1
|
Shirai S, Mizushima K, Shibata Y, Matsushima M, Iwata I, Yaguchi H, Yabe I. CAG Repeat Expansion in THAP11 Is Not Detected in a Cohort with Spinocerebellar Ataxia from Hokkaido, the Northernmost Island of Japan. Mov Disord 2024; 39:1657-1658. [PMID: 39441143 DOI: 10.1002/mds.29975] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 10/25/2024] Open
Affiliation(s)
- Shinichi Shirai
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Keiichi Mizushima
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yuka Shibata
- Division of Clinical Genetics, Hokkaido University Hospital, Sapporo, Japan
| | - Masaaki Matsushima
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Division of Clinical Genetics, Hokkaido University Hospital, Sapporo, Japan
| | - Ikuko Iwata
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroaki Yaguchi
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Ichiro Yabe
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Division of Clinical Genetics, Hokkaido University Hospital, Sapporo, Japan
| |
Collapse
|
2
|
Shirai S, Mizushima K, Shibata Y, Matsushima M, Iwata I, Yaguchi H, Yabe I. Spinocerebellar ataxia type 4 is not detected in a cohort from Hokkaido, the northernmost island of Japan. J Neurol Sci 2024; 460:122974. [PMID: 38523039 DOI: 10.1016/j.jns.2024.122974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/18/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024]
Affiliation(s)
- Shinichi Shirai
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Keiichi Mizushima
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yuka Shibata
- Division of Clinical Genetics, Hokkaido University Hospital, Sapporo, Japan
| | - Masaaki Matsushima
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan; Division of Clinical Genetics, Hokkaido University Hospital, Sapporo, Japan
| | - Ikuko Iwata
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroaki Yaguchi
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Ichiro Yabe
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan; Division of Clinical Genetics, Hokkaido University Hospital, Sapporo, Japan.
| |
Collapse
|
3
|
Yabe I. [Recent clinical advances in hereditary spinocerebellar degeneration]. Rinsho Shinkeigaku 2024; 64:135-147. [PMID: 38382935 DOI: 10.5692/clinicalneurol.cn-001931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Spinocerebellar degeneration (SCD) is a neurodegenerative disorder characterized by cerebellar ataxia and other multisystem manifestations, such as Parkinsonism and pyramidal tract symptoms. No effective treatment is available for SCD. Approximately one-third of the cases of SCD are inherited, and the remaining two-third are sporadic, including multiple system atrophy. This article provides an overview of hereditary SCD, its clinical features, recent treatment advances, biomarkers, role of genomic medicine, and future treatment prospects.
Collapse
Affiliation(s)
- Ichiro Yabe
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University
| |
Collapse
|
4
|
Mizushima K, Shibata Y, Shirai S, Matsushima M, Miyatake S, Iwata I, Yaguchi H, Matsumoto N, Yabe I. Prevalence of repeat expansions causing autosomal dominant spinocerebellar ataxias in Hokkaido, the northernmost island of Japan. J Hum Genet 2024; 69:27-31. [PMID: 37848721 DOI: 10.1038/s10038-023-01200-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/06/2023] [Accepted: 09/29/2023] [Indexed: 10/19/2023]
Abstract
In Japan, approximately 30% of spinocerebellar degeneration (SCD) is hereditary, and more than 90% of hereditary SCD is autosomal dominant SCD (AD-SCD). We have previously reported the types of AD-SCD in Hokkaido, twice. In this study, we investigated the status of AD-SCD mainly due to repeat expansions, covering the period since the last report. We performed genetic analysis for 312 patients with a clinical diagnosis of SCD, except for multiple system atrophy at medical institutions in Hokkaido between January 2007 and December 2020. The median age at the time of analysis was 58 (1-86) years. Pathogenic variants causing AD-SCD due to repeat expansion were found in 61.5% (192 cases). Spinocerebellar ataxia (SCA) 6 was the most common type in 25.3% (79 cases), followed by Machado-Joseph disease (MJD)/SCA3 in 13.8% (43), SCA1 in 6.4% (20), SCA2 in 5.1% (16), SCA31 in 4.8% (15), dentatorubral-pallidoluysian atrophy in 4.8% (15), SCA7 in 0.6% (2), and SCA8 in 0.6% (2). SCA17, 27B, 36, and 37 were not found. Compared to previous reports, this study found a higher prevalence of SCA6 and a lower prevalence of MJD/SCA3. An increasing number of cases identified by genetic testing, including cases with no apparent family history, accurately revealed the distribution of disease types in Hokkaido.
Collapse
Affiliation(s)
- Keiichi Mizushima
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yuka Shibata
- Division of Clinical Genetics, Hokkaido University Hospital, Sapporo, Japan
| | - Shinichi Shirai
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masaaki Matsushima
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Division of Clinical Genetics, Hokkaido University Hospital, Sapporo, Japan
| | - Satoko Miyatake
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
- Department of Clinical Genetics, Yokohama City University Hospital, Yokohama, 236-0004, Japan
| | - Ikuko Iwata
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroaki Yaguchi
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Ichiro Yabe
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
- Division of Clinical Genetics, Hokkaido University Hospital, Sapporo, Japan.
| |
Collapse
|
5
|
Saucier J, Al-Qadi M, Amor MB, Ishikawa K, Chamard-Witkowski L. Spinocerebellar ataxia type 31: A clinical and radiological literature review. J Neurol Sci 2023; 444:120527. [PMID: 36563608 DOI: 10.1016/j.jns.2022.120527] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 12/06/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Spinocerebellar ataxia type 31 (SCA31) is an autosomal dominant disease, classified amongst pure cerebellar ataxias (ADCA type 3). While SCA31 is the third most prevalent autosomal dominant ataxia in Japan, it is extremely rare in other countries. A literature review was conducted on PubMed, where we included all case reports and studies describing the clinical presentation of original SCA31 cases. The clinical and radiological features of 374 patients issued from 25 studies were collected. This review revealed that the average age of onset was 59.1 ± 3.3 years, with symptoms of slowly progressing ataxia and dysarthria. Other common clinical features were oculomotor dysfunction (38.8%), dysphagia (22.1%), hypoacousia (23.3%), vibratory hypoesthesia (24.3%), and dysreflexia (41.6%). Unfrequently, abnormal movements (7.4%), extrapyramidal symptoms (4.5%) and cognitive impairment (6.9%) may be observed. Upon radiological examination, clinicians can expect a high prevalence of cerebellar atrophy (78.7%), occasionally accompanied by brainstem (9.1%) and cortical (9.1%) atrophy. Although SCA31 is described as a slowly progressive pure cerebellar syndrome characterized by cerebellar signs such as ataxia, dysarthria and oculomotor dysfunction, this study evaluated a high prevalence of extracerebellar manifestations. Extracerebellar signs were observed in 52.5% of patients, primarily consisting of dysreflexia, vibratory hypoesthesia and hypoacousia. Nonetheless, we must consider the old age and longstanding disease course of patients as a confounding factor for extracerebellar sign development, as some may not be directly attributable to SCA31. Clinicians should consider SCA31 in patients with a hereditary, pure cerebellar syndrome and in patients with extracerebellar signs.
Collapse
Affiliation(s)
- Jacob Saucier
- Centre de formation médicale du Nouveau-Brunswick, Université de Sherbrooke, Moncton, NB, Canada..
| | - Mohammad Al-Qadi
- Centre de formation médicale du Nouveau-Brunswick, Université de Sherbrooke, Moncton, NB, Canada
| | - Mouna Ben Amor
- Centre de formation médicale du Nouveau-Brunswick, Université de Sherbrooke, Moncton, NB, Canada.; Department of Genetic Medicine, Dr. Georges-L.-Dumont University Hospital Centre, Moncton, NB, Canada
| | - Kinya Ishikawa
- The Center for Personalized Medecine for Healthy Aging, Tokyo, Japan; Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, 113-8519 Tokyo, Japan
| | - Ludivine Chamard-Witkowski
- Centre de formation médicale du Nouveau-Brunswick, Université de Sherbrooke, Moncton, NB, Canada.; Department of Neurology, Dr. Georges-L.-Dumont University Hospital Centre, Moncton, NB, Canada
| |
Collapse
|
6
|
Watanabe K, Nakashima M, Wakatsuki R, Bunai T, Ouchi Y, Nakamura T, Miyajima H, Saitsu H. Cognitive Impairment in a Complex Family With AAGGG and ACAGG Repeat Expansions in RFC1 Detected by ExpansionHunter Denovo. NEUROLOGY GENETICS 2022; 8:e682. [PMID: 36381255 PMCID: PMC9641967 DOI: 10.1212/nxg.0000000000000682] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 04/07/2022] [Indexed: 11/25/2022]
Abstract
Background and Objectives We investigated the genetic basis and brain metabolism and blood flow of a Japanese family with spinocerebellar degeneration (SCD), with multiple affected members for 3 generations. Methods After excluding DNA repeat expansion (RE) of common SCD genes by fragment analysis, we performed whole-exome sequencing (WES) and whole-genome sequencing (WGS). Homozygosity mapping was performed using these data. REs were investigated with WGS data using ExpansionHunter Denovo and Expansion Hunter. Results WES and WGS were unable to identify likely pathogenic variants, and homozygosity mapping failed to narrow down the locus. However, ExpansionHunter Denovo detected REs in intron 2 of the RFC1 gene and led us to the diagnosis of RFC1-related disorders. Subsequent repeat-primed PCR and Southern blot hybridization analyses revealed that 3 of 6 patients and 1 suspected individual had expansions of AAGGG ((AAGGG)exp) and (ACAGG)exp repeats in a compound heterozygous state and 3 had a homozygous (ACAGG)exp. The patients showed a variety of clinical features, including adult-onset ataxia, sensorimotor neuropathy, head tremor, parkinsonism, dystonia, and cognitive impairment. A comparison of previous reports with those of the family in study suggested that motor neuropathy could be a feature of compound heterozygous patients and biallelic (ACAGG)exp patients. Cognitive function tests showed cognitive impairment with a predominance of frontal lobe dysfunction. Examination of MRI, SPECT, and 18F-fluorodeoxyglucose-PET showed clear cortical damage with frontal lobe predominance in 1 case, but no cerebral damage was evident in the other 2 cases. Discussion Our report shows the usefulness of WGS and RE detection tools for SCD of unknown cause. The studied family with RFC1-related disorders included patients with (ACAGG)exp and (AAGGG)exp in a compound heterozygous state and was characterized by motor neuropathy. Based on the results of cognitive function tests and imaging studies, 1 patient presented with cognitive impairment due to frontal lobe metabolic changes, but there were also patients who presented with cognitive impairment without apparent cerebral metabolic or blood flow, suggesting that other factors are also associated with cognitive impairment.
Collapse
|
7
|
van Prooije T, Ibrahim NM, Azmin S, van de Warrenburg B. Spinocerebellar ataxias in Asia: Prevalence, phenotypes and management. Parkinsonism Relat Disord 2021; 92:112-118. [PMID: 34711523 DOI: 10.1016/j.parkreldis.2021.10.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/05/2021] [Accepted: 10/19/2021] [Indexed: 11/19/2022]
Abstract
This paper reviews and summarizes three main aspects of spinocerebellar ataxias (SCA) in the Asian population. First, epidemiological studies were comprehensively reviewed. Overall, the most common subtypes include SCA1, SCA2, SCA3, and SCA6, but there are large differences in the relative prevalence of these and other SCA subtypes between Asian countries. Some subtypes such as SCA12 and SCA31 are rather specific to certain Asian populations. Second, we summarized distinctive phenotypic manifestations of SCA patients of Asian origin, for example a frequent co-occurrence of parkinsonism in some SCA subtypes. Lastly, we have conducted an exploratory survey study to map SCA-specific expertise, resources, and management in various Asian countries. This showed large differences in accessibility, genetic testing facilities, and treatment options between lower and higher income Asian countries. Currently, many Asian SCA patients remain without a final genetic diagnosis. Lack of prevalence data on SCA, lack of patient registries, and insufficient access to genetic testing facilities hamper a wider understanding of these diseases in several (particularly lower income) Asian countries.
Collapse
Affiliation(s)
- Teije van Prooije
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6500 HB, Nijmegen, the Netherlands
| | - Norlinah Mohamed Ibrahim
- Neurology Unit, Department of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Shahrul Azmin
- Neurology Unit, Department of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Bart van de Warrenburg
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6500 HB, Nijmegen, the Netherlands.
| |
Collapse
|
8
|
Ishiguro T, Nagai Y, Ishikawa K. Insight Into Spinocerebellar Ataxia Type 31 (SCA31) From Drosophila Model. Front Neurosci 2021; 15:648133. [PMID: 34113230 PMCID: PMC8185138 DOI: 10.3389/fnins.2021.648133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/31/2021] [Indexed: 11/13/2022] Open
Abstract
Spinocerebellar ataxia type 31 (SCA31) is a progressive neurodegenerative disease characterized by degeneration of Purkinje cells in the cerebellum. Its genetic cause is a 2.5- to 3.8-kb-long complex pentanucleotide repeat insertion containing (TGGAA)n, (TAGAA)n, (TAAAA)n, and (TAAAATAGAA)n located in an intron shared by two different genes: brain expressed associated with NEDD4-1 (BEAN1) and thymidine kinase 2 (TK2). Among these repeat sequences, (TGGAA)n repeat was the only sequence segregating with SCA31, which strongly suggests its pathogenicity. In SCA31 patient brains, the mutant BEAN1 transcript containing expanded UGGAA repeats (UGGAAexp) was found to form abnormal RNA structures called RNA foci in cerebellar Purkinje cell nuclei. In addition, the deposition of pentapeptide repeat (PPR) proteins, poly(Trp-Asn-Gly-Met-Glu), translated from UGGAAexp RNA, was detected in the cytoplasm of Purkinje cells. To uncover the pathogenesis of UGGAAexp in SCA31, we generated Drosophila models of SCA31 expressing UGGAAexp RNA. The toxicity of UGGAAexp depended on its length and expression level, which was accompanied by the accumulation of RNA foci and translation of repeat-associated PPR proteins in Drosophila, consistent with the observation in SCA31 patient brains. We also revealed that TDP-43, FUS, and hnRNPA2B1, motor neuron disease–linked RNA-binding proteins bound to UGGAAexp RNA, act as RNA chaperones to regulate the formation of RNA foci and repeat-associated translation. Further research on the role of RNA-binding proteins as RNA chaperones may also provide a novel therapeutic strategy for other microsatellite repeat expansion diseases besides SCA31.
Collapse
Affiliation(s)
- Taro Ishiguro
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Bunkyo City, Japan
| | - Yoshitaka Nagai
- Department of Neurotherapeutics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kinya Ishikawa
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Bunkyo City, Japan.,Department of Personalized Genomic Medicine for Health, Graduate School, Tokyo Medical and Dental University, Bunkyo City, Japan
| |
Collapse
|
9
|
Toru S, Ishida S, Uchihara T, Hirokawa K, Kitagawa M, Ishikawa K. Comorbid argyrophilic grain disease in an 87-year-old male with spinocerebellar ataxia type 31 with dementia: a case report. BMC Neurol 2020; 20:136. [PMID: 32293309 PMCID: PMC7158122 DOI: 10.1186/s12883-020-01723-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/12/2020] [Indexed: 02/06/2023] Open
Abstract
Background Spinocerebellar ataxia type 31 (SCA31) is not usually associated with dementia, and autopsy in a patient with both conditions is very rare. Case presentation An 87-year-old male patient presented with ataxia and progressive dementia. Genetic testing led to a diagnosis of SCA31. Fifteen years after his initial symptoms of hearing loss and difficulty walking, he died of aspiration pneumonia. A pathological analysis showed cerebellar degeneration consistent with SCA31 and abundant argyrophilic grains in the hippocampal formation and amygdala that could explain his dementia. Conclusions This is the first autopsy report on comorbid argyrophilic grain disease with SCA31.
Collapse
Affiliation(s)
- Shuta Toru
- Department of Neurology, Nitobe Memorial Nakano General Hospital, 4-59-16 Chuo, Nakano-ku, Tokyo, 164-8607, Japan.
| | - Shoko Ishida
- Department of Pathology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Toshiki Uchihara
- Department of Neurology, Nitobe Memorial Nakano General Hospital, 4-59-16 Chuo, Nakano-ku, Tokyo, 164-8607, Japan
| | - Katsuiku Hirokawa
- Department of Pathology, Nitobe Memorial Nakano General Hospital, 4-59-16 Chuo, Nakano-ku, Tokyo, 164-8607, Japan
| | - Masanobu Kitagawa
- Department of Pathology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | - Kinya Ishikawa
- Department of Neurology, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| |
Collapse
|
10
|
Arcuria G, Marcotulli C, Galasso C, Pierelli F, Casali C. 15-White Dots APP-Coo-Test: a reliable touch-screen application for assessing upper limb movement impairment in patients with cerebellar ataxias. J Neurol 2019; 266:1611-1622. [PMID: 30955123 DOI: 10.1007/s00415-019-09299-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/23/2019] [Accepted: 03/27/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Giuseppe Arcuria
- Department of Medical and Surgical Sciences and Biotechnologies (DSBMC), Polo Pontino-University of Rome "Sapienza", Via Faggiana 34, 40100, Latina, Italy.
| | - Christian Marcotulli
- Department of Medical and Surgical Sciences and Biotechnologies (DSBMC), Polo Pontino-University of Rome "Sapienza", Via Faggiana 34, 40100, Latina, Italy
| | - Claudio Galasso
- Department of Medical and Surgical Sciences and Biotechnologies (DSBMC), Polo Pontino-University of Rome "Sapienza", Via Faggiana 34, 40100, Latina, Italy
| | - Francesco Pierelli
- Department of Medical and Surgical Sciences and Biotechnologies (DSBMC), Polo Pontino-University of Rome "Sapienza", Via Faggiana 34, 40100, Latina, Italy
| | - Carlo Casali
- Department of Medical and Surgical Sciences and Biotechnologies (DSBMC), Polo Pontino-University of Rome "Sapienza", Via Faggiana 34, 40100, Latina, Italy
| |
Collapse
|
11
|
Vishwakarma P, Muthuswamy S, Agarwal S. Current molecular insight to reveal the dynamics of CAG repeating units in spinocerebellar ataxia. Intractable Rare Dis Res 2018; 7:79-86. [PMID: 29862148 PMCID: PMC5982628 DOI: 10.5582/irdr.2018.01039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Spinocerebellar ataxia (SCA) is a heterogeneous genetic disorder with overlapping clinical phenotypes arising from the degeneration of purkinje cells and other regions of the brain. There are approximately 36 different subtypes of SCA, but SCA 1, 2, 3, 6 and 7 are most prevalent in the Indian population. Many findings suggested that cerebellar Purkinje cells region may be a uniquely vulnerable neuronal cell type, and more susceptible to a wider variety of genetic or cellular problems than other neuron types. In this review we emphasized mainly five common subtypes of SCA (1, 2, 3, 6 and 7) their pathophysiology, therapeutics, drugs studies and the technical challenges in the field of molecular genetic diagnosis.
Collapse
Affiliation(s)
- Priyanka Vishwakarma
- Department of Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Srinivasan Muthuswamy
- Department of Life Science, National Institute of Technology, Rourkela, Odisha, India
| | - Sarita Agarwal
- Department of Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
- Address correspondence to:Dr. Sarita Agarwal, Department of Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow 226014, India. E-mail:
| |
Collapse
|
12
|
Venkatesh SD, Kandasamy M, Moily NS, Vaidyanathan R, Kota LN, Adhikarla S, Yadav R, Pal PK, Jain S, Purushottam M. Genetic testing for clinically suspected spinocerebellar ataxias: report from a tertiary referral centre in India. J Genet 2018; 97:219-224. [PMID: 29666341 DOI: 10.1007/s12041-018-0911-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/27/2017] [Accepted: 08/03/2017] [Indexed: 01/24/2023]
Abstract
Spinocerebellar ataxias (SCAs) are a heterogeneous group of neurodegenerative syndromes, characterized by a wide range of muscular weakness and motor deficits, caused due to cerebellar degeneration. The prevalence of the syndromes of SCA varies across the world and is known to be linked to the instability of trinucleotide repeats within the high-end normal alleles, along with susceptible haplotype. We estimated sizes of the CAG or GAA repeat expansions at the SCA1, SCA2, SCA3, SCA12 and frataxin loci among 864 referrals of subjects to genetic counselling and testing (GCAT) clinic, National Institute of Mental Health and Neurosciences, Bengaluru, India, with suspected SCA. The most frequent mutations detected were SCA1 (n = 100 (11.6%)) and SCA2 (n = 98 (11.3%)) followed by SCA3 (n = 40 (4.6%)), FRDA (n = 20 (2.3%)) and SCA12 (n = 8 (0.9%)).
Collapse
Affiliation(s)
- Sowmya Devatha Venkatesh
- Department of Psychiatry, Genetic Testing and Counselling Clinic, National Institute of Mental Health and Neurosciences, Bengaluru 560 029, India.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Yabe I, Yaguchi H, Kato Y, Miki Y, Takahashi H, Tanikawa S, Shirai S, Takahashi I, Kimura M, Hama Y, Matsushima M, Fujioka S, Kano T, Watanabe M, Nakagawa S, Kunieda Y, Ikeda Y, Hasegawa M, Nishihara H, Ohtsuka T, Tanaka S, Tsuboi Y, Hatakeyama S, Wakabayashi K, Sasaki H. Mutations in bassoon in individuals with familial and sporadic progressive supranuclear palsy-like syndrome. Sci Rep 2018; 8:819. [PMID: 29339765 PMCID: PMC5770378 DOI: 10.1038/s41598-018-19198-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 12/27/2017] [Indexed: 12/21/2022] Open
Abstract
Clinical diagnosis of progressive supranuclear palsy (PSP) is sometimes difficult because various phenotypes have been identified. Here, we report a mutation in the bassoon (BSN) gene in a family with PSP-like syndrome. Their clinical features resembled not only those of PSP patients but also those of individuals with multiple system atrophy and Alzheimer's disease. The neuropathological findings showed a novel three + four repeat tauopathy with pallido-luysio-nigral degeneration and hippocampal sclerosis. Whole-exome analysis of this family identified a novel missense mutation in BSN. Within the pedigree, the detected BSN mutation was found only in affected individuals. Further genetic analyses were conducted in probands from four other pedigrees with PSP-like syndrome and in 41 sporadic cases. Three missense mutations in BSN that are very rarely listed in databases of healthy subjects were found in four sporadic cases. Western blot analysis of tau following the overexpression of wild-type or mutated BSN revealed the possibility that wild-type BSN reduced tau accumulation, while mutated BSN lost this function. An association between BSN and neurological diseases has not been previously reported. Our results revealed that the neurodegenerative disorder associated with the original proband's pedigree is a novel tauopathy, differing from known dementia and parkinsonism syndromes, including PSP.
Collapse
Affiliation(s)
- Ichiro Yabe
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.
| | - Hiroaki Yaguchi
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.,Department of Biochemistry, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yasutaka Kato
- Department of Cancer Pathology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.,Laboratory of Oncology, Hokuto Hospital, Obihiro, Japan
| | - Yasuo Miki
- Department of Neuropathology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Hidehisa Takahashi
- Department of Biochemistry, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Satoshi Tanikawa
- Department of Cancer Pathology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shinichi Shirai
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Ikuko Takahashi
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Mari Kimura
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yuka Hama
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masaaki Matsushima
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shinsuke Fujioka
- Department of Neurology, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Takahiro Kano
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masashi Watanabe
- Department of Biochemistry, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shin Nakagawa
- Department of Psychiatry, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | | | - Yoshio Ikeda
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Masato Hasegawa
- Department of Dementia and Higher Brain Function, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Hiroshi Nishihara
- Department of Cancer Pathology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.,Division of Clinical Cancer Genomics, Cancer Center, Keio University School of Medicine, Tokyo, Japan
| | - Toshihisa Ohtsuka
- Department of Biochemistry, Faculty of Medicine/Graduate School of Medicine, University of Yamanashi, Chuo, Japan
| | - Shinya Tanaka
- Department of Cancer Pathology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan.,Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan
| | - Yoshio Tsuboi
- Department of Neurology, Fukuoka University School of Medicine, Fukuoka, Japan
| | - Shigetsugu Hatakeyama
- Department of Biochemistry, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Koichi Wakabayashi
- Department of Neuropathology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Hidenao Sasaki
- Department of Neurology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
14
|
Inter-generational instability of inserted repeats during transmission in spinocerebellar ataxia type 31. J Hum Genet 2017. [PMID: 28638142 DOI: 10.1038/jhg.2017.63] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The causative mutation for spinocerebellar ataxia type 31 (SCA31) is an intronic insertion containing pathogenic pentanucleotide repeats, (TGGAA)n. We examined to what degree the inserted repeats were unstable during transmission. In 14 parent-child pairs, the average change of onset age was -6.4±7.3 years (mean±s.d.) in the child generation when compared with the parent generation. Of the 11 pairs analyzed, six showed expansion of inserted repeat length during transmission, and five showed contraction. On average, the inserted repeats expanded by 12.2±32.7 bp during transmission, but their mean length (with a 95% confidence interval) was not significantly different between parent and child generations. We consider that the length of the inserted repeats in SCA31 is changeable during transmission, but inter-generational instability is not marked, as far as the current sizing method can determine.
Collapse
|
15
|
Naito H, Takahashi T, Kamada M, Morino H, Yoshino H, Hattori N, Maruyama H, Kawakami H, Matsumoto M. First report of a Japanese family with spinocerebellar ataxia type 10: The second report from Asia after a report from China. PLoS One 2017; 12:e0177955. [PMID: 28542277 PMCID: PMC5438172 DOI: 10.1371/journal.pone.0177955] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 05/05/2017] [Indexed: 12/12/2022] Open
Abstract
Spinocerebellar ataxia type 10 (SCA10) is an autosomal-dominant cerebellar ataxia that is variably accompanied by epilepsy and other neurological disorders. It is caused by an expansion of the ATTCT pentanucleotide repeat in intron 9 of the ATXN10 gene. Until now, SCA10 was almost exclusively found in the American continents, while no cases had been identified in Japan. Here, we report the first case of an SCA10 family from Japan. The clinical manifestations in our cases were cerebellar ataxia accompanied by epilepsy, hyperreflexia and cognitive impairment. Although the primary pathology in SCA10 in humans is reportedly the loss of Purkinje cells, brain MRI revealed frontal lobe atrophy with white matter lesions. This pathology might be associated with cognitive dysfunction, indicating that the pathological process is not limited to the cerebellum. Examination of the SNPs surrounding the SCA10 locus in the proband showed the “C-expansion-G-G-C” haplotype, which is consistent with previously reported SCA10-positive individuals. This result was consistent with the findings that the SCA10 mutation may have occurred before the migration of Amerindians from East Asia to North America and the subsequent spread of their descendants throughout North and South America.
Collapse
Affiliation(s)
- Hiroyuki Naito
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Tetsuya Takahashi
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
- * E-mail:
| | - Masaki Kamada
- Department of Neurological Intractable Disease Research, Kagawa University School of Medicine, Kagawa, Japan
| | - Hiroyuki Morino
- Department of Epidemiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Hiroyo Yoshino
- Research Institute for Diseases of Old Age, Juntendo University School of Medicine, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University School of Medicine, Tokyo, Japan
| | - Hirofumi Maruyama
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
| | - Hideshi Kawakami
- Department of Epidemiology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan
| | - Masayasu Matsumoto
- Department of Clinical Neuroscience and Therapeutics, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan
- Japan Community Health care Organization, Hoshigaoka Medical Center, Osaka, Japan
| |
Collapse
|
16
|
SCA42 mutation analysis in a case series of Japanese patients with spinocerebellar ataxia. J Hum Genet 2017; 62:857-859. [PMID: 28490766 DOI: 10.1038/jhg.2017.51] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/05/2017] [Accepted: 04/05/2017] [Indexed: 11/09/2022]
Abstract
Spinocerebellar ataxia (SCA) is a group of dominantly inherited heterogeneous disorders in which 43 subtypes have been identified to date. Recently, Japanese and French families with SCA type 42 (SCA42) were found to have a missense mutation (c.5144G>A; R1715H) in CACNA1G. We performed genetic analysis of 84 unrelated families to find the prevalence of SCA42 in Japan. Two families were found to have the previously reported missense mutation. Clinical presentations of the affected members of these families were similar to those of the previously reported French and Japanese families. Our study demonstrates that SCA42 exists in small numbers in Japan, and further supports the idea that SCA42 is a slowly progressive, pure cerebellar ataxia.
Collapse
|
17
|
Nakamura K, Yoshida K, Matsushima A, Shimizu Y, Sato S, Yahikozawa H, Ohara S, Yazawa M, Ushiyama M, Sato M, Morita H, Inoue A, Ikeda SI. Natural History of Spinocerebellar Ataxia Type 31: a 4-Year Prospective Study. THE CEREBELLUM 2016; 16:518-524. [DOI: 10.1007/s12311-016-0833-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
18
|
Bhattacharyya KB, Pulai D, Guin DS, Ganguly G, Joardar A, Roy S, Rai S, Biswas A, Pandit A, Roy A, Senapati AK. Spinocerebellar ataxia type 6 in eastern India: Some new observations. Ann Indian Acad Neurol 2016; 19:360-6. [PMID: 27570389 PMCID: PMC4980960 DOI: 10.4103/0972-2327.186823] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Introduction: Spinocerebellar ataxias (SCAs) are hereditary, autosomal dominant progressive neurodegenerative disorders showing clinical and genetic heterogeneity. They are usually manifested clinically in the third to fifth decade of life although there is a wide variability in the age of onset. More than 36 different types of SCAs have been reported so far and about half of them are caused by pathological expansion of the trinucleotide, Cytosine Alanine Guanine (CAG) repeat. The global prevalence of SCA is 0.3-2 per 100,000 population, SCA3 being the commonest variety worldwide, accounting for 20-50 per cent of all cases, though SCA 2 is generally considered as the commonest one in India. However, SCA6 has not been addressed adequately from India though it is common in the eastern Asian countries like, Japan, Korea and Thailand. Objective: The present study was undertaken to identify the prevalence of SCA6 in the city of Kolkata and the eastern part of India. Materials and Methods: 83 consecutive patients were recruited for the study of possible SCAs and their clinical features and genotype were investigated. Results: 6 of the 83 subjects turned out positive for SCA6, constituting therefore, 13.33% of the patient pool. Discussion: SCA6 is prevalent in the eastern part of India, though not as frequent as the other common varieties. Conclusions: Further community based studies are required in order to understand the magnitude of SCA6 in the eastern part, as well as in other regions of India.
Collapse
Affiliation(s)
| | - Debabrata Pulai
- Department of Neurology, Bangur Institute of Neurosciences, Kolkata, West Bengal, India
| | - Deb Shankar Guin
- Department of Neuromedicine, Bangur Institute of Neurosciences, Kolkata, West Bengal, India
| | - Goutam Ganguly
- Department of Neurology, Bangur Institute of Neurosciences, Kolkata, West Bengal, India
| | - Anindita Joardar
- Department of Neurogenetics, Bangur Institute of Neurosciences, Kolkata, West Bengal, India
| | - Sarnava Roy
- Department of Neurogenetics, Bangur Institute of Neurosciences, Kolkata, West Bengal, India
| | - Saurabh Rai
- Department of Neuromedicine, Bangur Institute of Neurosciences, Kolkata, West Bengal, India
| | - Atanu Biswas
- Department of Neuromedicine, Bangur Institute of Neurosciences, Kolkata, West Bengal, India
| | - Alok Pandit
- Department of Neuromedicine, Bangur Institute of Neurosciences, Kolkata, West Bengal, India
| | - Arijit Roy
- Department of Neuromedicine, Bangur Institute of Neurosciences, Kolkata, West Bengal, India
| | - Asit Kumar Senapati
- Department of Neuromedicine, Bangur Institute of Neurosciences, Kolkata, West Bengal, India
| |
Collapse
|
19
|
Kim JS, Cho JW. Hereditary Cerebellar Ataxias: A Korean Perspective. J Mov Disord 2015; 8:67-75. [PMID: 26090078 PMCID: PMC4460542 DOI: 10.14802/jmd.15006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 04/14/2015] [Accepted: 04/16/2015] [Indexed: 12/28/2022] Open
Abstract
Hereditary ataxia is a heterogeneous disorder characterized by progressive ataxia combined with/without peripheral neuropathy, extrapyramidal symptoms, pyramidal symptoms, seizure, and multiple systematic involvements. More than 35 autosomal dominant cerebellar ataxias have been designated as spinocerebellar ataxia, and there are 55 recessive ataxias that have not been named systematically. Conducting genetic sequencing to confirm a diagnosis is difficult due to the large amount of subtypes with phenotypic overlap. The prevalence of hereditary ataxia can vary among countries, and estimations of prevalence and subtype frequencies are necessary for planning a diagnostic strategy in a specific population. This review covers the various hereditary ataxias reported in the Korean population with a focus on the prevalence and subtype frequencies as the clinical characteristics of the various subtypes.
Collapse
Affiliation(s)
- Ji Sun Kim
- Department of Neurology, Soonchunhyang University Hospital, Soonchunhyang University School of Medicine, Seoul, Korea
| | - Jin Whan Cho
- Department of Neurology, Sungkyunkwan University School of Medicine, Seoul, Korea ; Neuroscience Center, Samsung Medical Center, Seoul, Korea
| |
Collapse
|
20
|
Rare frequency of downbeat positioning nystagmus in spinocerebellar ataxia type 31. J Neurol Sci 2015; 350:90-2. [DOI: 10.1016/j.jns.2014.12.042] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 12/17/2014] [Accepted: 12/29/2014] [Indexed: 11/22/2022]
|
21
|
Adachi T, Kitayama M, Nakano T, Adachi Y, Kato S, Nakashima K. Autopsy case of spinocerebellar ataxia type 31 with severe dementia at the terminal stage. Neuropathology 2014; 35:273-9. [PMID: 25495291 DOI: 10.1111/neup.12184] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 10/22/2014] [Indexed: 12/15/2022]
Abstract
Spinocerebellar ataxia type 31 (SCA31) is an autosomal dominant cerebellar ataxia commonly observed in Japan. However, few neuropathological examinations have been conducted. Here we report the case of a 76-year-old Japanese male SCA31 patient. He noticed dysarthria and difficulty walking at 65 years old. His symptoms subsequently deteriorated, although he could still walk with assistance at 70 years. At 73 years, when he could no longer walk, he was admitted to our hospital. He showed severe limb and truncal ataxia. His father and older brother had shown the same symptoms. Brain magnetic resonance imaging showed cerebellar atrophy of the anterior lobe and white matter hyperintensities. He was diagnosed with SCA31 by genetic analysis. Gradually, his cognitive functions and ability to communicate declined. He died of respiratory failure at the age of 76. Neuropathological examination revealed severe Purkinje cell loss that was accentuated in the anterior lobe of the cerebellum. Furthermore, the remaining Purkinje cells showed abnormal processes (that is, halo-like amorphous materials), as has been reported previously. Severe deposition of hyperphosphorylated tau-positive neurites, many senile plaques and amyloid angiopathy were observed in the neocortex. Our findings suggest that in SCA31, accelerated tau and amyloid pathology in the neocortex might induce dementia at the terminal stage.
Collapse
Affiliation(s)
- Tadashi Adachi
- Division of Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Michio Kitayama
- Division of Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Toshiya Nakano
- Division of Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Yoshiki Adachi
- Department of Neurology, National Hospital Organization Matsue Medical Center, Matsue, Japan
| | - Shinsuke Kato
- Department of Neuropathology, Faculty of Medicine, Tottori University, Yonago, Japan
| | - Kenji Nakashima
- Division of Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, Yonago, Japan
| |
Collapse
|
22
|
de Castilhos RM, Furtado GV, Gheno TC, Schaeffer P, Russo A, Barsottini O, Pedroso JL, Salarini DZ, Vargas FR, de Lima MADFD, Godeiro C, Santana-da-Silva LC, Toralles MBP, Santos S, van der Linden H, Wanderley HY, de Medeiros PFV, Pereira ET, Ribeiro E, Saraiva-Pereira ML, Jardim LB. Spinocerebellar ataxias in Brazil--frequencies and modulating effects of related genes. THE CEREBELLUM 2014; 13:17-28. [PMID: 23943520 DOI: 10.1007/s12311-013-0510-y] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
This study describes the frequency of spinocerebellar ataxias and of CAG repeats range in different geographical regions of Brazil, and explores the hypothetical role of normal CAG repeats at ATXN1, ATXN2, ATXN3, CACNA1A, and ATXN7 genes on age at onset and on neurological findings. Patients with symptoms and family history compatible with a SCA were recruited in 11 cities of the country; clinical data and DNA samples were collected. Capillary electrophoresis was performed to detect CAG lengths at SCA1, SCA2, SCA3/MJD, SCA6, SCA7, SCA12, SCA17, and DRPLA associated genes, and a repeat primed PCR was used to detect ATTCT expansions at SCA10 gene. Five hundred forty-four patients (359 families) were included. There were 214 SCA3/MJD families (59.6 %), 28 SCA2 (7.8 %), 20 SCA7 (5.6 %), 15 SCA1 (4.2 %), 12 SCA10 (3.3 %), 5 SCA6 (1.4 %), and 65 families without a molecular diagnosis (18.1 %). Divergent rates of SCA3/MJD, SCA2, and SCA7 were seen in regions with different ethnic backgrounds. 64.7 % of our SCA10 patients presented seizures. Among SCA2 patients, longer ATXN3 CAG alleles were associated with earlier ages at onset (p < 0.036, linear regression). A portrait of SCAs in Brazil was obtained, where variation in frequencies seemed to parallel ethnic differences. New potential interactions between some SCA-related genes were presented.
Collapse
Affiliation(s)
- Raphael Machado de Castilhos
- Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos 2350, 90.035-903, Porto Alegre, Rio Grande do Sul, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Saito R, Kikuno S, Maeda M, Uesaka Y, Ida M. [A case of 77-year-old male with spinocerebellar ataxia type 31 with left dominant dystonia]. Rinsho Shinkeigaku 2014; 54:643-7. [PMID: 25142535 DOI: 10.5692/clinicalneurol.54.643] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We report on the case of a 77-year-old male with genetically proven spinocerebellar ataxia type 31 (SCA31) who had dystonia. He was referred to our hospital for evaluation following a 6-year history of slowly progressive unsteadiness of his left leg during walking and dysarthria at the age of 62 years old. On the basis of his symptoms, we diagnosed him as spinocerebellar degeneration (SCD), and prescribed taltirelin hydrate. However, his symptoms continued to worsen. He required a cane for walking at the age of 63 years, and a wheelchair at the age of 66 years. He was admitted to our hospital following acute cerebral infarction at the age of 77 years. On examination at admission, right hemiparesis and cerebellar ataxia were detected. And left hallux moved involuntarily toward the top surface of the foot at rest, that is dystonia. The dystonia was not associated with cerebral infarction, because it had been several years with dystonia that he got cerebral infarction. Genetic analysis revealed that this patient harbored a heterozygous SCA31 mutation. Previously there have been no reports of SCA31 associated with dystonia. Our case report support clinical heterogeneity of SCA31, and highlight the importance of considering this type in patients with dystonia and ataxia. Patients with the combination of dystonia and ataxia and a family history of a neurodegenerative disorder should be tested for SCA31.
Collapse
Affiliation(s)
- Rie Saito
- Department of Neurology, Toranomon Hospital
| | | | | | | | | |
Collapse
|
24
|
Sakakibara S, Aiba I, Saito Y, Inukai A, Ishikawa K, Mizusawa H. [Clinical features and MRI findings in spinocerebellar ataxia type 31 (SCA31) comparing with spinocerebellar ataxia type 6 (SCA6)]. Rinsho Shinkeigaku 2014; 54:473-479. [PMID: 24990830 DOI: 10.5692/clinicalneurol.54.473] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Since the discovery of spinocerebellar ataxia type 31 (SCA31) gene, we identified 6 patients whose SCA type had been unkown for a long period of time as having SCA31 in our hospital and realized that SCA31 is not a rare type of autosomal dominant spinocerebellar ataxia in this region. We examined and compared the clinical details of these six SCA31 patients and the same number of SCA6 patients, finding that some SCA31 patients had hearing loss in common while there are more wide range and complicated signs of extra cerebellum in SCA6 such as pyramidal signs, extrapyramidal signs, dizzy sensations or psychotic, mental problems. There is a significant difference in the number of extracerebellar symptoms between SCA31 and SCA6. There are differences also in MRI findings. Cerebellar atrophy starts from the upper vermis in SCA31, as well as some SCA types, whereas the 4th ventricule becomes enlarged in SCA6 even in the early stage of disease. We suggest that these differences in clinical and MRI findings can be clues for accurate diagnosis before gene analysis.
Collapse
Affiliation(s)
- Satoko Sakakibara
- Department of Neurology, National Hospital Organization Higashi Nagoya National Hospital
| | | | | | | | | | | |
Collapse
|
25
|
Fujioka S, Sundal C, Wszolek ZK. Autosomal dominant cerebellar ataxia type III: a review of the phenotypic and genotypic characteristics. Orphanet J Rare Dis 2013; 8:14. [PMID: 23331413 PMCID: PMC3558377 DOI: 10.1186/1750-1172-8-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 01/16/2013] [Indexed: 12/26/2022] Open
Abstract
Autosomal Dominant Cerebellar Ataxia (ADCA) Type III is a type of spinocerebellar ataxia (SCA) classically characterized by pure cerebellar ataxia and occasionally by non-cerebellar signs such as pyramidal signs, ophthalmoplegia, and tremor. The onset of symptoms typically occurs in adulthood; however, a minority of patients develop clinical features in adolescence. The incidence of ADCA Type III is unknown. ADCA Type III consists of six subtypes, SCA5, SCA6, SCA11, SCA26, SCA30, and SCA31. The subtype SCA6 is the most common. These subtypes are associated with four causative genes and two loci. The severity of symptoms and age of onset can vary between each SCA subtype and even between families with the same subtype. SCA5 and SCA11 are caused by specific gene mutations such as missense, inframe deletions, and frameshift insertions or deletions. SCA6 is caused by trinucleotide CAG repeat expansions encoding large uninterrupted glutamine tracts. SCA31 is caused by repeat expansions that fall outside of the protein-coding region of the disease gene. Currently, there are no specific gene mutations associated with SCA26 or SCA30, though there is a confirmed locus for each subtype. This disease is mainly diagnosed via genetic testing; however, differential diagnoses include pure cerebellar ataxia and non-cerebellar features in addition to ataxia. Although not fatal, ADCA Type III may cause dysphagia and falls, which reduce the quality of life of the patients and may in turn shorten the lifespan. The therapy for ADCA Type III is supportive and includes occupational and speech modalities. There is no cure for ADCA Type III, but a number of recent studies have highlighted novel therapies, which bring hope for future curative treatments.
Collapse
Affiliation(s)
- Shinsuke Fujioka
- Department of Neurology at Mayo Clinic, 4500 San Pablo Road Cannaday Bldg 2-E, Jacksonville, FL 32224, USA
| | | | | |
Collapse
|
26
|
Ikeda Y, Nagai M, Kurata T, Yamashita T, Ohta Y, Nagotani S, Deguchi K, Takehisa Y, Shiro Y, Matsuura T, Abe K. Comparisons of acoustic function in SCA31 and other forms of ataxias. Neurol Res 2012; 33:427-32. [PMID: 21535943 DOI: 10.1179/1743132810y.0000000011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
OBJECTIVE To investigate whether acoustic impairment can be one of the characteristic extracerebellar symptoms in sporadic and hereditary ataxias including spinocerebellar ataxia type 31 (SCA31). METHODS We investigated genotypes of dominant ataxia families, and determined a frequency of each form in our cohort of 154 families. Acoustic function in the groups of various forms of ataxia with multiple system atrophy of cerebellar predominance (MSA-C), cortical cerebellar atrophy (CCA), and hereditary ataxias including SCA31 was evaluated by using audiogram and brainstem auditory evoked potentials (BAEPs). RESULTS Genetic analysis of dominant ataxia families revealed that a frequency of SCA31 in our cohort was fewer than that reported from other areas of Japan, indicating that SCA31 is not widely distributed throughout Japan. Results of audiogram showed no significant difference of hearing levels among ataxic groups, and those of BAEPs did not support inner ear dysfunction in SCA31 in which hearing loss had initially been suggested as one of its characteristic symptoms. CONCLUSION This study suggests that acoustic impairment is neither specific to SCA31, MSA-C and CCA nor useful in making a differential diagnosis among them.
Collapse
Affiliation(s)
- Yoshio Ikeda
- Department of Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Cerebellar ataxias with autosomal dominant transmission are rare, but identification of the associated genes has provided insight into the mechanisms that could underlie other forms of genetic or non-genetic ataxias. In many instances, the phenotype is not restricted to cerebellar dysfunction but includes complex multisystemic neurological deficits. The designation of the loci, SCA for spinocerebellar ataxia, indicates the involvement of at least two systems: the spinal cord and the cerebellum. 11 of 18 known genes are caused by repeat expansions in the corresponding proteins, sharing the same mutational mechanism. All other SCAs are caused by either conventional mutations or large rearrangements in genes with different functions, including glutamate signalling (SCA5/SPTBN2) and calcium signalling (SCA15/16/ITPR1), channel function (SCA13/KCNC3, SCA14/PRKCG, SCA27/FGF14), tau regulation (SCA11/TTBK2), and mitochondrial activity (SCA28/AFG3L2) or RNA alteration (SCA31/BEAN-TK2). The diversity of underlying mechanisms that give rise to the dominant cerebellar ataxias need to be taken into account to identify therapeutic targets.
Collapse
Affiliation(s)
- Alexandra Durr
- Université Pierre et Marie Curie-Paris, Centre de Recherche de l'Institut du Cerveau et de la Moelle Epinière, UMR-S975, Paris, France.
| |
Collapse
|
28
|
Yabe I, Tha KK, Yokota T, Sato K, Soma H, Takei A, Terae S, Okita K, Sasaki H. Estimation of skeletal muscle energy metabolism in Machado-Joseph disease using (31)P-MR spectroscopy. Mov Disord 2010; 26:165-8. [PMID: 20818604 DOI: 10.1002/mds.23335] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 04/12/2010] [Accepted: 06/09/2010] [Indexed: 11/07/2022] Open
Abstract
The aim of this study was to determine if muscle energy metabolism, as measured by (31)P-magnetic resonance spectroscopy (MRS), is a metabolic marker for the efficacy of treatment of Machado-Joseph disease (MJD). We obtained (31)P-MRS in the calf muscle of 8 male patients with MJD and 11 healthy men before, during, and after a 4 minute plantar flexion exercise in a supine position. The data showed that there was a significant difference between the groups in terms of the PCr/(Pi + PCr) ratio at rest (P = 0.03) and the maximum rate of mitochondrial ATP production (V(max)) (P < 0.01). In addition, V(max) was inversely correlated with the scale for the assessment and rating of ataxia score (r = -0.34, P = 0.04). The MJD group also showed a reduction in V(max) over the course of 2 years (P < 0.05). These data suggest that this noninvasive measurement of muscle energy metabolism may represent a surrogate marker for MJD.
Collapse
Affiliation(s)
- Ichiro Yabe
- Department of Neurology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Sakai H, Yoshida K, Shimizu Y, Morita H, Ikeda SI, Matsumoto N. Analysis of an insertion mutation in a cohort of 94 patients with spinocerebellar ataxia type 31 from Nagano, Japan. Neurogenetics 2010; 11:409-15. [PMID: 20424877 PMCID: PMC2944954 DOI: 10.1007/s10048-010-0245-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 04/13/2010] [Indexed: 11/30/2022]
Abstract
Spinocerebellar ataxia type 31 (SCA31) is a recently defined subtype of autosomal dominant cerebellar ataxia (ADCA) characterized by adult-onset, pure cerebellar ataxia. The C/T substitution in the 5′-untranslated region of the puratrophin-1 gene (PLEKHG4) or a disease-specific haplotype within the 900-kb SCA31 critical region just upstream of PLEKHG4 has been used for the diagnosis of SCA31. Very recently, a disease-specific insertion containing penta-nucleotide (TGGAA)n repeats has been found in this critical region in SCA31 patients. SCA31 was highly prevalent in Nagano, Japan, where SCA31 accounts for approximately 42% of ADCA families. We screened the insertion in 94 SCA31 patients from 71 families in Nagano. All patients had a 2.6- to 3.7-kb insertion. The size of the insertion was inversely correlated with the age at onset but not associated with the progression rate after onset. (TAGAA)n repeats at the 5′-end of the insertion were variable in number, ranging from 0 (without TAGAA sequence) to 4. The number of (TAGAA)n repeats was inversely correlated to the total size of the insertion. The number of (TAGAA)n repeats was comparatively uniform within patients from the three endemic foci in Nagano. Only one patient, heterozygous for the C/T substitution in PLEKHG4, had the insertions in both alleles; they were approximately 3.0 and 4.3 kb in size. Sequencing and Southern hybridization using biotin-labeled (TGGAA)5 probe strongly indicated that the 3.0-kb insertion, but not the 4.3-kb insertion, contained (TGGAA)n stretch. We also found that 3 of 405 control individuals (0.7%) had the insertions from 1.0 to 3.5 kb in length. They were negative for the C/T substitution in PLEKHG4, and neither of the insertions contained (TGGAA)n stretch at their 5′-end by sequencing. The insertions in normal controls were clearly detected by Southern hybridization using (TAAAA)5 probe, while they were not labeled with (TGGAA)5 or (TAGAA)5 probe. These data indicate that control alleles very rarely have a nonpathogenic large insertion in the SCA31 critical region and that not only the presence of the insertion but also its size is not sufficient evidence for a disease-causing allele. We approve of the view that (TGGAA)n repeats in the insertion are indeed related to the pathogenesis of SCA31, but it remains undetermined whether a large insertion lacking (TGGAA)n is nonpathogenic.
Collapse
Affiliation(s)
- Haruya Sakai
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | | | | | | | | | | |
Collapse
|
30
|
Gan SR, Shi SS, Wu JJ, Wang N, Zhao GX, Weng ST, Murong SX, Lu CZ, Wu ZY. High frequency of Machado-Joseph disease identified in southeastern Chinese kindreds with spinocerebellar ataxia. BMC MEDICAL GENETICS 2010; 11:47. [PMID: 20334689 PMCID: PMC2861663 DOI: 10.1186/1471-2350-11-47] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Accepted: 03/25/2010] [Indexed: 12/23/2022]
Abstract
Background Machado-Joseph disease (MJD), caused by a CAG repeat expansion located in exon10 of the ATXN3 gene, is now regarded as one of the most common spinocerebellar ataxia (SCA) in the world. The relative frequency of MJD among SCA has previously been estimated at about 50% in the Chinese population and has been reported to be related to the frequency of large normal alleles in some populations. Taq polymerase has been used for PCR in nearly all studies reported previously. Methods Normal and expanded alleles of ATXN3 were detected via PCR using LA Taq DNA polymerase (better for GC-rich sequences) and denaturing polyacrylamide gel electrophoresis in 150 normal individuals and 138 unrelated probands from autosomal dominant SCA families. To compare reaction efficiency, 12 MJD patients' expanded alleles were amplified with La Taq and Taq polymerase respectively in the same amplifying systems and reaction conditions. Results Normal alleles ranged from 12 to 42 CAG repeats. The most common allele contained 14 repeats with a frequency of 23.3%, which corroborates previous reports. The frequency of large normal alleles (>27 repeats) was 0.28, which was very high relative to previous reports. The frequency of MJD in SCA patients was 72.5%, which was significantly higher than those in previous reports about the Chinese and other Asian populations. This frequency was one of the highest reported worldwide, with only Portuguese and Brazilian populations exhibiting higher proportions. All 12 expanded alleles were amplified in PCR with La Taq polymerase, whereas only 2 expanded alleles were amplified with Taq polymerase. Conclusion We have first reported the highest relative frequency of MJD in Asia, and we attribute this high frequency to a more efficient PCR using LA Taq polymerase and hypothesized that large ANs may act as a reservoir for expanded alleles in the Southeastern Chinese population.
Collapse
Affiliation(s)
- Shi-Rui Gan
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology, Shanghai Medical College, Fudan University, 12 Wulumuqi Zhong Road, Shanghai 200040, China
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Yamamoto-Watanabe Y, Watanabe M, Hikichi M, Ikeda Y, Jackson M, Wakasaya Y, Matsubara E, Kawarabayashi T, Kannari K, Shoji M. Prevalence of autosomal dominant cerebellar ataxia in Aomori, the northernmost prefecture of Honshu, Japan. Intern Med 2010; 49:2409-14. [PMID: 21088341 DOI: 10.2169/internalmedicine.49.4025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVE The frequency of autosomal dominant cerebellar ataxia (ADCA) varies between different regions of Japan. This is the first report on the prevalence of ADCA subtypes in Aomori, Japan. METHODS AND PATIENTS Sixty-five familial spinocerebellar ataxia (SCA) patients and 15 sporadic SCA patients were genetically examined. For only the SCA2 patients (n = 8), the magnetic resonance imaging (MRI) data were analyzed in detail. RESULTS Spinocerebellar ataxia (SCA) type 6 was often observed (77.7% of cases), with SCA2 (10.6% of cases) being the next most common form. In contrast, only one of the eighty patients had SCA1. Among the 15 sporadic SCA patients, genetic mutations for SCA2, SCA6, SCA17, and SCA31 were identified, indicating that ADCAs should be considered in sporadic cases of ataxia. Furthermore, in SCA2 cases, brainstem atrophy, pontine midline linear hyperintensity, and atrophy of the frontal lobes were frequently observed using MRI. CONCLUSION The present data indicate that the prevalence of ADCA in Aomori differs from other prefectures in the Tohoku District. MRI findings are very similar between SCA2 and multiple system atrophy (MSA), and thus care must be taken to prevent the misdiagnosis of sporadic SCA2 as MSA.
Collapse
|
32
|
Teive HAG, Munhoz RP, Raskin S, Werneck LC. Spinocerebellar ataxia type 6 in Brazil. ARQUIVOS DE NEURO-PSIQUIATRIA 2009; 66:691-4. [PMID: 18949263 DOI: 10.1590/s0004-282x2008000500015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Accepted: 07/30/2008] [Indexed: 11/22/2022]
Abstract
Spinocerebellar ataxia type 6 (SCA 6) is an autosomal dominant cerebellar ataxia caused by CAG repeat expansion in the SCA6 gene, a alpha 1A voltage-dependent calcium channel subunit gene on chromosome 19p13. SCA-6 is characterized predominantly by slowly progressive pure cerebellar ataxia with late onset. We report three index patients, with pure, late onset, cerebellar ataxia, belonging to three different Brazilian families, all of them with Japanese ancestry, from Hokkaido island of Japan.
Collapse
Affiliation(s)
- Hélio A G Teive
- Movement Disorders Unit, Neurology Service, Hospital de Clínicas, Federal University of Paraná, Curitiba, PR, Brazil.
| | | | | | | |
Collapse
|
33
|
Hirano R, Takashima H, Okubo R, Okamoto Y, Maki Y, Ishida S, Suehara M, Hokezu Y, Arimura K. Clinical and genetic characterization of 16q-linked autosomal dominant spinocerebellar ataxia in South Kyushu, Japan. J Hum Genet 2009; 54:377-81. [DOI: 10.1038/jhg.2009.44] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
34
|
Genetics and Pathogenesis of Inherited Ataxias and Spastic Paraplegias. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 652:263-96. [DOI: 10.1007/978-90-481-2813-6_18] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
35
|
Yabe I, Sato K, Soma H, Sasaki H. [Progressive cerebellar ataxia with euthyroid Hashimoto's disease--implication of autoantibodies associated with Hashimoto's disease in progressive cerebellar ataxia]. Rinsho Shinkeigaku 2008; 48:640-5. [PMID: 19048946 DOI: 10.5692/clinicalneurol.48.640] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
To determine the frequency of cerebellar ataxia patients with autoantibodies for Hashimoto's disease, we analyzed 68 patients who were examined serum test for autoantibodies of Hashimoto disease among 178 cerebellar ataxia patients who visited our neurology clinic from January 2005 until December 2007. In these 68 patients, 8 had autoantibodies for Hashimoto's disease. Five of these 8 patients were diagnosed with hereditary spinocerebellar ataxia by genetic analysis. Moreover, one patient was diagnosed with probable multiple system atrophy by neurological examination. Cerebellar ataxic disease of known causes was ruled out for the remaining two cases; they were euthyroid and their cerebellar ataxia was slowly progressive and were diagnosed with cortical cerebellar atrophy. Although Hashimoto's disease may associate with cerebellar ataxia because cortical cerebellar atrophy is a heterogeneous condition, this association is not clear at present.
Collapse
Affiliation(s)
- Ichiro Yabe
- Department of Neurology, Hokkaido University Graduate School of Medicine
| | | | | | | |
Collapse
|
36
|
Severity and Progression Rate of Cerebellar Ataxia in 16q-linked Autosomal Dominant Cerebellar Ataxia (16q-ADCA) in the Endemic Nagano Area of Japan. THE CEREBELLUM 2008; 8:46-51. [DOI: 10.1007/s12311-008-0062-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|