1
|
Vignali E, Gasparotti E, Capellini K, Fanni BM, Landini L, Positano V, Celi S. Modeling biomechanical interaction between soft tissue and soft robotic instruments: importance of constitutive anisotropic hyperelastic formulations. Int J Rob Res 2020. [DOI: 10.1177/0278364920927476] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cardiovascular diseases are the leading cause of death in the western countries. Robotic surgery recently emerged as a confirmed strategy in the cardiovascular field, especially thanks to the improvement of soft robotics. These techniques have demonstrated their potential in terms of speed of execution and precision. In this context, a deeper knowledge of the material properties of the blood vessels is required, especially for computational soft robotics applications. A constitutive model including the contribution of the collagen fibers families is needed to take hyperelasticity and anisotropy into account. For this purpose, four different models are presented: two fiber families with dispersion (2FFD), two fiber families without dispersion (2FF), four fiber families with dispersion (4FFD), and four fiber families without dispersion (4FF). A set of experimental biaxial data obtained from ex-vivo specimens was used to assess the model performances. Two fitting procedures were imposed: a procedure with no weighting of scores and a procedure with a weight set to enhance the model performances in the contact range. A finite element simulation of a contact procedure was developed to evaluate the effect on the contact pressures and forces according to the different model implementations. In particular, a minimally invasive aortic valve positioning process through a previously designed soft robot was simulated. The results confirmed the overall fitting procedure. The adoption of the weighting process for the fitting was successful, as it permitted an accurate prediction in the region of interest through models with less parameters.
Collapse
Affiliation(s)
- Emanuele Vignali
- BioCardioLab, Ospedale del Cuore, Fondazione Toscana G Monasterio, Massa, Italy
- Department of Information Engineering, University of Pisa, Pisa, Italy
| | - Emanuele Gasparotti
- BioCardioLab, Ospedale del Cuore, Fondazione Toscana G Monasterio, Massa, Italy
- Department of Information Engineering, University of Pisa, Pisa, Italy
| | - Katia Capellini
- BioCardioLab, Ospedale del Cuore, Fondazione Toscana G Monasterio, Massa, Italy
- Department of Information Engineering, University of Pisa, Pisa, Italy
| | - Benigno Marco Fanni
- BioCardioLab, Ospedale del Cuore, Fondazione Toscana G Monasterio, Massa, Italy
- Department of Information Engineering, University of Pisa, Pisa, Italy
| | - Luigi Landini
- Department of Information Engineering, University of Pisa, Pisa, Italy
| | - Vincenzo Positano
- BioCardioLab, Ospedale del Cuore, Fondazione Toscana G Monasterio, Massa, Italy
| | - Simona Celi
- BioCardioLab, Ospedale del Cuore, Fondazione Toscana G Monasterio, Massa, Italy
| |
Collapse
|
2
|
A survey for the applications of content-based microscopic image analysis in microorganism classification domains. Artif Intell Rev 2017. [DOI: 10.1007/s10462-017-9572-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
3
|
Novak K, Polzer S, Tichy M, Bursa J. Automatic Evaluation of Collagen Fiber Directions from Polarized Light Microscopy Images. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2015; 21:863-875. [PMID: 25951852 DOI: 10.1017/s1431927615000586] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Mechanical properties of the arterial wall depend largely on orientation and density of collagen fiber bundles. Several methods have been developed for observation of collagen orientation and density; the most frequently applied collagen-specific manual approach is based on polarized light (PL). However, it is very time consuming and the results are operator dependent. We have proposed a new automated method for evaluation of collagen fiber direction from two-dimensional polarized light microscopy images (2D PLM). The algorithm has been verified against artificial images and validated against manual measurements. Finally the collagen content has been estimated. The proposed algorithm was capable of estimating orientation of some 35 k points in 15 min when applied to aortic tissue and over 500 k points in 35 min for Achilles tendon. The average angular disagreement between each operator and the algorithm was -9.3±8.6° and -3.8±8.6° in the case of aortic tissue and -1.6±6.4° and 2.6±7.8° for Achilles tendon. Estimated mean collagen content was 30.3±5.8% and 94.3±2.7% for aortic media and Achilles tendon, respectively. The proposed automated approach is operator independent and several orders faster than manual measurements and therefore has the potential to replace manual measurements of collagen orientation via PLM.
Collapse
Affiliation(s)
- Kamil Novak
- 1Institute of Solid Mechanics,Mechatronics and Biomechanics,Brno University of Technology,Czech Republic
| | - Stanislav Polzer
- 1Institute of Solid Mechanics,Mechatronics and Biomechanics,Brno University of Technology,Czech Republic
| | - Michal Tichy
- 22nd Department of Pathology and Anatomy,St. Anne's University Hospital,Czech Republic
| | - Jiri Bursa
- 1Institute of Solid Mechanics,Mechatronics and Biomechanics,Brno University of Technology,Czech Republic
| |
Collapse
|
4
|
Peralta L, Rus G, Bochud N, Molina F. Assessing viscoelasticity of shear wave propagation in cervical tissue by multiscale computational simulation. J Biomech 2015; 48:1549-56. [DOI: 10.1016/j.jbiomech.2015.01.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 01/31/2015] [Indexed: 01/17/2023]
|
5
|
Leyva-Mendivil MF, Page A, Bressloff NW, Limbert G. A mechanistic insight into the mechanical role of the stratum corneum during stretching and compression of the skin. J Mech Behav Biomed Mater 2015; 49:197-219. [PMID: 26042766 DOI: 10.1016/j.jmbbm.2015.05.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/30/2015] [Accepted: 05/12/2015] [Indexed: 11/28/2022]
Abstract
The study of skin biophysics has largely been driven by consumer goods, biomedical and cosmetic industries which aim to design products that efficiently interact with the skin and/or modify its biophysical properties for health or cosmetic benefits. The skin is a hierarchical biological structure featuring several layers with their own distinct geometry and mechanical properties. Up to now, no computational models of the skin have simultaneously accounted for these geometrical and material characteristics to study their complex biomechanical interactions under particular macroscopic deformation modes. The goal of this study was, therefore, to develop a robust methodology combining histological sections of human skin, image-processing and finite element techniques to address fundamental questions about skin mechanics and, more particularly, about how macroscopic strains are transmitted and modulated through the epidermis and dermis. The work hypothesis was that, as skin deforms under macroscopic loads, the stratum corneum does not experience significant strains but rather folds/unfolds during skin extension/compression. A sample of fresh human mid-back skin was processed for wax histology. Sections were stained and photographed by optical microscopy. The multiple images were stitched together to produce a larger region of interest and segmented to extract the geometry of the stratum corneum, viable epidermis and dermis. From the segmented structures a 2D finite element mesh of the skin composite model was created and geometrically non-linear plane-strain finite element analyses were conducted to study the sensitivity of the model to variations in mechanical properties. The hybrid experimental-computational methodology has offered valuable insights into the simulated mechanics of the skin, and that of the stratum corneum in particular, by providing qualitative and quantitative information on strain magnitude and distribution. Through a complex non-linear interplay, the geometry and mechanical characteristics of the skin layers (and their relative balance), play a critical role in conditioning the skin mechanical response to macroscopic in-plane compression and extension. Topographical features of the skin surface such as furrows were shown to act as an efficient means to deflect, convert and redistribute strain-and so stress-within the stratum corneum, viable epidermis and dermis. Strain reduction and amplification phenomena were also observed and quantified. Despite the small thickness of the stratum corneum, its Young׳s modulus has a significant effect not only on the strain magnitude and directions within the stratum corneum layer but also on those of the underlying layers. This effect is reflected in the deformed shape of the skin surface in simulated compression and extension and is intrinsically linked to the rather complex geometrical characteristics of each skin layer. Moreover, if the Young׳s modulus of the viable epidermis is assumed to be reduced by a factor 12, the area of skin folding is likely to increase under skin compression. These results should be considered in the light of published computational models of the skin which, up to now, have ignored these characteristics.
Collapse
Affiliation(s)
- Maria F Leyva-Mendivil
- National Centre for Advanced Tribology at Southampton (nCATS), Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ, UK; Bioengineering Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton, SO17 1BJ, UK
| | - Anton Page
- Biomedical Imaging Unit, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Neil W Bressloff
- Computational Engineering and Design Group, Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ, UK
| | - Georges Limbert
- National Centre for Advanced Tribology at Southampton (nCATS), Faculty of Engineering and the Environment, University of Southampton, Southampton SO17 1BJ, UK; Bioengineering Research Group, Faculty of Engineering and the Environment, University of Southampton, Southampton, SO17 1BJ, UK; Division of Biomedical Engineering, Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Observatory 7935, Cape Town, South Africa.
| |
Collapse
|
6
|
Peralta L, Rus G, Bochud N, Molina FS. Mechanical assessment of cervical remodelling in pregnancy: insight from a synthetic model. J Biomech 2015; 48:1557-65. [PMID: 25766389 DOI: 10.1016/j.jbiomech.2015.02.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 02/15/2015] [Indexed: 11/16/2022]
Abstract
During the gestation and the cervical remodelling, several changes occur progressively in the structure of the tissue. An increase in the hydration, disorganisation of collagen network and decrease in elasticity can be observed. The collagen structure disorganisation is particularly complex: collagen fibres turn thicker and more wavy as the gestation progresses in a transition from relatively straight fibres to wavy fibres, while pores between collagen fibres become larger and separated. Shear wave elastography is a promising but not yet fully understood tool to assess these structural changes and the cervix׳s ability to dilate. To this end, a numerical histo-mechanical model is proposed in the present study, which aims at linking variations in the microscopic histo-biomechanical processes with shear wave propagation characteristics. Parametric simulations are carried out for a broad range of mechanical and geometrical parameters. Results show a direct relationship between the histological and morphological changes during pregnancy and the viscoelastic behaviour of the tissue.
Collapse
Affiliation(s)
- L Peralta
- Department of Structural Mechanics, University of Granada, Politécnico de Fuentenueva, 18071 Granada, Spain.
| | - G Rus
- Department of Structural Mechanics, University of Granada, Politécnico de Fuentenueva, 18071 Granada, Spain
| | - N Bochud
- Department of Structural Mechanics, University of Granada, Politécnico de Fuentenueva, 18071 Granada, Spain
| | - F S Molina
- Maternal-Fetal Medicine Unit, Department of Obstetrics and Gynecology, San Cecilio University Hospital (HUSC), Granada, Spain
| |
Collapse
|
7
|
Chow MJ, Turcotte R, Lin CP, Zhang Y. Arterial extracellular matrix: a mechanobiological study of the contributions and interactions of elastin and collagen. Biophys J 2015; 106:2684-92. [PMID: 24940786 DOI: 10.1016/j.bpj.2014.05.014] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 03/04/2014] [Accepted: 05/05/2014] [Indexed: 01/01/2023] Open
Abstract
The complex network structure of elastin and collagen extracellular matrix (ECM) forms the primary load bearing components in the arterial wall. The structural and mechanobiological interactions between elastin and collagen are important for properly functioning arteries. Here, we examined the elastin and collagen organization, realignment, and recruitment by coupling mechanical loading and multiphoton imaging. Two-photon excitation fluorescence and second harmonic generation methods were performed with a multiphoton video-rate microscope to capture real time changes to the elastin and collagen structure during biaxial deformation. Enzymatic removal of elastin was performed to assess the structural changes of the remaining collagen structure. Quantitative analysis of the structural changes to elastin and collagen was made using a combination of two-dimensional fast Fourier transform and fractal analysis, which allows for a more complete understanding of structural changes. Our study provides new quantitative evidence, to our knowledge on the sequential engagement of different arterial ECM components in response to mechanical loading. The adventitial collagen exists as large wavy bundles of fibers that exhibit fiber engagement after 20% strain. The medial collagen is engaged throughout the stretching process, and prominent elastic fiber engagement is observed up to 20% strain after which the engagement plateaus. The fiber orientation distribution functions show remarkably different changes in the ECM structure in response to mechanical loading. The medial collagen shows an evident preferred circumferential distribution, however the fiber families of adventitial collagen are obscured by their waviness at no or low mechanical strains. Collagen fibers in both layers exhibit significant realignment in response to unequal biaxial loading. The elastic fibers are much more uniformly distributed and remained relatively unchanged due to loading. Removal of elastin produces similar structural changes in collagen as mechanical loading. Our study suggests that the elastic fibers are under tension and impart an intrinsic compressive stress on the collagen.
Collapse
Affiliation(s)
- Ming-Jay Chow
- Department of Mechanical Engineering, Boston University, Boston, Massachusetts
| | - Raphaël Turcotte
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts; Center for Systems Biology, Advanced Microscopy Program, Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Charles P Lin
- Center for Systems Biology, Advanced Microscopy Program, Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Yanhang Zhang
- Department of Mechanical Engineering, Boston University, Boston, Massachusetts; Department of Biomedical Engineering, Boston University, Boston, Massachusetts.
| |
Collapse
|
8
|
Polzer S, Gasser TC, Forsell C, Druckmüllerova H, Tichy M, Staffa R, Vlachovsky R, Bursa J. Automatic identification and validation of planar collagen organization in the aorta wall with application to abdominal aortic aneurysm. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2013; 19:1395-1404. [PMID: 24016340 DOI: 10.1017/s1431927613013251] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Arterial physiology relies on a delicate three-dimensional (3D) organization of cells and extracellular matrix, which is remarkably altered by vascular diseases like abdominal aortic aneurysms (AAA). The ability to explore the micro-histology of the aorta wall is important in the study of vascular pathologies and in the development of vascular constitutive models, i.e., mathematical descriptions of biomechanical properties of the wall. The present study reports and validates a fast image processing sequence capable of quantifying collagen fiber organization from histological stains. Powering and re-normalizing the histogram of the classical fast Fourier transformation (FFT) is a key step in the proposed analysis sequence. This modification introduces a powering parameter w, which was calibrated to best fit the reference data obtained using classical FFT and polarized light microscopy (PLM) of stained histological slices of AAA wall samples. The values of w = 3 and 7 give the best correlation (Pearson's correlation coefficient larger than 0.7, R 2 about 0.7) with the classical FFT approach and PLM measurements. A fast and operator independent method to identify collagen organization in the arterial wall was developed and validated. This overcomes severe limitations of currently applied methods like PLM to identify collagen organization in the arterial wall.
Collapse
Affiliation(s)
- Stanislav Polzer
- Institute of Solid Mechanics, Mechatronics and Biomechanics, Brno University of Technology, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Automated estimation of collagen fibre dispersion in the dermis and its contribution to the anisotropic behaviour of skin. Ann Biomed Eng 2012; 40:1666-78. [PMID: 22427196 DOI: 10.1007/s10439-012-0542-3] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 03/01/2012] [Indexed: 10/28/2022]
Abstract
Collagen fibres play an important role in the mechanical behaviour of many soft tissues. Modelling of such tissues now often incorporates a collagen fibre distribution. However, the availability of accurate structural data has so far lagged behind the progress of anisotropic constitutive modelling. Here, an automated process is developed to identify the orientation of collagen fibres using inexpensive and relatively simple techniques. The method uses established histological techniques and an algorithm implemented in the MATLAB image processing toolbox. It takes an average of 15 s to evaluate one image, compared to several hours if assessed visually. The technique was applied to histological sections of human skin with different Langer line orientations and a definite correlation between the orientation of Langer lines and the preferred orientation of collagen fibres in the dermis (p < 0.001, R(2) = 0.95) was observed. The structural parameters of the Gasser-Ogden-Holzapfel (GOH) model were all successfully evaluated. The mean dispersion factor for the dermis was κ = 0.1404±0.0028. The constitutive parameters μ, k(1) and k(2) were evaluated through physically-based, least squares curve-fitting of experimental test data. The values found for μ, k(1) and k(2) were 0.2014 MPa, 243.6 and 0.1327, respectively. Finally, the above model was implemented in ABAQUS/Standard and a finite element (FE) computation was performed of uniaxial extension tests on human skin. It is expected that the results of this study will assist those wishing to model skin, and that the algorithm described will be of benefit to those who wish to evaluate the collagen dispersion of other soft tissues.
Collapse
|
10
|
Tian L, Lammers SR, Kao PH, Albietz JA, Stenmark KR, Qi HJ, Shandas R, Hunter KS. Impact of residual stretch and remodeling on collagen engagement in healthy and pulmonary hypertensive calf pulmonary arteries at physiological pressures. Ann Biomed Eng 2012; 40:1419-33. [PMID: 22237861 DOI: 10.1007/s10439-012-0509-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 01/04/2012] [Indexed: 11/29/2022]
Abstract
Understanding the mechanical behavior of proximal pulmonary arteries (PAs) is crucial to evaluating pulmonary vascular function and right ventricular afterload. Early and current efforts focus on these arteries' histological changes, in vivo pressure-diameter behavior and mechanical properties under in vitro mechanical testing. However, the in vivo stretch and stress states remain poorly characterized. To further understand the mechanical behavior of the proximal PAs under physiological conditions, this study computed the residual stretch and the in vivo circumferential stretch state in the main pulmonary arteries in both control and hypertensive calves by using in vitro and in vivo artery geometry data, and modeled the impact of residual stretch and arterial remodeling on the in vivo circumferential stretch distribution and collagen engagement in the main pulmonary artery. We found that the in vivo circumferential stretch distribution in both groups was nonuniform across the vessel wall with the largest stretch at the outer wall, suggesting that collagen at the outer wall would engage first. It was also found that the circumferential stretch was more uniform in the hypertensive group, partially due to arterial remodeling that occurred during their hypoxic treatment, and that their onset of collagen engagement occurred at a higher pressure. It is concluded that the residual stretch and arterial remodeling have strong impact on the in vivo stretch state and the collagen engagement and thus the mechanical behavior of the main pulmonary artery in calves.
Collapse
Affiliation(s)
- Lian Tian
- Department of Mechanical Engineering, University of Colorado, Boulder, CO, USA.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Experimental investigation of collagen waviness and orientation in the arterial adventitia using confocal laser scanning microscopy. Biomech Model Mechanobiol 2011; 11:461-73. [DOI: 10.1007/s10237-011-0325-z] [Citation(s) in RCA: 665] [Impact Index Per Article: 51.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 06/20/2011] [Indexed: 11/26/2022]
|
12
|
Sander E, Stein A, Swickrath M, Barocas V. Out of Many, One: Modeling Schemes for Biopolymer and Biofibril Networks. CHALLENGES AND ADVANCES IN COMPUTATIONAL CHEMISTRY AND PHYSICS 2010. [DOI: 10.1007/978-1-4020-9785-0_19] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
13
|
Quantification of the temporal evolution of collagen orientation in mechanically conditioned engineered cardiovascular tissues. Ann Biomed Eng 2009; 37:1263-72. [PMID: 19415496 PMCID: PMC2690830 DOI: 10.1007/s10439-009-9698-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Accepted: 04/11/2009] [Indexed: 11/25/2022]
Abstract
Load-bearing soft tissues predominantly consist of collagen and exhibit anisotropic, non-linear visco-elastic behavior, coupled to the organization of the collagen fibers. Mimicking native mechanical behavior forms a major goal in cardiovascular tissue engineering. Engineered tissues often lack properly organized collagen and consequently do not meet in vivo mechanical demands. To improve collagen architecture and mechanical properties, mechanical stimulation of the tissue during in vitro tissue growth is crucial. This study describes the evolution of collagen fiber orientation with culture time in engineered tissue constructs in response to mechanical loading. To achieve this, a novel technique for the quantification of collagen fiber orientation is used, based on 3D vital imaging using multiphoton microscopy combined with image analysis. The engineered tissue constructs consisted of cell-seeded biodegradable rectangular scaffolds, which were either constrained or intermittently strained in longitudinal direction. Collagen fiber orientation analyses revealed that mechanical loading induced collagen alignment. The alignment shifted from oblique at the surface of the construct towards parallel to the straining direction in deeper tissue layers. Most importantly, intermittent straining improved and accelerated the alignment of the collagen fibers, as compared to constraining the constructs. Both the method and the results are relevant to create and monitor load-bearing tissues with an organized anisotropic collagen network.
Collapse
|
14
|
Weitzel CR, Everett TA, Higgins DA. Aggregation and its influence on macroscopic in-plane organization in thin films of electrostatically self-assembled perylene-diimide/polyelectrolyte nanofibers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:1188-1195. [PMID: 19093762 DOI: 10.1021/la803177n] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The influence of precursor aggregation on materials deposition efficiency, film morphology, and macroscopic in-plane organization is explored for electrostatically self-assembled perylene-diimide/polyelectrolyte (PDI/PE) composites. PDI/PE thin films are prepared from aqueous precursor solutions by sequential dip-coating methods. Three PDI dyes are employed to probe the influence of aggregation on electrostatic self-assembly (ESA) of the composites. These include a singly charged PDI, C(7)OPDI(+), and two doubly charged species, PDISO(3)(2-) and TAPDI(2+). Poly(diallyldimethylammonium) (PDDA(+)) chloride and sodium poly(acrylate) (PA(-)) are used as the PEs. UV-vis absorbance and fluorescence spectroscopies show that all three dyes are heavily aggregated in their respective aqueous solutions. Temperature-dependent fluorescence data and filtration studies show that C(7)OPDI(+) is most strongly associated and also forms the largest aggregates. Absorbance data obtained as a function of the number of deposition cycles employed in film preparation demonstrate that C(7)OPDI(+) is also most efficiently deposited. Atomic force microscopy (AFM) images show that all three PDI/PE films are comprised of similar serpentine nanofibers. Interestingly, bulk absorbance dichroism data and AFM images demonstrate that the C(7)OPDI(+)/PA(-) composites incorporate macroscopically oriented dye and aligned nanofibers. Dye and nanofiber alignment is found to be perpendicular and parallel, respectively, to the dipping direction. No such organization is observed for the other two composites. It is concluded that deposition is strongly influenced by the level of precursor aggregation and that macroscopic in-plane organization in the C(7)OPDI(+)/PA(-) composites results from flow-induced alignment of relatively large preformed C(7)OPDI(+) aggregates during deposition.
Collapse
Affiliation(s)
- Corey R Weitzel
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, USA
| | | | | |
Collapse
|
15
|
Odin C, Guilbert T, Alkilani A, Boryskina OP, Fleury V, Le Grand Y. Collagen and myosin characterization by orientation field second harmonic microscopy. OPTICS EXPRESS 2008; 16:16151-65. [PMID: 18825253 DOI: 10.1364/oe.16.016151] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Collagen and myosin fibrils are endogenous harmonophores that both give rise to Second Harmonic Generation (SHG). By combining four polarization SHG images provided by a scanning microscope, we show that the orientation of the principal axis of the nonlinear susceptibility tensor chi(2) can be determined for each pixel of the image. The ratio rho = chi33/chi15 of the principal components of chi(2) of collagen and myosin was obtained with the same method, and found within the range 1.6-1.8 and 0.5-0.6 respectively. The orientation of the principal axis of chi(2) is shown to be correlated to the orientation of the fibrils themselves. This provides a straightforward method, which we call Orientation Field-Second Harmonic Microscopy (OF-SHM), to reconstruct orientation fields of fibrils at various scales and resolutions in different biological systems (from muscle sarcomere to the whole embryo).
Collapse
Affiliation(s)
- Christophe Odin
- Institut of Physics of Rennes IPR/UMR CNRS 6251, University of Rennes I, Campus deBeaulieu, Bat 11A, 35042 Rennes Cedex, France.
| | | | | | | | | | | |
Collapse
|
16
|
Holzapfel GA. Determination of material models for arterial walls from uniaxial extension tests and histological structure. J Theor Biol 2005; 238:290-302. [PMID: 16043190 DOI: 10.1016/j.jtbi.2005.05.006] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2004] [Revised: 05/20/2005] [Accepted: 05/20/2005] [Indexed: 10/25/2022]
Abstract
An approach is proposed that allows the determination of material models from uniaxial tests and histostructural data including fiber orientation of the tissue. A combination of neo-Hookean and Fung-type strain-energy functions is utilized, and inequality constraints imposed on the constitutive parameters are derived providing strict local convexity and preferred fiber orientations. It is shown how the Fung-type model gets a pseudo-structural aspect inherent in the phenomenological model; a correlation between the fiber structure and the parameters of the Fung-type model is explicitly provided. In order to apply the proposed approach, quasi-static uniaxial extension tests of preconditioned prepared strips from the intima, media and adventitia of a human aorta with non-atherosclerotic intimal thickening are acquired in axial and circumferential directions; structural information from histological analyses for each aortic tissue are documented. Data reveal a remarkable thickness, load-bearing capacity and stiffness of the intimal samples in comparison with the media and adventitia. Constitutive parameters for each aortic tissue layer are determined by solving the constrained problem using a penalty function method; a new approach for the estimation of appropriate start values is proposed. Finally, the predictivity and efficacy of the material models is shown by comparing model data with data from the uniaxial extension tests and histological image analyses.
Collapse
Affiliation(s)
- Gerhard A Holzapfel
- Institute for Structural Analysis-Computational Biomechanics, Graz University of Technology, 8010 Graz, Schiesstattgasse 14-B, Austria.
| |
Collapse
|