1
|
Wang Y, Zuo J, Duan C, Peng H, Huang J, Zhao L, Zhang L, Dong Z. Large language models assisted multi-effect variants mining on cerebral cavernous malformation familial whole genome sequencing. Comput Struct Biotechnol J 2024; 23:843-858. [PMID: 38352937 PMCID: PMC10861960 DOI: 10.1016/j.csbj.2024.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/04/2024] [Accepted: 01/19/2024] [Indexed: 02/16/2024] Open
Abstract
Cerebral cavernous malformation (CCM) is a polygenic disease with intricate genetic interactions contributing to quantitative pathogenesis across multiple factors. The principal pathogenic genes of CCM, specifically KRIT1, CCM2, and PDCD10, have been reported, accompanied by a growing wealth of genetic data related to mutations. Furthermore, numerous other molecules associated with CCM have been unearthed. However, tackling such massive volumes of unstructured data remains challenging until the advent of advanced large language models. In this study, we developed an automated analytical pipeline specialized in single nucleotide variants (SNVs) related biomedical text analysis called BRLM. To facilitate this, BioBERT was employed to vectorize the rich information of SNVs, while a deep residue network was used to discriminate the classes of the SNVs. BRLM was initially constructed on mutations from 12 different types of TCGA cancers, achieving an accuracy exceeding 99%. It was further examined for CCM mutations in familial sequencing data analysis, highlighting an upstream master regulator gene fibroblast growth factor 1 (FGF1). With multi-omics characterization and validation in biological function, FGF1 demonstrated to play a significant role in the development of CCMs, which proved the effectiveness of our model. The BRLM web server is available at http://1.117.230.196.
Collapse
Affiliation(s)
- Yiqi Wang
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, No.1, Shizishan Street, Wuhan 430070, Hubei, China
- Center for Neurological Disease Research, Taihe Hospital, Hubei University of Medicine, No.32, Renmin South Road, Shiyan 442000, Hubei, China
- Precision Medicine Research Center, Taihe Hospital, Hubei University of Medicine, No. 32, Renmin South Road, Shiyan 442000, Hubei, China
| | - Jinmei Zuo
- Physical Examination Center, Taihe Hospital, Hubei University of Medicine, No. 32, Renmin South Road, Shiyan 442000, Hubei, China
| | - Chao Duan
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, No.1, Shizishan Street, Wuhan 430070, Hubei, China
- Center for Neurological Disease Research, Taihe Hospital, Hubei University of Medicine, No.32, Renmin South Road, Shiyan 442000, Hubei, China
| | - Hao Peng
- Center for Neurological Disease Research, Taihe Hospital, Hubei University of Medicine, No.32, Renmin South Road, Shiyan 442000, Hubei, China
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, No.32, Renmin South Road, Shiyan 442000, Hubei, China
| | - Jia Huang
- The Second Clinical Medical College, Lanzhou University, No. 222, South Tianshui Road, Lanzhou 730030, Gansu, China
| | - Liang Zhao
- Precision Medicine Research Center, Taihe Hospital, Hubei University of Medicine, No. 32, Renmin South Road, Shiyan 442000, Hubei, China
| | - Li Zhang
- Center for Neurological Disease Research, Taihe Hospital, Hubei University of Medicine, No.32, Renmin South Road, Shiyan 442000, Hubei, China
- Department of Neurosurgery, Taihe Hospital, Hubei University of Medicine, No.32, Renmin South Road, Shiyan 442000, Hubei, China
| | - Zhiqiang Dong
- College of Biomedicine and Health, College of Life Science and Technology, Huazhong Agricultural University, No.1, Shizishan Street, Wuhan 430070, Hubei, China
- Center for Neurological Disease Research, Taihe Hospital, Hubei University of Medicine, No.32, Renmin South Road, Shiyan 442000, Hubei, China
| |
Collapse
|
2
|
Mufti K, Cordova M, Scott EN, Trueman JN, Lovnicki JM, Loucks CM, Rassekh SR, Ross CJD, Carleton BC. Genomic variations associated with risk and protection against vincristine-induced peripheral neuropathy in pediatric cancer patients. NPJ Genom Med 2024; 9:56. [PMID: 39500896 PMCID: PMC11538333 DOI: 10.1038/s41525-024-00443-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 10/21/2024] [Indexed: 11/08/2024] Open
Abstract
Vincristine-induced peripheral neuropathy is a common and highly debilitating toxicity from vincristine treatment that affects quality of life and often requires dose reduction, potentially affecting survival. Although previous studies demonstrated genetic factors are associated with vincristine neuropathy risk, the clinical relevance of most identified variants is limited by small sample sizes and unclear clinical phenotypes. A genome-wide association study was conducted in 1100 cases and controls matched by vincristine dose and genetic ancestry, uncovering a statistically significant (p < 5.0 × 10-8) variant in MCM3AP gene that substantially increases the risk of neuropathy and 12 variants protective against neuropathy within/near SPDYA, METTL8, PDE4D, FBN2, ZFAND3, NFIB, PAPPA, LRRTM3, NRG3, VTI1A, ARHGAP5, and ACTN1. A follow-up pathway analysis reveals the involvement of four key pathways, including nerve structure and development, myelination, neuronal transmission, and cytoskeleton/microfibril function pathways. These findings present potential actionable genomic markers of vincristine neuropathy and offer opportunities for tailored interventions to improve vincristine safety in children with cancer. This study is registered with ClinicalTrials.gov under the title National Active Surveillance Network and Pharmacogenomics of Adverse Drug Reactions in Children (ID NCT00414115, registered on December 21, 2006).
Collapse
Affiliation(s)
- Kheireddin Mufti
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
| | - Miguel Cordova
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
- Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Erika N Scott
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
- Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jessica N Trueman
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
- Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Pharmaceutical Outcomes Programme, BC Children's Hospital, Vancouver, BC, Canada
| | - Jessica M Lovnicki
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
- Pharmaceutical Outcomes Programme, BC Children's Hospital, Vancouver, BC, Canada
| | - Catrina M Loucks
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
- Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Anesthesiology, Pharmacology & Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Shahrad R Rassekh
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada
- Division of Hematology, Oncology & Bone Marrow Transplant, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Colin J D Ross
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada.
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada.
| | - Bruce C Carleton
- Department of Medical Genetics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.
- British Columbia Children's Hospital Research Institute, Vancouver, BC, Canada.
- Division of Translational Therapeutics, Department of Pediatrics, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada.
- Pharmaceutical Outcomes Programme, BC Children's Hospital, Vancouver, BC, Canada.
| |
Collapse
|
3
|
Luo C, Hu C, Li B, Liu J, Hu L, Dong R, Liao X, Zhou J, Xu L, Liu S, Li Y, Yuan D, Jiang W, Yan J. Polymorphisms in Lysyl Oxidase Family Genes Are Associated With Intracranial Aneurysm Susceptibility in a Chinese Population. Front Endocrinol (Lausanne) 2021; 12:642698. [PMID: 34393991 PMCID: PMC8355735 DOI: 10.3389/fendo.2021.642698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 06/29/2021] [Indexed: 01/02/2023] Open
Abstract
PURPOSE Intracranial aneurysms (IA) comprise a multifactorial disease with unclear physiological mechanisms. The lysyl oxidase (LOX) family genes (LOX, LOX-like 1-4) plays important roles in extracellular matrix (ECM) reconstruction and has been investigated in terms of susceptibility to IA in a few populations. We aimed to determine whether polymorphisms in LOX family genes are associated with susceptibility to IA in a Chinese population. METHODS This case-control study included 384 patients with IA and 384 healthy individuals without IA (controls). We genotyped 27 single nucleotide polymorphisms (SNPs) of LOX family genes using the Sequenom MassARRAY® platform. These SNPs were adjusted for known risk factors and then, odds ratios (OR) and 95% confidence intervals (CI) were evaluated using binary logistic regression analysis. RESULTS The result showed that LOX rs10519694 was associated with the risk of IA in recessive (OR, 3.88; 95% CI, 1.12-13.47) and additive (OR, 1.56; 95%CI, 1.05-2.34) models. Stratified analyses illustrated that LOX rs10519694 was associated with the risk of single IA in the recessive (OR, 3.95; 95%CI, 1.04-15.11) and additive (OR, 1.64; 95%CI, 1.04-2.56) models. The LOXL2 rs1010156 polymorphism was associated with multiple IA in the dominant model (OR, 1.92; 95%CI, 1.02-3.62). No associations were observed between SNPs of LOXL1, LOXL3, and LOXL4 and risk of IA. CONCLUSION LOX and LOXL2 polymorphisms were associated with risk of single IA and multiple IA in a Chinese population, suggesting potential roles of these genes in IA. The effects of these genes on IA require further investigation.
Collapse
Affiliation(s)
- Chun Luo
- Department of Epidemiology and Health Statistics, XiangYa School of Public Health, Central South University, Changsha, China
| | - Chongyu Hu
- Department of Neurology, Hunan People’s Hospital, Changsha, China
| | - Bingyang Li
- Department of Epidemiology and Health Statistics, XiangYa School of Public Health, Central South University, Changsha, China
- Department of Information Statistics, Changsha Hospital of Traditional Chinese Medicine (Changsha Eight Hospital), Changsha, China
| | - Junyu Liu
- Department of Neurosurgery, XiangYa Hospital, Central South University, Changsha, China
| | - Liming Hu
- Department of Epidemiology and Health Statistics, XiangYa School of Public Health, Central South University, Changsha, China
| | - Rui Dong
- Department of Epidemiology and Health Statistics, XiangYa School of Public Health, Central South University, Changsha, China
| | - Xin Liao
- Department of Epidemiology and Health Statistics, XiangYa School of Public Health, Central South University, Changsha, China
- Department of Scientific Research, The People’s Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jilin Zhou
- Department of Neurosurgery, XiangYa Hospital, Central South University, Changsha, China
| | - Lu Xu
- Department of Neurosurgery, XiangYa Hospital, Central South University, Changsha, China
| | - Songlin Liu
- Department of Neurosurgery, XiangYa Hospital, Central South University, Changsha, China
| | - Yifeng Li
- Department of Neurosurgery, XiangYa Hospital, Central South University, Changsha, China
| | - Dun Yuan
- Department of Neurosurgery, XiangYa Hospital, Central South University, Changsha, China
| | - Weixi Jiang
- Department of Neurosurgery, XiangYa Hospital, Central South University, Changsha, China
| | - Junxia Yan
- Department of Epidemiology and Health Statistics, XiangYa School of Public Health, Central South University, Changsha, China
- Hunan Provincial Key Laboratory of Clinical Epidemiology, XiangYa School of Public Health, Central South University, Changsha, China
- *Correspondence: Junxia Yan,
| |
Collapse
|
4
|
Samuel N, Radovanovic I. Genetic basis of intracranial aneurysm formation and rupture: clinical implications in the postgenomic era. Neurosurg Focus 2019; 47:E10. [DOI: 10.3171/2019.4.focus19204] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 04/24/2019] [Indexed: 12/12/2022]
Abstract
OBJECTIVEDespite the prevalence and impact of intracranial aneurysms (IAs), the molecular basis of their pathogenesis remains largely unknown. Moreover, there is a dearth of clinically validated biomarkers to efficiently screen patients with IAs and prognosticate risk for rupture. The aim of this study was to survey the literature to systematically identify the spectrum of genetic aberrations that have been identified in IA formation and risk of rupture.METHODSA literature search was performed using the Medical Subject Headings (MeSH) system of databases including PubMed, EMBASE, and Google Scholar. Relevant studies that reported on genetic analyses of IAs, rupture risk, and long-term outcomes were included in the qualitative analysis.RESULTSA total of 114 studies were reviewed and 65 were included in the qualitative synthesis. There are several well-established mendelian syndromes that confer risk to IAs, with variable frequency. Linkage analyses, genome-wide association studies, candidate gene studies, and exome sequencing identify several recurrent polymorphic variants at candidate loci, and genes associated with the risk of aneurysm formation and rupture, including ANRIL (CDKN2B-AS1, 9p21), ARGHEF17 (11q13), ELN (7q11), SERPINA3 (14q32), and SOX17 (8q11). In addition, polymorphisms in eNOS/NOS3 (7q36) may serve as predictive markers for outcomes following intracranial aneurysm rupture. Genetic aberrations identified to date converge on posited molecular mechanisms involved in vascular remodeling, with strong implications for an associated immune-mediated inflammatory response.CONCLUSIONSComprehensive studies of IA formation and rupture have identified candidate risk variants and loci; however, further genome-wide analyses are needed to identify high-confidence genetic aberrations. The literature supports a role for several risk loci in aneurysm formation and rupture with putative candidate genes. A thorough understanding of the genetic basis governing risk of IA development and the resultant aneurysmal subarachnoid hemorrhage may aid in screening, clinical management, and risk stratification of these patients, and it may also enable identification of putative mechanisms for future drug development.
Collapse
Affiliation(s)
- Nardin Samuel
- 1Division of Neurosurgery, Department of Surgery, University of Toronto; and
| | - Ivan Radovanovic
- 1Division of Neurosurgery, Department of Surgery, University of Toronto; and
- 2Division of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Liu S, Miao C, Liu J, Wang C, Lu X. Four differentially methylated gene pairs to predict the prognosis for early stage hepatocellular carcinoma patients. J Cell Physiol 2018; 233:6583-6590. [DOI: 10.1002/jcp.26256] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 11/07/2017] [Indexed: 02/03/2023]
Affiliation(s)
- Shaoguang Liu
- Department of Emergency SurgeryGansu Provincial HospitalGansuChina
| | - Changfeng Miao
- Department of General SurgeryGansu Provincial HospitalGansuChina
| | - Juan Liu
- Operating Room, Huai'an Second People's HospitalThe Affiliated Huai'an Hospital of Xuzhou Medical UniversityHuai'anChina
| | - Chang‐Cheng Wang
- Department of GastroenterologyHuai'an Second People's Hospital and The Affiliated Huai'an Hospital of Xuzhou Medical UniversityHuai'anJiangsuChina
| | - Xiao‐Jie Lu
- Liver Transplantation CenterThe First Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| |
Collapse
|
6
|
Wu Y, Li Z, Shi Y, Chen L, Tan H, Wang Z, Yin C, Liu L, Hu J. Exome Sequencing Identifies LOXL2 Mutation as a Cause of Familial Intracranial Aneurysm. World Neurosurg 2018; 109:e812-e818. [DOI: 10.1016/j.wneu.2017.10.094] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/16/2017] [Accepted: 10/17/2017] [Indexed: 12/27/2022]
|
7
|
Hong EP, Jeon JP, Kim SE, Yang JS, Choi HJ, Kang SH, Cho YJ. A Novel Association between Lysyl Oxidase Gene Polymorphism and Intracranial Aneurysm in Koreans. Yonsei Med J 2017; 58:1006-1011. [PMID: 28792146 PMCID: PMC5552627 DOI: 10.3349/ymj.2017.58.5.1006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 06/17/2017] [Accepted: 06/27/2017] [Indexed: 11/27/2022] Open
Abstract
PURPOSE Lysyl oxidase (LOX) controls the cross-linking and maturation of elastin and collagen fibers. In this study, we investigated the association between LOX gene polymorphisms and intracranial aneurysm (IA) formation in a homogeneous Korean population. MATERIALS AND METHODS This cross-sectional study involved 80 age-sex matched patients with IA and controls. Fisher's exact test was performed to analyze allelic associations between ten single nucleotide polymorphisms (SNPs) and IA, including 41 ruptured and 39 unruptured cases. Haplotype-specific associations were analyzed using the omnibus test estimating asymptotic chi-square statistics. RESULTS Of ten SNPs, three SNPs (rs2303656, rs3900446, and rs763497) were significantly associated with IA (p<0.01). The C allele of rs3900446 was significantly related to increased IA risk with a significant threshold [odds ratio (OR)=20.15, p=4.8×10⁻⁵]. Meanwhile, the A allele of rs2303656 showed a preventive effect against IA formation (p=8.2×10⁻⁴). Seventeen of 247 haplotype structures showed a suggestive association with IA (asymptotic p<0.001). Of ten SNP haplotype combinations, the CG combination of rs3900446 and rs763497 reached Bonferroni-adjusted significant threshold in IA patients (minor haplotype frequency=0.113, asymptotic p=1.3×10⁻⁵). However, there was no association between aneurysm rupture and the LOX gene. CONCLUSION This preliminary study indicated that LOX gene polymorphisms, such as rs2303656, rs3900446, and rs763497, may play crucial roles in IA formation in the Korean population. Our novel findings need to be validated in a large-scale independent population.
Collapse
Affiliation(s)
- Eun Pyo Hong
- Department of Medical Genetics, Hallym University College of Medicine, Chuncheon, Korea
| | - Jin Pyeong Jeon
- Department of Neurosurgery, Hallym University College of Medicine, Chuncheon, Korea
- Institute of New Frontier Research, Hallym University College of Medicine, Chuncheon, Korea.
| | - Sung Eun Kim
- Department of Emergency Medicine, Seoul Emergency Operations Center, Seoul, Korea
| | - Jin Seo Yang
- Department of Neurosurgery, Hallym University College of Medicine, Chuncheon, Korea
| | - Hyuk Jai Choi
- Department of Neurosurgery, Hallym University College of Medicine, Chuncheon, Korea
| | - Suk Hyung Kang
- Department of Neurosurgery, Hallym University College of Medicine, Chuncheon, Korea
| | - Yong Jun Cho
- Department of Neurosurgery, Hallym University College of Medicine, Chuncheon, Korea
| |
Collapse
|
8
|
Kataoka H, Aoki T. Molecular basis for the development of intracranial aneurysm. Expert Rev Neurother 2014. [DOI: 10.1586/ern.09.155] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Lack of association of Lysyl oxidase (LOX) gene polymorphisms with intracranial aneurysm in a south Indian population. Mol Biol Rep 2013; 40:5869-74. [DOI: 10.1007/s11033-013-2693-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 09/14/2013] [Indexed: 10/26/2022]
|
10
|
Ruzevick J, Jackson C, Pradilla G, Garzon-Muvdi T, Tamargo RJ. Aneurysm formation in proinflammatory, transgenic haptoglobin 2-2 mice. Neurosurgery 2013; 72:70-6; discussion 76. [PMID: 23096414 DOI: 10.1227/neu.0b013e318276b306] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Inflammation and macrophages in particular are believed to play a role in aneurysm formation. The haptoglobin (Hp) 2-2 genotype is associated with a proinflammatory state. OBJECTIVE To investigate the role of inflammation in the formation of aneurysms using a murine model of aneurysm formation in transgenic, proinflammatory Hp2-2 mice and wild-type Hp1-1 mice. METHODS Carotid artery aneurysms were induced in the left common carotid artery of wild-type Hp1-1 mice and transgenic Hp2-2 mice using elastase to degrade the arterial wall of the common carotid artery and angiotensin II to induce hypertension. There were 4 experimental groups: (1) sham surgery (n = 11); (2) angiotensin II only (n = 10); (3) elastase only (n = 20); and (4) elastase + angiotensin II (n = 20). Aneurysm size was determined by measuring the outer circumference and luminal circumference of the blood vessel. Macrophages that infiltrated the aneurysm wall were quantified by immunohistochemistry. Results were analyzed using 2-way analysis of variance with a Bonferroni post-test. RESULTS Aneurysms in Hp2-2 mice were significantly larger than aneurysms in Hp1-1 mice in the setting of vessel wall degradation and hypertension (P = .02 for outer circumference, P = .01 for luminal circumference). Furthermore, the number of macrophages infiltrating the aneurysm wall was significantly increased in Hp2-2 mice (P < .001). CONCLUSION Hp2-2 mice formed aneurysms that were significantly larger and had a significantly greater number of macrophages in the aneurysm wall compared with Hp1-1 mice. This suggests that the proinflammatory state associated with the Hp2-2 protein is involved in aneurysm formation and that the Hp genotype may be a useful biomarker in predicting aneurysm progression.
Collapse
Affiliation(s)
- Jacob Ruzevick
- Department of Neurological Surgery, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA
| | | | | | | | | |
Collapse
|
11
|
Francis SE, Tu J, Qian Y, Avolio AP. A combination of genetic, molecular and haemodynamic risk factors contributes to the formation, enlargement and rupture of brain aneurysms. J Clin Neurosci 2013; 20:912-8. [PMID: 23726520 DOI: 10.1016/j.jocn.2012.12.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Revised: 12/03/2012] [Accepted: 12/08/2012] [Indexed: 12/20/2022]
Abstract
Many people carry cerebral aneurysms but are generally unaware of their presence until they rupture, resulting in high morbidity or mortality. The pathogenesis and aetiology of aneurysms are largely unknown; however, a greater understanding, by analysing the genetic, molecular and haemodynamic risk factors involved in the initiation, enlargement, and rupture of aneurysms, could lead to effective prevention, early diagnosis and more effective treatment. The risk of aneurysm is increased by a family history of aneurysms, and amongst certain populations, namely in Japan and Finland. Several other risk factors are documented, including hypertension, smoking, alcohol consumption, and female sex. Studies indicate a higher occurrence of cerebral aneurysms in females compared to males. Oestrogen protects several components within the artery wall, and inhibits some of the inflammatory molecules that could cause aneurysms. At menopause, the oestrogen level decreases and the incidence of aneurysm increases. Haemodynamic stresses have been shown to be involved in the formation, growth and rupture of aneurysms. This is often associated with hypertension, which also increases the risk of aneurysm rupture. When an unruptured aneurysm is detected the decision to treat can be complicated, since only 1-2% of aneurysms eventually rupture. Haemodynamic simulation software offers an effective tool for the consideration of treatment options for patients who carry unruptured aneurysms. The assessment must consider the risks of interventional treatments versus non-interventional management options, such as controlling blood pressure.
Collapse
Affiliation(s)
- Sheila E Francis
- Australian School of Advanced Medicine, Macquarie University, 75 Talavera Road, North Ryde, New South Wales 2109, Australia
| | | | | | | |
Collapse
|
12
|
Fine mapping of a linkage peak with integration of lipid traits identifies novel coronary artery disease genes on chromosome 5. BMC Genet 2012; 13:12. [PMID: 22369142 PMCID: PMC3309961 DOI: 10.1186/1471-2156-13-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 02/27/2012] [Indexed: 01/03/2023] Open
Abstract
Background Coronary artery disease (CAD), and one of its intermediate risk factors, dyslipidemia, possess a demonstrable genetic component, although the genetic architecture is incompletely defined. We previously reported a linkage peak on chromosome 5q31-33 for early-onset CAD where the strength of evidence for linkage was increased in families with higher mean low density lipoprotein-cholesterol (LDL-C). Therefore, we sought to fine-map the peak using association mapping of LDL-C as an intermediate disease-related trait to further define the etiology of this linkage peak. The study populations consisted of 1908 individuals from the CATHGEN biorepository of patients undergoing cardiac catheterization; 254 families (N = 827 individuals) from the GENECARD familial study of early-onset CAD; and 162 aorta samples harvested from deceased donors. Linkage disequilibrium-tagged SNPs were selected with an average of one SNP per 20 kb for 126.6-160.2 MB (region of highest linkage) and less dense spacing (one SNP per 50 kb) for the flanking regions (117.7-126.6 and 160.2-167.5 MB) and genotyped on all samples using a custom Illumina array. Association analysis of each SNP with LDL-C was performed using multivariable linear regression (CATHGEN) and the quantitative trait transmission disequilibrium test (QTDT; GENECARD). SNPs associated with the intermediate quantitative trait, LDL-C, were then assessed for association with CAD (i.e., a qualitative phenotype) using linkage and association in the presence of linkage (APL; GENECARD) and logistic regression (CATHGEN and aortas). Results We identified four genes with SNPs that showed the strongest and most consistent associations with LDL-C and CAD: EBF1, PPP2R2B, SPOCK1, and PRELID2. The most significant results for association of SNPs with LDL-C were: EBF1, rs6865969, p = 0.01; PPP2R2B, rs2125443, p = 0.005; SPOCK1, rs17600115, p = 0.003; and PRELID2, rs10074645, p = 0.0002). The most significant results for CAD were EBF1, rs6865969, p = 0.007; PPP2R2B, rs7736604, p = 0.0003; SPOCK1, rs17170899, p = 0.004; and PRELID2, rs7713855, p = 0.003. Conclusion Using an intermediate disease-related quantitative trait of LDL-C we have identified four novel CAD genes, EBF1, PRELID2, SPOCK1, and PPP2R2B. These four genes should be further examined in future functional studies as candidate susceptibility loci for cardiovascular disease mediated through LDL-cholesterol pathways.
Collapse
|
13
|
Ruigrok Y, Klijn CJ. Genetics of Aneurysms and Arteriovenous Malformations. Stroke 2011. [DOI: 10.1016/b978-1-4160-5478-8.10066-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
The development and the use of experimental animal models to study the underlying mechanisms of CA formation. J Biomed Biotechnol 2010; 2011:535921. [PMID: 21253583 PMCID: PMC3018658 DOI: 10.1155/2011/535921] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 11/06/2010] [Accepted: 12/13/2010] [Indexed: 11/17/2022] Open
Abstract
Cerebral aneurysms (CAs) have a high prevalence and can cause a lethal subarachnoid hemorrhage. Currently, CAs can only be treated with invasive surgical procedures. To unravel the underlying mechanisms of CA formation and to develop new therapeutic drugs for CAs, animal models of CA have been established, modified, and analyzed. Experimental findings from these models have clarified some of the potential mechanisms of CA formation, especially the relationship between hemodynamic stress and chronic inflammation. Increased hemodynamic stress acting at the site of bifurcation of cerebral arteries triggers an inflammatory response mediated by various proinflammatory molecules in arterial walls, inducing pathological changes in the models similar to those observed in the walls of human CAs. Findings from animal studies have provided new insights into CA formation and may contribute to the development of new therapeutic drugs for CAs.
Collapse
|
15
|
Novel method of cell-free in vitro synthesis of the human fibroblast growth factor 1 gene. J Biomed Biotechnol 2010; 2010. [PMID: 20706664 PMCID: PMC2913909 DOI: 10.1155/2010/971340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Accepted: 06/16/2010] [Indexed: 11/17/2022] Open
Abstract
Recombinant DNA projects generally involve cell-based gene cloning. However, because template DNA is not always readily available, in vitro chemical synthesis of complete genes from DNA oligonucleotides is becoming the preferred method for cloning. This article describes a new, rapid procedure based on Taq polymerase for the precise assembly of DNA oligonucleotides to yield the complete human fibroblast growth factor 1 (FGF1) gene, which is 468 bp long and has a G+C content of 51.5%. The new method involved two steps: (1) the design of the DNA oligonucleotides to be assembled and (2) the assembly of multiple oligonucleotides by PCR to generate the whole FGF1 gene. The procedure lasted a total of only 2 days, compared with 2 weeks for the conventional procedure. This method of gene synthesis is expected to facilitate various kinds of complex genetic engineering projects that require rapid gene amplification, such as cell-free whole-DNA library construction, as well as the construction of new genes or genes that contain any mutation, restriction site, or DNA tag.
Collapse
|
16
|
Bian JT, Zhao HL, Zhang ZX, Bi XH, Zhang JW. No association of the C>T polymorphism that is located 1385 upstream from initial code of fibroblast growth factor 1 gene with Alzheimer's disease in Chinese. Brain Res 2010; 1328:113-7. [DOI: 10.1016/j.brainres.2010.03.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 03/08/2010] [Accepted: 03/09/2010] [Indexed: 10/19/2022]
|
17
|
Aoki T, Nishimura M. Targeting chronic inflammation in cerebral aneurysms: focusing on NF-κB as a putative target of medical therapy. Expert Opin Ther Targets 2010; 14:265-73. [DOI: 10.1517/14728221003586836] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
18
|
Abstract
Intracranial aneurysms (IAs) are the dilatations of blood vessels in the brain and pose potential risk of rupture leading to subarachnoid hemorrhage. Although the genetic basis of IAs is poorly understood, it is well-known that genetic factors play an important part in the pathogenesis of IAs. Therefore, the identifying susceptible genetic variants might lead to the understanding of the mechanism of formation and rupture of IAs and might also lead to the development of a pharmacological therapy. To elucidate the molecular pathogenesis of diseases has become a crucial step in the development of new treatment strategies. Although extensive genetic research and its potential implications for future prevention of this often fatal condition are urgently needed, efforts to elucidate the susceptibility loci of IAs are hindered by the issues bewildering the most common and complex genetic disorders, such as low penetrance, late onset, and uncertain modes of inheritance. These efforts are further complicated by the fact that many IA lesions remain asymptomatic or go undiagnosed. In this review, we present and discuss the current status of genetic studies of IAs and we recommend comprehensive genome-wide association studies to identify genetic loci that underlie this complex disease.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Neurosurgery, The University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Richard E. Claterbuck
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
19
|
Affiliation(s)
- Ynte M. Ruigrok
- From the University Department of Neurology, Rudolf Magnus Institute of Neuroscience, University Medical Centre, Utrecht, The Netherlands
| | - Gabriel J.E. Rinkel
- From the University Department of Neurology, Rudolf Magnus Institute of Neuroscience, University Medical Centre, Utrecht, The Netherlands
| |
Collapse
|
20
|
Humphrey J, Taylor C. Intracranial and abdominal aortic aneurysms: similarities, differences, and need for a new class of computational models. Annu Rev Biomed Eng 2008; 10:221-46. [PMID: 18647115 PMCID: PMC2742216 DOI: 10.1146/annurev.bioeng.10.061807.160439] [Citation(s) in RCA: 187] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Intracranial saccular and abdominal aortic aneurysms (ISAs and AAAs, respectively) result from different underlying disease processes and exhibit different rupture potentials, yet they share many histopathological and biomechanical characteristics. Moreover, as in other vascular diseases, hemodynamics and wall mechanics play important roles in the natural history and possible treatment of these two types of lesions. The goals of this review are twofold: first, to contrast the biology and mechanics of intracranial and abdominal aortic aneurysms to emphasize that separate advances in our understanding of each disease can aid in our understanding of the other disease, and second, to suggest that research on the biomechanics of aneurysms must embrace a new paradigm for analysis. That is, past biomechanical studies have provided tremendous insight but have progressed along separate lines, focusing on either the hemodynamics or the wall mechanics. We submit that there is a pressing need to couple in a new way the separate advances in vascular biology, medical imaging, and computational biofluid and biosolid mechanics to understand better the mechanobiology, pathophysiology, and treatment of these lesions, which continue to be responsible for significant morbidity and mortality. We refer to this needed new class of computational tools as fluid-solid-growth (FSG) models.
Collapse
Affiliation(s)
- J.D. Humphrey
- Department of Biomedical Engineering and M.E. DeBakey Institute Texas A&M University, College Station, TX, USA
| | - C.A. Taylor
- Departments of Bioengineering and Surgery Stanford University, Stanford, CA, USA
| |
Collapse
|
21
|
Akagawa H, Narita A, Yamada H, Tajima A, Krischek B, Kasuya H, Hori T, Kubota M, Saeki N, Hata A, Mizutani T, Inoue I. Systematic screening of lysyl oxidase-like (LOXL) family genes demonstrates that LOXL2 is a susceptibility gene to intracranial aneurysms. Hum Genet 2007; 121:377-87. [PMID: 17287949 DOI: 10.1007/s00439-007-0333-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Accepted: 01/12/2007] [Indexed: 01/22/2023]
Abstract
Four lysyl oxidase family genes (LOXL1, LOXL2, LOXL3, and LOXL4), which catalyze cross-linking of collagen and elastin, were considered to be functional candidates for intracranial aneurysms (IA) and were extensively screened for genetic susceptibility in Japanese IA patients. Total RNA was isolated from four paired ruptured IA and superficial temporal artery (STA) tissue and examined by real-time RT-PCR. The expression of LOXL2 in the paired IA and STA tissues was elevated in the IA tissue. A total of 55 single nucleotide polymorphisms (SNPs) of LOXL1-4 were genotyped for an allelic association study in 402 Japanese IA patients and 462 Japanese non-IA controls. Allelic associations were evaluated with the chi-square test and the permutation test especially designed for adjustment of multiple testing. SNPs of LOXL1 and LOXL4 were not significantly associated with IA, while several SNPs of LOXL2 and LOXL3 showed nominally significant associations in IA patients. We detected an empirically significant association with one SNP of LOXL2 in familial IA patients after adjustment for multiple testing [chi(2) = 10.23, empirical P = 0.023, OR (95% CI) = 1.49 (1.17, 1.90)]. Furthermore, multilocus interaction was evaluated by multifactor dimensionality reduction analysis. We found that the SNPs of LOXL2 have an interactive effect with elastin (ELN) and LIM kinase 1 (LIMK1) that have been previously found to be associated with IA. In conclusion, one SNP of LOXL2 showed a significant association with IA individually, and we also detected a gene-gene interaction of LOXL2 with ELN/LIMK1, which may play an important role in susceptibility to IA.
Collapse
Affiliation(s)
- Hiroyuki Akagawa
- Division of Genetic Diagnosis, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Nahed BV, Bydon M, Ozturk AK, Bilguvar K, Bayrakli F, Gunel M. Genetics Of Intracranial Aneurysms. Neurosurgery 2007; 60:213-25; discussion 225-6. [PMID: 17290171 DOI: 10.1227/01.neu.0000249270.18698.bb] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Despite advances in the treatment of intracranial aneurysms (IA) in recent years, the overall outcome of patients with aneurysmal subarachnoid hemorrhage has shown only modest improvement. Given this poor prognosis, diagnosis of IA before rupture is of paramount importance. Currently, there are no reliable methods other than screening imaging studies of high-risk individuals to diagnose asymptomatic patients. Multiple levels of evidence suggest that environmental factors acting in concert with genetic susceptibilities lead to the formation, growth, and rupture of aneurysms in these patients. Epidemiological studies have already identified aneurysm-specific risk factors such as size and location, as well as patient-specific risk factors, such as age, sex, and presence of medical comorbidities, such as hypertension. In addition, exposure to certain environmental factors such as smoking have been shown to be important in the formation of IA. Furthermore, substantial evidence proves that certain loci contribute genetically to IA pathogenesis. Genome-wide linkage studies using relative pairs or rare families that are affected with the Mendelian forms of IA have already shown genetic heterogeneity of IA, suggesting that multiple genes, alone or in combination, are important in the disease pathophysiology. The linkage results, along with association studies, will ultimately lead to the identification of IA susceptibility genes. Identification of the genes important in IA pathogenesis will not only provide novel insights into the primary determinants of IA, but will also result in new opportunities for early diagnosis in the preclinical setting. Ultimately, novel therapeutic strategies based on biology will be developed, which will target these newly elucidated genetic susceptibilities.
Collapse
Affiliation(s)
- Brian V Nahed
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | | | | | | | | | |
Collapse
|
23
|
Frösen J, Piippo A, Paetau A, Kangasniemi M, Niemelä M, Hernesniemi J, Jääskeläinen J. Growth factor receptor expression and remodeling of saccular cerebral artery aneurysm walls: implications for biological therapy preventing rupture. Neurosurgery 2006; 58:534-41; discussion 534-41. [PMID: 16528195 DOI: 10.1227/01.neu.0000197332.55054.c8] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Remodeling of the saccular cerebral artery aneurysm (SCAA) wall, known to be associated with rupture, might be modified with bioactive endovascular implants or systemic drug therapy targeted at growth factor receptors to prevent rupture. The receptors regulating SCAA wall remodeling are, however, unknown. MATERIALS AND METHODS Immunostaining for 12 growth factor receptors, and markers for matrix synthesis, proliferation, and inflammatory cell infiltration, were analyzed in 21 unruptured and 35 ruptured aneurysm fundi resected after microsurgical clipping of the aneurysm neck. The results were compared with clinical and radiological data. RESULTS Eleven of the 12 receptors studied were expressed at varying intensities in the 56 SCAA walls. Only transforming growth factor (TGF)beta-R2 and vascular endothelial growth factor (VEGF)-R1 were associated with rupture and basic fibroblast growth factor-R1 with minor leaks (P = 0.018). TGFbeta-R3 and VEGF-R1 was associated with wall remodeling (P = 0.043 and 0.027), and VEGF-R1 was associated with T-cell and macrophage infiltration as well as organization of luminal thrombosis (P = 0.019). VEGF-R2 was associated with myointimal hyperplasia (P = 0.017) and proliferation (P < 0.001). CONCLUSION VEGF, TGFbeta, and basic fibroblast growth factor receptors were associated with SCAA wall remodeling, making them potential targets for bioactive endovascular implants or drug therapy aiming to reinforce the SCAA wall.
Collapse
Affiliation(s)
- Juhana Frösen
- Neurosurgery Research Group, Biomedicum Helsinki, Helsinki University Central Hospital, Helsinki, Finland.
| | | | | | | | | | | | | |
Collapse
|
24
|
Krischek B, Inoue I. The genetics of intracranial aneurysms. J Hum Genet 2006; 51:587-94. [PMID: 16736093 DOI: 10.1007/s10038-006-0407-4] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2006] [Accepted: 03/24/2006] [Indexed: 01/18/2023]
Abstract
The rupture of an intracranial aneurysm (IA) leads to a subarachnoid hemorrhage, a sudden onset disease that can lead to severe disability and death. Several risk factors such as smoking, hypertension and excessive alcohol intake are associated with subarachnoid hemorrhage. IAs, ruptured or unruptured, can be treated either surgically via a craniotomy (through an opening in the skull) or endovascularly by placing coils through a catheter in the femoral artery. Even though the etiology of IA formation is mostly unknown, several studies support a certain role of genetic factors. In reports so far, genome-wide linkage studies suggest several susceptibility loci that may contain one or more predisposing genes. Studies of several candidate genes report association with IAs. To date, no single gene has been identified as responsible for IA formation or rupture. The identification of susceptible genes may lead to the understanding of the mechanism of formation and rupture and possibly lead to the development of a pharmacological therapy.
Collapse
MESH Headings
- Aneurysm, Ruptured/pathology
- Cerebral Angiography
- Chromosome Mapping
- Chromosomes, Human, Pair 14
- Chromosomes, Human, Pair 19
- Chromosomes, Human, Pair 5
- Chromosomes, Human, Pair 7
- Chromosomes, Human, X
- Genetic Linkage
- Humans
- Intracranial Aneurysm/diagnostic imaging
- Intracranial Aneurysm/epidemiology
- Intracranial Aneurysm/etiology
- Intracranial Aneurysm/genetics
- Intracranial Aneurysm/pathology
- Intracranial Aneurysm/surgery
- Magnetic Resonance Angiography
- Risk Factors
- Subarachnoid Hemorrhage/genetics
- Subarachnoid Hemorrhage/pathology
Collapse
Affiliation(s)
- Boris Krischek
- Division of Genetic Diagnosis, Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Tokyo 108-8639, Japan
| | | |
Collapse
|
25
|
Inoue K, Mineharu Y, Inoue S, Yamada S, Matsuda F, Nozaki K, Takenaka K, Hashimoto N, Koizumi A. Search on Chromosome 17 Centromere Reveals
TNFRSF13B
as a Susceptibility Gene for Intracranial Aneurysm. Circulation 2006; 113:2002-10. [PMID: 16618819 DOI: 10.1161/circulationaha.105.579326] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background—
Our previous studies have shown a significant linkage of intracranial aneurysms (IAs) to chromosome 17.
Methods and Results—
Nine genes (
TNFRSF13B
,
M-RIP
,
COPS3
,
RAI1
,
SREBF1
,
GRAP
,
MAPK7
,
MFAP4
, and
AKAP10
) were selected from 108 genes that are located between D17S1857 and D17S1871 by excluding 99 genes that were pseudogenes, hypothetical genes, or well-characterized genes but not likely associated with IA. Direct sequencing of all coding and regulatory regions in 58 cases (29 pedigree probands and 29 unrelated nonpedigree cases) was performed. Deleterious changes were found only in
TNFRSF13B
, K154X, and c.585 to 586insA in exon4. The association of IA with
TNFRSF13B
was further studied in 304 unrelated cases and 332 control subjects. Rare nonsynonymous changes, a splicing acceptor site change and a frame shift, were found in unrelated cases (2.3%; 14 of 608) more frequently than in control subjects (0.8%; 5 of 664;
P
=0.035). The association study using single-nucleotide polymorphisms in an unrelated case-control cohort revealed a protective haplotype (odds ratio 0.69, 95% confidence interval 0.52 to 0.92,
P
=0.012) compared with the major haplotype after adjustment for covariates.
Conclusions—
We propose that
TNFRSF13B
is one of the susceptibility genes for IA.
Collapse
Affiliation(s)
- Kayoko Inoue
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Akagawa H, Tajima A, Sakamoto Y, Krischek B, Yoneyama T, Kasuya H, Onda H, Hori T, Kubota M, Machida T, Saeki N, Hata A, Hashiguchi K, Kimura E, Kim CJ, Yang TK, Lee JY, Kimm K, Inoue I. A haplotype spanning two genes, ELN and LIMK1, decreases their transcripts and confers susceptibility to intracranial aneurysms. Hum Mol Genet 2006; 15:1722-34. [PMID: 16611674 DOI: 10.1093/hmg/ddl096] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The rupture of an intracranial aneurysm (IA) results in subarachnoid hemorrhage, a catastrophic neurological condition with high morbidity and mortality. Following-up on our previous genome-wide linkage study in Japanese population, we extensively analyzed a 4.6 Mb linkage region around D7S2472 on 7q11 by genotyping 168 single nucleotide polymorphisms (SNPs). SNP association and window scan haplotype-based association studies revealed a susceptibility locus for IA on a single LD block covering the 3'-untranslated region (3'-UTR) of ELN and the entire region of LIMK1. An association study with 404 IA patients and 458 non-IA controls revealed that the ELN 3'-UTR G(+659)C SNP has the strongest association to IA (P=0.000002) and constitutes a tag-SNP for an at-risk haplotype, which contains two functional SNPs, the ELN 3'-UTR (+502) A insertion and the LIMK1 promoter C(-187)T SNP. These allelic and haplotype-based associations were confirmed in a Korean population. Ex vivo and in vitro analyses demonstrate that the functional impact of both SNPs is the decrease of transcript levels, either through accelerated ELN mRNA degradation or through decreased LIMK1 promoter activity. Elastin and LIMK1 protein are involved in the same actin depolymerization signaling pathway; therefore, these lines of evidence suggest a combined effect of the SNPs in the at-risk haplotype possibly by weakening the vascular wall and promoting the development of IA.
Collapse
Affiliation(s)
- Hiroyuki Akagawa
- Division of Genetic Diagnosis, The Institute of Medical Sciences, The University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ozturk AK, Nahed BV, Bydon M, Bilguvar K, Goksu E, Bademci G, Guclu B, Johnson MH, Amar A, Lifton RP, Gunel M. Molecular genetic analysis of two large kindreds with intracranial aneurysms demonstrates linkage to 11q24-25 and 14q23-31. Stroke 2006; 37:1021-7. [PMID: 16497978 DOI: 10.1161/01.str.0000206153.92675.b9] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Both environmental and genetic factors contribute to the formation, growth, and rupture of intracranial aneurysms (IAs). To search for IA susceptibility genes, we took an outlier approach, using parametric genome-wide linkage analysis in extended IA kindreds in which IA is inherited as a simple Mendelian trait. We hereby present the molecular genetic analysis of 2 such families. METHODS For genome-wide linkage analysis, we used a 2-stage approach. First, using gene chips in affected-only analysis, we identified genomic regions that provide maximum theoretical logarithm of odds (lod) scores. Next, to confirm or exclude these candidate loci, we genotyped all available family members, both affected and unaffected, using polymorphic microsatellite markers located within these regions. RESULTS We obtained significant lod scores of 4.3 and 3.00 for linkage to chromosomes 11q24-25 and 14q23-31, respectively. CONCLUSIONS Molecular genetic analysis of 2 large IA kindreds confirms linkage to chromosome 11q and 14q, which were suggested to contain IA susceptibility genes in a previous study of Japanese sib pairs. Independent identification of these 2 loci strongly suggests that IA susceptibility genes lie within these regions. While demonstrating the genetic heterogeneity of IA, these results are also an important step toward cloning IA genes and ultimately understanding its pathophysiology.
Collapse
Affiliation(s)
- Ali K Ozturk
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Broderick JP, Sauerbeck LR, Foroud T, Huston J, Pankratz N, Meissner I, Brown RD. The Familial Intracranial Aneurysm (FIA) study protocol. BMC MEDICAL GENETICS 2005; 6:17. [PMID: 15854227 PMCID: PMC1097731 DOI: 10.1186/1471-2350-6-17] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Accepted: 04/26/2005] [Indexed: 12/21/2022]
Abstract
Background Subarachnoid hemorrhage (SAH) due to ruptured intracranial aneurysms (IAs) occurs in about 20,000 people per year in the U.S. annually and nearly half of the affected persons are dead within the first 30 days. Survivors of ruptured IAs are often left with substantial disability. Thus, primary prevention of aneurysm formation and rupture is of paramount importance. Prior studies indicate that genetic factors are important in the formation and rupture of IAs. The long-term goal of the Familial Intracranial Aneurysm (FIA) Study is to identify genes that underlie the development and rupture of intracranial aneurysms (IA). Methods/Design The FIA Study includes 26 clinical centers which have extensive experience in the clinical management and imaging of intracerebral aneurysms. 475 families with affected sib pairs or with multiple affected relatives will be enrolled through retrospective and prospective screening of potential subjects with an IA. After giving informed consent, the proband or their spokesperson invites other family members to participate. Each participant is interviewed using a standardized questionnaire which covers medical history, social history and demographic information. In addition blood is drawn from each participant for DNA isolation and immortalization of lymphocytes. High- risk family members without a previously diagnosed IA undergo magnetic resonance angiography (MRA) to identify asymptomatic unruptured aneurysms. A 10 cM genome screen will be performed to identify FIA susceptibility loci. Due to the significant mortality of affected individuals, novel approaches are employed to reconstruct the genotype of critical deceased individuals. These include the intensive recruitment of the spouse and children of deceased, affected individuals. Discussion A successful, adequately-powered genetic linkage study of IA is challenging given the very high, early mortality of ruptured IA. Design features in the FIA Study that address this challenge include recruitment at a large number of highly active clinical centers, comprehensive screening and recruitment techniques, non-invasive vascular imaging of high-risk subjects, genome reconstruction of dead affected individuals using marker data from closely related family members, and inclusion of environmental covariates in the statistical analysis.
Collapse
Affiliation(s)
- Joseph P Broderick
- Department of Neurology, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267-0525, USA
| | - Laura R Sauerbeck
- Department of Neurology, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267-0525, USA
| | - Tatiana Foroud
- Medical & Molecular Genetics, Indiana University, 975 West Walnut St., IB 130, Indianapolis, IN 46202-5251, USA
| | - John Huston
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Nathan Pankratz
- Medical & Molecular Genetics, Indiana University, 975 West Walnut St., IB 130, Indianapolis, IN 46202-5251, USA
| | - Irene Meissner
- Division of Cerebrovascular Disease and Department of Neurology, Mayo Clinic, 200, First Street SW, Rochester, MN 55905, USA
| | - Robert D Brown
- Division of Cerebrovascular Disease and Department of Neurology, Mayo Clinic, 200, First Street SW, Rochester, MN 55905, USA
| |
Collapse
|
29
|
Nahed BV, Seker A, Guclu B, Ozturk AK, Finberg K, Hawkins AA, DiLuna ML, State M, Lifton RP, Gunel M. Mapping a Mendelian form of intracranial aneurysm to 1p34.3-p36.13. Am J Hum Genet 2005; 76:172-9. [PMID: 15540160 PMCID: PMC1196421 DOI: 10.1086/426953] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2004] [Accepted: 10/20/2004] [Indexed: 11/03/2022] Open
Abstract
The identification of pathways that underlie common disease has been greatly impacted by the study of rare families that segregate single genes with large effect. Intracranial aneurysm is a common neurological problem; the rupture of these aneurysms constitutes a frequently catastrophic neurologic event. The pathogenesis of these aneurysms is largely unknown, although genetic and environmental factors are believed to play a role. Previous genomewide studies in affected relative pairs have suggested linkage to several loci, but underlying genes have not been identified. We have identified a large kindred that segregates nonsyndromic intracranial aneurysm as a dominant trait with high penetrance. Genomewide analysis of linkage was performed using a two-stage approach: an analysis of ~10,000 single-nucleotide polymorphisms in the 6 living affected subjects, followed by the genotyping of simple tandem repeats across resulting candidate intervals in all 23 kindred members. Analysis revealed significant linkage to a single locus, with a LOD score of 4.2 at 1p34.3-p36.13 under a dominant model with high penetrance. These findings identify a Mendelian form of intracranial aneurysm and map the location of the underlying disease locus.
Collapse
Affiliation(s)
- Brian V. Nahed
- Departments of Neurosurgery and Genetics, Howard Hughes Medical Institute, and Child Study Center, Yale University School of Medicine, New Haven
| | - Askin Seker
- Departments of Neurosurgery and Genetics, Howard Hughes Medical Institute, and Child Study Center, Yale University School of Medicine, New Haven
| | - Bulent Guclu
- Departments of Neurosurgery and Genetics, Howard Hughes Medical Institute, and Child Study Center, Yale University School of Medicine, New Haven
| | - Ali K. Ozturk
- Departments of Neurosurgery and Genetics, Howard Hughes Medical Institute, and Child Study Center, Yale University School of Medicine, New Haven
| | - Karin Finberg
- Departments of Neurosurgery and Genetics, Howard Hughes Medical Institute, and Child Study Center, Yale University School of Medicine, New Haven
| | - Abigail A. Hawkins
- Departments of Neurosurgery and Genetics, Howard Hughes Medical Institute, and Child Study Center, Yale University School of Medicine, New Haven
| | - Michael L. DiLuna
- Departments of Neurosurgery and Genetics, Howard Hughes Medical Institute, and Child Study Center, Yale University School of Medicine, New Haven
| | - Matthew State
- Departments of Neurosurgery and Genetics, Howard Hughes Medical Institute, and Child Study Center, Yale University School of Medicine, New Haven
| | - Richard P. Lifton
- Departments of Neurosurgery and Genetics, Howard Hughes Medical Institute, and Child Study Center, Yale University School of Medicine, New Haven
| | - Murat Gunel
- Departments of Neurosurgery and Genetics, Howard Hughes Medical Institute, and Child Study Center, Yale University School of Medicine, New Haven
| |
Collapse
|
30
|
Yamagata H, Chen Y, Akatsu H, Kamino K, Ito JI, Yokoyama S, Yamamoto T, Kosaka K, Miki T, Kondo I. Promoter polymorphism in fibroblast growth factor 1 gene increases risk of definite Alzheimer's disease. Biochem Biophys Res Commun 2004; 321:320-3. [PMID: 15358178 DOI: 10.1016/j.bbrc.2004.06.142] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2004] [Indexed: 11/22/2022]
Abstract
Fibroblast growth factor 1 (FGF1, also known as acidic FGF) protects selective neuronal populations against neurotoxic effects such as those in Alzheimer's disease (AD) and HIV encephalitis. The FGF1 gene is therefore a strong candidate gene for AD. Using the promoter polymorphism of the FGF1 gene, we examined the relationship between AD and the FGF1 and apolipoprotein E (APOE) genes in 100 Japanese autopsy-confirmed late-onset AD patients and 106 age-matched non-demented controls. The promoter polymorphism (-1385 A/G) was significantly associated with AD risk. The odds ratio for AD associated with the GG vs non-GG genotype was 2.02 (95% CI = 1.16-3.52), while that of s4 vs non-ł4 in APOE4 gene was 5.19 (95% CI = 2.68-10.1). The odds ratio for APOEP4 and FGF1 GG carriers was 20.5 (95% CI = 6.88-60.9). The results showed that the FGF1 gene is associated with autopsy-confirmed AD.
Collapse
Affiliation(s)
- Hidehisa Yamagata
- Department of Medical Genetics, Ehime University School of Medicine, Ehime, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Hofer A, Ozkan S, Hermans M, Kubassek N, Sitzer M, Burtscher J, Knopp U, Schoch B, Wanke I, Huebner F, Raabe A, Steinmetz H, Auburger G. Mutations in the Lysyl Oxidase Gene Not Associated with Intracranial Aneurysm in Central European Families. Cerebrovasc Dis 2004; 18:189-93. [PMID: 15273433 DOI: 10.1159/000079940] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2003] [Accepted: 02/14/2004] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Lysyl oxidase is a promising candidate gene for a mutation search in intracranial aneurysm families because (a) it controls the processing, cross-linking and maturation of collagen and elastin fibers in the blood vessel wall, (b) its expression levels and activity are altered in different animal models of aneurysm pathogenesis, and (c) it is encoded within the chromosome 5q22-31 region of suggestive linkage to intracranial aneurysms. METHODS We have performed genomic sequencing of all 7 exons including the intron-exon splice sites and of the putative promoter region for lysyl oxidase in 25 patients from intracranial aneurysm multiplex families resident in Central Europe. RESULTS We observed 4 genetic variants including 2 novel polymorphisms, 1 in the noncoding sequence of exon 7 and the other upstream from the lysyl oxidase promoter. None of these single nucleotide polymorphisms showed an allelic association or cosegregation with intracranial aneurysm in the families. CONCLUSIONS Genetic variants in the lysyl oxidase gene do not appear to be a major factor in the etiology of intracranial aneurysms in Central Europe.
Collapse
Affiliation(s)
- Anne Hofer
- Clinic for Neurology, Johann Wolfgang Goethe University, Frankfurt am Main, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Yoneyama T, Kasuya H, Onda H, Akagawa H, Hashiguchi K, Nakajima T, Hori T, Inoue I. Collagen type I alpha2 (COL1A2) is the susceptible gene for intracranial aneurysms. Stroke 2004; 35:443-8. [PMID: 14739420 DOI: 10.1161/01.str.0000110788.45858.dc] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE The collagen alpha2(I) gene (COL1A2) on chromosome 7q22.1, a positional and functional candidate for intracranial aneurysm (IA), was extensively screened for susceptibility in Japanese IA patients. METHODS Twenty-one single nucleotide polymorphisms (SNPs) of COL1A2 were genotyped in genomic DNA from 260 IA patients (including 115 familial cases) (mean age, 59.9 years) and 293 controls (mean age, 61.6 years). Differences in allelic and genotypic frequencies between the patients and controls were evaluated with the chi(2) test. Circular dichroism spectrometry was monitored with collagen-related peptides that mimic triple-helical models of type I collagen with Ala-459 and Pro-459 to estimate the conformation and stability of alterations. RESULTS Significant genotypic association in the dominant model was observed between an exonic SNP of COL1A2 and familial IA patients (chi(2)=11.08; df=1; P=0.00087; odds ratio=3.19; 95% CI, 2.22 to 6.50). This SNP induces Ala to Pro substitution at amino acid 459, located on a triple-helical domain. Circular dichroism spectra showed that the Pro-459 peptide had a higher thermal stability than the Ala-459 peptide. CONCLUSIONS The variant of COL1A2 could be a genetic risk factor for IA patients with family history.
Collapse
Affiliation(s)
- Taku Yoneyama
- Department of Neurosurgery, Neurological Institute, Tokyo Women's Medical University, Japan
| | | | | | | | | | | | | | | |
Collapse
|