes
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| | - Dmitriy Petrov
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| | - Reuben H Kraft
- Computational Biomechanics Group, Department of Mechanical & Nuclear Engineering, Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA 16801, USA
| | - H Isaac Chen
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| | - John A Wolf
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| | - D Kacy Cullen
- Center for Brain Injury & Repair, Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| |
Collapse
|
14
|
Sabol RA, Bowles AC, Côté A, Wise R, Pashos N, Bunnell BA. Therapeutic Potential of Adipose Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1341:15-25. [PMID: 30051318 DOI: 10.1007/5584_2018_248] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Adipose stem cells (ASCs) have gained attention in the fields of stem cells regenerative medicine due to their multifaceted therapeutic capabilities. Promising preclinical evidence of ASCs has supported the substantial interest in the use of these cells as therapy for human disease. ASCs are an adult stem cell resident in adipose tissue with the potential to differentiation along mesenchymal lineages. They also are known to be recruited to sites of inflammation where they exhibit strong immunomodulatory capabilities to promote wound healing and regeneration. ASCs can be isolated from adipose tissue at a relatively high yield compared to their mesenchymal cell counterparts: bone marrow-derived mesenchymal stem cells (BM-MSCs). Like BM-MSCs, ASCs are easily culture expanded and have a reduced immunogenicity or are perhaps immune privileged, making them attractive options for cellular therapy. Additionally, the heterogeneous cellular product obtained after digestion of adipose tissue, called the stromal vascular fraction (SVF), contains ASCs and several populations of stromal and immune cells. Both the SVF and culture expanded ASCs have the potential to be therapeutic in various diseases. This review will focus on the preclinical and clinical evidence of SVF and ASCs, which make them potential candidates for therapy in regenerative medicine and inflammatory disease processes.
Collapse
Affiliation(s)
- Rachel A Sabol
- Center for Stem Cell Research and Regenerative Medicine, Tulane University, New Orleans, LA, USA
- Physician Scientist Program, Tulane University School of Medicine, New Orleans, LA, USA
| | - Annie C Bowles
- Center for Stem Cell Research and Regenerative Medicine, Tulane University, New Orleans, LA, USA
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, USA
| | - Alexandra Côté
- Center for Stem Cell Research and Regenerative Medicine, Tulane University, New Orleans, LA, USA
- Department of Cell and Molecular Biology, Tulane University, New Orleans, LA, USA
| | - Rachel Wise
- Center for Stem Cell Research and Regenerative Medicine, Tulane University, New Orleans, LA, USA
- Tulane Brain Institute, Neuroscience Program, Tulane University, New Orleans, LA, USA
| | - Nicholas Pashos
- Center for Stem Cell Research and Regenerative Medicine, Tulane University, New Orleans, LA, USA
- Bioinnovation PhD Program, Tulane University, New Orleans, LA, USA
| | - Bruce A Bunnell
- Center for Stem Cell Research and Regenerative Medicine, Tulane University, New Orleans, LA, USA.
- Department of Pharmacology, Tulane University, New Orleans, LA, USA.
- Division of Regenerative Medicine, Tulane National Primate Research Center, Covington, LA, USA.
| |
Collapse
|
15
|
Öberg S, Andresen K, Rosenberg J. Etiology of Inguinal Hernias: A Comprehensive Review. Front Surg 2017; 4:52. [PMID: 29018803 PMCID: PMC5614933 DOI: 10.3389/fsurg.2017.00052] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 08/29/2017] [Indexed: 12/12/2022] Open
Abstract
Background The etiology of inguinal hernias remains uncertain even though the lifetime risk of developing an inguinal hernia is 27% for men and 3% for women. The aim was to summarize the evidence on hernia etiology, with focus on differences between lateral and medial hernias. Results Lateral and medial hernias seem to have common as well as different etiologies. A patent processus vaginalis and increased cumulative mechanical exposure are risk factors for lateral hernias. Patients with medial hernias seem to have a more profoundly altered connective tissue architecture and homeostasis compared with patients with lateral hernias. However, connective tissue alteration may play a role in development of both subtypes. Inguinal hernias have a hereditary component with a complex inheritance pattern, and inguinal hernia susceptible genes have been identified that also are involved in connective tissue homeostasis. Conclusion The etiology of lateral and medial hernias are at least partly different, but the final explanations are still lacking on certain areas. Further investigations of inguinal hernia genes may explain the altered connective tissue observed in patients with inguinal hernias. The precise mechanisms why processus vaginalis fails to obliterate in certain patients should also be clarified. Not all patients with a patent processus vaginalis develop a lateral hernia, but increased intraabdominal pressure appears to be a contributing factor.
Collapse
Affiliation(s)
- Stina Öberg
- Center for Perioperative Optimization, Department of Surgery, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Kristoffer Andresen
- Center for Perioperative Optimization, Department of Surgery, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Jacob Rosenberg
- Center for Perioperative Optimization, Department of Surgery, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
16
|
Ha A, Criman ET, Kurata WE, Matsumoto KW, Pierce LM. Evaluation of a Novel Hybrid Viable Bioprosthetic Mesh in a Model of Mesh Infection. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2017; 5:e1418. [PMID: 28894654 PMCID: PMC5585427 DOI: 10.1097/gox.0000000000001418] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 05/30/2017] [Indexed: 01/01/2023]
Abstract
Background: The reported incidence of mesh infection in contaminated operative fields is as high as 30% regardless of material used. Our laboratory previously showed that augmenting acellular bioprosthetic mesh with allogeneic mesenchymal stem cells (MSC) enhances resistance to bacterial colonization in vivo and preserves mesh integrity. This study’s aim was to determine whether augmentation of non-crosslinked porcine dermis (Strattice) with commercially available, cryopreserved, viable MSC-containing human placental tissue (Stravix) similarly improves infection resistance after inoculation with Escherichia coli (E. coli) using an established mesh infection model. Methods: Stravix was thawed per manufacturer’s instructions and 2 samples were tested for cell viability using a Live/Dead Cell assay at the time of surgery. Rats (N = 20) were implanted subcutaneously with 1 piece of Strattice and 1 piece of hybrid mesh (Strattice + Stravix sutured at the corners). Rats were inoculated with either sterile saline or 106 colony-forming units of E. coli before wound closure (n = 10 per group). At 4 weeks, explants underwent microbiologic and histologic analyses. Results: In E. coli–inoculated animals, severe or complete mesh degradation concurrent with abscess formation was observed in 100% (10/10) hybrid meshes and 90% (9/10) Strattice meshes. Histologic evaluation determined that meshes inoculated with E. coli exhibited severe acute inflammation, which correlated with bacterial recovery (P < 0.001). Viability assays performed at the time of surgery failed to verify the presence of numerous live cells in Stravix. Conclusions: Stravix cryopreserved MSC-containing human umbilical tissue does not improve infection resistance of a bioprosthetic mesh in vivo in rats after inoculation with E. coli.
Collapse
Affiliation(s)
- Ally Ha
- Department of General Surgery, Tripler Army Medical Center, Honolulu, H.I.; and Department of Clinical Investigation, Tripler Army Medical Center, Honolulu, H.I
| | - Erik T Criman
- Department of General Surgery, Tripler Army Medical Center, Honolulu, H.I.; and Department of Clinical Investigation, Tripler Army Medical Center, Honolulu, H.I
| | - Wendy E Kurata
- Department of General Surgery, Tripler Army Medical Center, Honolulu, H.I.; and Department of Clinical Investigation, Tripler Army Medical Center, Honolulu, H.I
| | - Karen W Matsumoto
- Department of General Surgery, Tripler Army Medical Center, Honolulu, H.I.; and Department of Clinical Investigation, Tripler Army Medical Center, Honolulu, H.I
| | - Lisa M Pierce
- Department of General Surgery, Tripler Army Medical Center, Honolulu, H.I.; and Department of Clinical Investigation, Tripler Army Medical Center, Honolulu, H.I
| |
Collapse
|
17
|
Lesage F, Pranpanus S, Bosisio FM, Jacobs M, Ospitalieri S, Toelen J, Deprest J. Minimal modulation of the host immune response to SIS matrix implants by mesenchymal stem cells from the amniotic fluid. Hernia 2017; 21:973-982. [PMID: 28752425 DOI: 10.1007/s10029-017-1635-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 07/11/2017] [Indexed: 01/26/2023]
Abstract
PURPOSE Surgical restoration of soft tissue defects often requires implantable devices. The clinical outcome of the surgery is determined by the properties inherent to the used matrix. Mesenchymal stem cells (MSC) modulate the immune processes after in vivo transplantation and their addition to matrices is associated with constructive remodeling. Herein we evaluate the potential of MSC derived from the amniotic fluid (AF-MSC), an interesting MSC source for cell therapeutic applications in the perinatal period, for immune modulation when added to a biomaterial. METHODS We implant cell free small intestinal submucosa (SIS) or SIS seeded with AF-MSC at a density of 1 × 105/cm2 subcutaneously at the abdominal wall in immune competent rats. The host immune response is evaluated at 3, 7 and 14 days postoperatively. RESULTS The matrix-specific or cellular characteristics are not altered after 24 h of in vitro co-culture of SIS with AF-MSC. The host immune response was not different between animals implanted with cell free or AF-MSC-seeded SIS in terms of cellular infiltration, vascularity, macrophage polarization or scaffold replacement. Profiling the mRNA expression level of inflammatory cytokines at the matrix interface shows a significant reduction in the expression of the pro-inflammatory marker Tnf-α and a trend towards lower iNos expression upon AF-MSC-seeding of the SIS matrix. Anti-inflammatory marker expression does not alter upon cell seeding of matrix implants. CONCLUSION We conclude that SIS is a suitable substrate for in vitro culture of AF-MSC and fibroblasts. AF-MSC addition to SIS does not significantly modulate the host immune response after subcutaneous implantation in rats.
Collapse
Affiliation(s)
- F Lesage
- Department of Development and Regeneration, KU Leuven-University of Leuven, Leuven, Belgium
| | - S Pranpanus
- Department of Obstetrics and Gynecology, Prince of Songkla University, Songkhla, Thailand
| | - F M Bosisio
- Department of Imaging and Pathology, KU Leuven-University of Leuven, Leuven, Belgium
- Università Degli Studi di Milano-Bicocca, Milan, Italy
| | - M Jacobs
- Department of Development and Regeneration, KU Leuven-University of Leuven, Leuven, Belgium
| | - S Ospitalieri
- Department of Development and Regeneration, KU Leuven-University of Leuven, Leuven, Belgium
| | - J Toelen
- Department of Development and Regeneration, KU Leuven-University of Leuven, Leuven, Belgium
- Department of Pediatrics, University Hospitals Leuven, Leuven, Belgium
| | - J Deprest
- Department of Development and Regeneration, KU Leuven-University of Leuven, Leuven, Belgium.
- Department of Obstetrics and Gynecology, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium.
| |
Collapse
|
18
|
Brett E, Chung N, Leavitt WT, Momeni A, Longaker MT, Wan DC. A Review of Cell-Based Strategies for Soft Tissue Reconstruction. TISSUE ENGINEERING PART B-REVIEWS 2017; 23:336-346. [PMID: 28372485 DOI: 10.1089/ten.teb.2016.0455] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Soft tissue reconstruction to restore volume to damaged or deficient tissue beneath the skin remains a challenging endeavor. Current techniques are centered around autologous fat transfer, or the use of synthetic substitutes, however, a great deal of scientific inquiry has been made into both the molecular mechanisms involved in, and limitations of, de novo adipogenesis, that is, the formation of new adipose tissue from precursor cells. To best comprehend these mechanisms, an understanding of defined markers for adipogenic differentiation, and knowledge of both commercially available and primary cell lines that enable in vitro and in vivo studies is necessary. We review the growth factors, proteins, cytokines, drugs, and molecular pathways that have shown promise in enhancing adipogenesis and vasculogenesis, in addition to the multitude of scaffolds that act as delivery vehicles to support these processes. While progress continues on these fronts, equally important is how researchers are optimizing clinically employed strategies such as autologous fat transfer through cell-based intervention, and the potential to augment this approach through isolation of preferentially adipogenic or angiogenic precursor subpopulations, which exists on the horizon. This review will highlight the novel molecular and synthetic modifications currently being studied for inducing adipose tissue regeneration on a cellular level, which will expand our arsenal of techniques for approaching soft tissue reconstruction.
Collapse
Affiliation(s)
- Elizabeth Brett
- 1 Hagey Laboratory for Pediatric Regenerative Medicine, Plastic and Reconstructive Surgery Division, Department of Surgery, Stanford University School of Medicine , Stanford, California
| | - Natalie Chung
- 1 Hagey Laboratory for Pediatric Regenerative Medicine, Plastic and Reconstructive Surgery Division, Department of Surgery, Stanford University School of Medicine , Stanford, California
| | - William Tripp Leavitt
- 1 Hagey Laboratory for Pediatric Regenerative Medicine, Plastic and Reconstructive Surgery Division, Department of Surgery, Stanford University School of Medicine , Stanford, California
| | - Arash Momeni
- 1 Hagey Laboratory for Pediatric Regenerative Medicine, Plastic and Reconstructive Surgery Division, Department of Surgery, Stanford University School of Medicine , Stanford, California
| | - Michael T Longaker
- 1 Hagey Laboratory for Pediatric Regenerative Medicine, Plastic and Reconstructive Surgery Division, Department of Surgery, Stanford University School of Medicine , Stanford, California.,2 Institute for Stem Cell Biology and Regenerative Medicine, Stanford University , Stanford, California
| | - Derrick C Wan
- 1 Hagey Laboratory for Pediatric Regenerative Medicine, Plastic and Reconstructive Surgery Division, Department of Surgery, Stanford University School of Medicine , Stanford, California
| |
Collapse
|
19
|
Lankford L, Chen YJ, Saenz Z, Kumar P, Long C, Farmer D, Wang A. Manufacture and preparation of human placenta-derived mesenchymal stromal cells for local tissue delivery. Cytotherapy 2017; 19:680-688. [PMID: 28438482 DOI: 10.1016/j.jcyt.2017.03.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 03/02/2017] [Accepted: 03/03/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND In this study we describe the development of a Current Good Manufacturing Practice (CGMP)-compliant process to isolate, expand and bank placenta-derived mesenchymal stromal cells (PMSCs) for use as stem cell therapy. We characterize the viability, proliferation and neuroprotective secretory profile of PMSCs seeded on clinical-grade porcine small intestine submucosa extracellular matrix (SIS-ECM; Cook Biotech). METHODS PMSCs were isolated from early gestation placenta chorionic villus tissue via explant culture. Cells were expanded, banked and screened. Purity and expression of markers of pluripotency were determined using flow cytometry. Optimal loading density and viability of PMSCs on SIS-ECM were determined using 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) cell proliferation and fluorescent live/dead assays, respectively. Growth factors secretion was analyzed using enzyme-linked immunosorbent assays (ELISA). RESULTS PMSCs were rapidly expanded and banked. Viable Master and Working Cell Banks were stable with minimal decrease in viability at 6 months. All PMSCs were sterile, free from Mycoplasma species, karyotypically normal and had low endotoxin levels. PMSCs were homogeneous by immunophenotyping and expressed little to no pluripotency markers. Optimal loading density on SIS-ECM was 3-5 × 105 cells/cm2, and seeded cells were >95% viable. Neurotrophic factor secretion was detectable from PMSCs seeded on plastic and SIS-ECM with variability between donor lots. DISCUSSION PMSCs from early gestation placental tissues can be rapidly expanded and banked in stable, viable cell banks that are free from contaminating agents, genetically normal and pure. PMSC delivery can be accomplished by using SIS-ECM, which maintains cell viability and protein secretion. Future work in vivo is necessary to optimize cell seeding and transplantation to maximize therapeutic capabilities.
Collapse
Affiliation(s)
- Lee Lankford
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis School of Medicine, Sacramento, California, USA
| | - Y Julia Chen
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis School of Medicine, Sacramento, California, USA
| | - Zoe Saenz
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis School of Medicine, Sacramento, California, USA
| | - Priyadarsini Kumar
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis School of Medicine, Sacramento, California, USA
| | - Connor Long
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis School of Medicine, Sacramento, California, USA
| | - Diana Farmer
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis School of Medicine, Sacramento, California, USA
| | - Aijun Wang
- Surgical Bioengineering Laboratory, Department of Surgery, University of California, Davis School of Medicine, Sacramento, California, USA.
| |
Collapse
|
20
|
Burst inflation test for measuring biomechanical properties of rat abdominal walls. Hernia 2017; 21:643-648. [PMID: 28039544 DOI: 10.1007/s10029-016-1568-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Accepted: 12/18/2016] [Indexed: 10/20/2022]
Abstract
PURPOSE Evaluation of potential grafts to improve upon current strategies for abdominal wall (AW) repair in small animal models typically involves mechanical testing using methods that currently are inadequate to assess physiologically relevant parameters. This study introduces burst inflation testing as a more relevant assessment of the mechanical integrity of the AW compared to traditional tensile testing. METHODS AWs were excised from 14 healthy adult Fischer 344 rats and tested using either a custom burst inflation device or an Instron tensile testing system. Modulus outcomes from both testing methods were compared. RESULTS Mechanical analyses of native AW using burst and tensile testing methods resulted in similar average tissue moduli, but with the burst test, there was significantly less variability among specimens. CONCLUSIONS The burst test had greater repeatability compared to tensile testing and has the ability to test repaired AWs without compromising the integrity of the repair site, making it a useful tool for assessing graft repairs.
Collapse
|
21
|
Bone Marrow-Derived Mesenchymal Stem Cells Enhance Bacterial Clearance and Preserve Bioprosthetic Integrity in a Model of Mesh Infection. PLASTIC AND RECONSTRUCTIVE SURGERY-GLOBAL OPEN 2016; 4:e751. [PMID: 27482490 PMCID: PMC4956863 DOI: 10.1097/gox.0000000000000765] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 04/20/2016] [Indexed: 12/27/2022]
Abstract
Background: The reported incidence of mesh infection in contaminated operative fields is as high as 30% regardless of the material used. Recently, mesenchymal stem cells (MSCs) have been shown to possess favorable immunomodulatory properties and improve tissue incorporation when seeded onto bioprosthetics. The aim of this study was to evaluate whether seeding noncrosslinked bovine pericardium (Veritas Collagen Matrix) with allogeneic bone marrow–derived MSCs improves infection resistance in vivo after inoculation with Escherichia coli (E. coli). Methods: Rat bone marrow–derived MSCs at passage 3 were seeded onto bovine pericardium and cultured for 7 days before implantation. Additional rats (n = 24) were implanted subcutaneously with MSC-seeded or unseeded mesh and inoculated with 7 × 105 colony-forming units of E. coli or saline before wound closure (group 1, unseeded mesh/saline; group 2, unseeded mesh/E. coli; group 3, MSC-seeded mesh/E. coli; 8 rats per group). Meshes were explanted at 4 weeks and underwent microbiologic and histologic analyses. Results: MSC-seeded meshes inoculated with E. coli demonstrated superior bacterial clearance and preservation of mesh integrity compared with E. coli–inoculated unseeded meshes (87.5% versus 0% clearance; p = 0.001). Complete mesh degradation concurrent with abscess formation was observed in 100% of rats in the unseeded/E. coli group, which is in contrast to 12.5% of rats in the MSC-seeded/E. coli group. Histologic evaluation determined that remodeling characteristics of E. coli–inoculated MSC-seeded meshes were similar to those of uninfected meshes 4 weeks after implantation. Conclusions: Augmenting a bioprosthetic material with stem cells seems to markedly enhance resistance to bacterial infection in vivo and preserve mesh integrity.
Collapse
|