1
|
Yang W, Chen SC, Wang TE, Tsai PS, Chen JC, Chen PL. L1cam alternative shorter transcripts encoding the extracellular domains were overexpressed in the intestine of L1cam knockdown mice. Gene 2023; 881:147643. [PMID: 37453721 DOI: 10.1016/j.gene.2023.147643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/25/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Hirschsprung disease (HSCR) is a congenital disorder of functional bowel obstruction due to the absence of enteric ganglia in distal bowel. Different L1cam variants were reportedly associated with L1cam syndrome and HSCR, whose phenotypes lacked predictable relevance to their genotypes. Using next-generation sequencing (NGS), we found an L1CAM de novo frameshift mutation in a female with mild hydrocephalus and skip-type HSCR. A nearly identical L1cam variant was introduced into FVB/NJ mice via the CRISPR-EZ method. A silent mutation was created via ssODN to gain an artificial Ncol restriction enzyme site for easier genotyping. Six L1cam protein-coding alternative transcripts were quantitatively measured. Immunofluorescence staining with polyclonal and monoclonal L1cam antibodies was used to characterize L1cam isoform proteins in enteric ganglia. Fifteen mice, seven males and eight females, generated via CRISPR-EZ, were confirmed to carry the L1cam frameshift variant, resulting in a premature stop codon. There was no prominent hydrocephalus nor HSCR-like presentation in these mice, but male infertility was noticed after observation for three generations in a total of 176 mice. Full-length L1cam transcripts were detected at a very low level in the intestinal tissues and almost none in the brain of these mice. Alternative shorter transcripts encoding the extracellular domains were overexpressed in the intestine of L1cam knockdown mice. Immunofluorescence confirmed no fulllength L1cam protein in enteric ganglia. These shorter L1cam isoform proteins might play a role in protecting L1cam knockdown mice from HSCR.
Collapse
Affiliation(s)
- Wendy Yang
- Department of Surgery, Chang Gung Children's Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Pediatric Research Center, Chang Gung Children's Hospital, Taoyuan, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Szu-Chieh Chen
- Pediatric Research Center, Chang Gung Children's Hospital, Taoyuan, Taiwan
| | - Tse-En Wang
- Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, 10617 Taipei, Taiwan
| | - Pei-Shiue Tsai
- Graduate Institute of Veterinary Medicine, School of Veterinary Medicine, National Taiwan University, 10617 Taipei, Taiwan; Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, 10617 Taipei, Taiwan
| | - Jeng-Chang Chen
- Department of Surgery, Chang Gung Children's Hospital, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Pediatric Research Center, Chang Gung Children's Hospital, Taoyuan, Taiwan.
| | - Pei-Lung Chen
- Graduate Institute of Medical Genomics and Proteomics, National Taiwan University, Taiwan; Departments of Medical Genetics, National Taiwan University Hospital, Taiwan; Departments of Internal Medicine, National Taiwan University Hospital, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
2
|
Loers G, Kleene R, Girbes Minguez M, Schachner M. The Cell Adhesion Molecule L1 Interacts with Methyl CpG Binding Protein 2 via Its Intracellular Domain. Int J Mol Sci 2022; 23:ijms23073554. [PMID: 35408913 PMCID: PMC8998178 DOI: 10.3390/ijms23073554] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 02/04/2023] Open
Abstract
Cell adhesion molecule L1 regulates multiple cell functions, and L1 deficiency is linked to several neural diseases. Recently, we have identified methyl CpG binding protein 2 (MeCP2) as a potential binding partner of the intracellular L1 domain. By ELISA we show here that L1's intracellular domain binds directly to MeCP2 via the sequence motif KDET. Proximity ligation assay with cultured cerebellar and cortical neurons suggests a close association between L1 and MeCP2 in nuclei of neurons. Immunoprecipitation using MeCP2 antibodies and nuclear mouse brain extracts indicates that MeCP2 interacts with an L1 fragment of ~55 kDa (L1-55). Proximity ligation assay indicates that metalloproteases, β-site of amyloid precursor protein cleaving enzyme (BACE1) and ɣ-secretase, are involved in the generation of L1-55. Reduction in MeCP2 expression by siRNA decreases L1-dependent neurite outgrowth from cultured cortical neurons as well as the migration of L1-expressing HEK293 cells. Moreover, L1 siRNA, MeCP2 siRNA, or a cell-penetrating KDET-containing L1 peptide leads to reduced levels of myocyte enhancer factor 2C (Mef2c) mRNA and protein in cortical neurons, suggesting that the MeCP2/L1 interaction regulates Mef2c expression. Altogether, the present findings indicate that the interaction of the novel fragment L1-55 with MeCP2 affects L1-dependent functions, such as neurite outgrowth and neuronal migration.
Collapse
Affiliation(s)
- Gabriele Loers
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; (G.L.); (R.K.); (M.G.M.)
| | - Ralf Kleene
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; (G.L.); (R.K.); (M.G.M.)
| | - Maria Girbes Minguez
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Martinistr. 52, 20246 Hamburg, Germany; (G.L.); (R.K.); (M.G.M.)
| | - Melitta Schachner
- Keck Center for Collaborative Neuroscience, Department of Cell Biology and Neuroscience, Rutgers University, 604 Allison Road, Piscataway, NJ 08854, USA
- Correspondence: ; Tel.: +1-848-445-1780
| |
Collapse
|
3
|
Bi-allelic variants in neuronal cell adhesion molecule cause a neurodevelopmental disorder characterized by developmental delay, hypotonia, neuropathy/spasticity. Am J Hum Genet 2022; 109:518-532. [PMID: 35108495 DOI: 10.1016/j.ajhg.2022.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 01/07/2022] [Indexed: 12/20/2022] Open
Abstract
Cell adhesion molecules are membrane-bound proteins predominantly expressed in the central nervous system along principal axonal pathways with key roles in nervous system development, neural cell differentiation and migration, axonal growth and guidance, myelination, and synapse formation. Here, we describe ten affected individuals with bi-allelic variants in the neuronal cell adhesion molecule NRCAM that lead to a neurodevelopmental syndrome of varying severity; the individuals are from eight families. This syndrome is characterized by developmental delay/intellectual disability, hypotonia, peripheral neuropathy, and/or spasticity. Computational analyses of NRCAM variants, many of which cluster in the third fibronectin type III (Fn-III) domain, strongly suggest a deleterious effect on NRCAM structure and function, including possible disruption of its interactions with other proteins. These findings are corroborated by previous in vitro studies of murine Nrcam-deficient cells, revealing abnormal neurite outgrowth, synaptogenesis, and formation of nodes of Ranvier on myelinated axons. Our studies on zebrafish nrcamaΔ mutants lacking the third Fn-III domain revealed that mutant larvae displayed significantly altered swimming behavior compared to wild-type larvae (p < 0.03). Moreover, nrcamaΔ mutants displayed a trend toward increased amounts of α-tubulin fibers in the dorsal telencephalon, demonstrating an alteration in white matter tracts and projections. Taken together, our study provides evidence that NRCAM disruption causes a variable form of a neurodevelopmental disorder and broadens the knowledge on the growing role of the cell adhesion molecule family in the nervous system.
Collapse
|
4
|
Moseley-Alldredge M, Sheoran S, Yoo H, O’Keefe C, Richmond JE, Chen L. A role for the Erk MAPK pathway in modulating SAX-7/L1CAM-dependent locomotion in Caenorhabditis elegans. Genetics 2022; 220:iyab215. [PMID: 34849872 PMCID: PMC9097276 DOI: 10.1093/genetics/iyab215] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 11/11/2021] [Indexed: 01/13/2023] Open
Abstract
L1CAMs are immunoglobulin cell adhesion molecules that function in nervous system development and function. Besides being associated with autism and schizophrenia spectrum disorders, impaired L1CAM function also underlies the X-linked L1 syndrome, which encompasses a group of neurological conditions, including spastic paraplegia and congenital hydrocephalus. Studies on vertebrate and invertebrate L1CAMs established conserved roles that include axon guidance, dendrite morphogenesis, synapse development, and maintenance of neural architecture. We previously identified a genetic interaction between the Caenorhabditis elegans L1CAM encoded by the sax-7 gene and RAB-3, a GTPase that functions in synaptic neurotransmission; rab-3; sax-7 mutant animals exhibit synthetic locomotion abnormalities and neuronal dysfunction. Here, we show that this synergism also occurs when loss of SAX-7 is combined with mutants of other genes encoding key players of the synaptic vesicle (SV) cycle. In contrast, sax-7 does not interact with genes that function in synaptogenesis. These findings suggest a postdevelopmental role for sax-7 in the regulation of synaptic activity. To assess this possibility, we conducted electrophysiological recordings and ultrastructural analyses at neuromuscular junctions; these analyses did not reveal obvious synaptic abnormalities. Lastly, based on a forward genetic screen for suppressors of the rab-3; sax-7 synthetic phenotypes, we determined that mutants in the ERK Mitogen-activated Protein Kinase (MAPK) pathway can suppress the rab-3; sax-7 locomotion defects. Moreover, we established that Erk signaling acts in a subset of cholinergic neurons in the head to promote coordinated locomotion. In combination, these results suggest a modulatory role for Erk MAPK in L1CAM-dependent locomotion in C. elegans.
Collapse
Affiliation(s)
- Melinda Moseley-Alldredge
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN 55455, USA
- Developmental Biology Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Seema Sheoran
- Department of Biological Sciences, University of Illinois, Chicago, IL 60607, USA
| | - Hayoung Yoo
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Calvin O’Keefe
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Janet E Richmond
- Department of Biological Sciences, University of Illinois, Chicago, IL 60607, USA
| | - Lihsia Chen
- Department of Genetics, Cell Biology & Development, University of Minnesota, Minneapolis, MN 55455, USA
- Developmental Biology Center, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
5
|
Jarysta A, Tarchini B. Multiple PDZ domain protein maintains patterning of the apical cytoskeleton in sensory hair cells. Development 2021; 148:270996. [PMID: 34228789 DOI: 10.1242/dev.199549] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Accepted: 06/25/2021] [Indexed: 12/29/2022]
Abstract
Sound transduction occurs in the hair bundle, the apical compartment of sensory hair cells in the inner ear. The hair bundle is formed of actin-based stereocilia aligned in rows of graded heights. It was previously shown that the GNAI-GPSM2 complex is part of a developmental blueprint that defines the polarized organization of the apical cytoskeleton in hair cells, including stereocilia distribution and elongation. Here, we report a role for multiple PDZ domain (MPDZ) protein during apical hair cell morphogenesis in mouse. We show that MPDZ is enriched at the hair cell apical membrane along with MAGUK p55 subfamily member 5 (MPP5/PALS1) and the Crumbs protein CRB3. MPDZ is required there to maintain the proper segregation of apical blueprint proteins, including GNAI-GPSM2. Loss of the blueprint coincides with misaligned stereocilia placement in Mpdz mutant hair cells, and results in permanently misshapen hair bundles. Graded molecular and structural defects along the cochlea can explain the profile of hearing loss in Mpdz mutants, where deficits are most severe at high frequencies.
Collapse
Affiliation(s)
| | - Basile Tarchini
- The Jackson Laboratory, Bar Harbor, ME 04609, USA.,Department of Medicine, Tufts University, Boston, MA 02111, USA.,Graduate School of Biomedical Science and Engineering (GSBSE), University of Maine, Orono, ME 04469, USA
| |
Collapse
|
6
|
Loers G, Appel D, Lutz D, Congiu L, Kleene R, Hermans-Borgmeyer I, Schäfer MKE, Schachner M. Amelioration of the abnormal phenotype of a new L1 syndrome mouse mutation with L1 mimetics. FASEB J 2021; 35:e21329. [PMID: 33484186 DOI: 10.1096/fj.202002163r] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/02/2020] [Accepted: 12/14/2020] [Indexed: 11/11/2022]
Abstract
L1 syndrome is a rare developmental disorder characterized by hydrocephalus of varying severity, intellectual deficits, spasticity of the legs, and adducted thumbs. Therapy is limited to symptomatic relief. Numerous gene mutations in the L1 cell adhesion molecule (L1CAM, hereafter abbreviated L1) were identified in L1 syndrome patients, and those affecting the extracellular domain of this transmembrane type 1 glycoprotein show the most severe phenotypes. Previously analyzed rodent models of the L1 syndrome focused on L1-deficient animals or mouse mutants with abrogated cell surface expression of L1, making it difficult to test L1 function-triggering mimetic compounds with potential therapeutic value. To overcome this impasse, we generated a novel L1 syndrome mouse with a mutation of aspartic acid at position 201 in the extracellular part of L1 (p.D201N, hereafter termed L1-201) that displays a cell surface-exposed L1 accessible to the L1 mimetics. Behavioral assessment revealed an increased neurological deficit score and increased locomotor activity in male L1-201 mice carrying the mutation on the X-chromosome. Histological analyses of L1-201 mice showed features of the L1 syndrome, including enlarged ventricles and reduced size of the corpus callosum. Expression levels of L1-201 protein as well as extent of cell surface biotinylation and immunofluorescence labelling of cultured cerebellar neurons were normal. Importantly, treatment of these cultures with the L1 mimetic compounds duloxetine, crotamiton, and trimebutine rescued impaired cell migration and survival as well as neuritogenesis. Altogether, the novel L1 syndrome mouse model provides a first experimental proof-of-principle for the potential therapeutic value of L1 mimetic compounds.
Collapse
Affiliation(s)
- Gabriele Loers
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Dominik Appel
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - David Lutz
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Ludovica Congiu
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Ralf Kleene
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Irm Hermans-Borgmeyer
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Michael K E Schäfer
- Department of Anesthesiology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany.,Focus Program Translational Neurosciences, Johannes Gutenberg-University of Mainz, Mainz, Germany.,Research Centre for Immunotherapy, Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Melitta Schachner
- Zentrum für Molekulare Neurobiologie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany.,Department of Cell Biology and Neuroscience, Keck Center for Collaborative Neuroscience, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
7
|
Complexity of Generating Mouse Models to Study the Upper Motor Neurons: Let Us Shift Focus from Mice to Neurons. Int J Mol Sci 2019; 20:ijms20163848. [PMID: 31394733 PMCID: PMC6720674 DOI: 10.3390/ijms20163848] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/26/2019] [Accepted: 08/05/2019] [Indexed: 12/11/2022] Open
Abstract
Motor neuron circuitry is one of the most elaborate circuitries in our body, which ensures voluntary and skilled movement that requires cognitive input. Therefore, both the cortex and the spinal cord are involved. The cortex has special importance for motor neuron diseases, in which initiation and modulation of voluntary movement is affected. Amyotrophic lateral sclerosis (ALS) is defined by the progressive degeneration of both the upper and lower motor neurons, whereas hereditary spastic paraplegia (HSP) and primary lateral sclerosis (PLS) are characterized mainly by the loss of upper motor neurons. In an effort to reveal the cellular and molecular basis of neuronal degeneration, numerous model systems are generated, and mouse models are no exception. However, there are many different levels of complexities that need to be considered when developing mouse models. Here, we focus our attention to the upper motor neurons, which are one of the most challenging neuron populations to study. Since mice and human differ greatly at a species level, but the cells/neurons in mice and human share many common aspects of cell biology, we offer a solution by focusing our attention to the affected neurons to reveal the complexities of diseases at a cellular level and to improve translational efforts.
Collapse
|
8
|
Itoh K, Fushiki S. The role of L1cam in murine corticogenesis, and the pathogenesis of hydrocephalus. Pathol Int 2015; 65:58-66. [DOI: 10.1111/pin.12245] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 11/21/2014] [Indexed: 11/27/2022]
Affiliation(s)
- Kyoko Itoh
- Department of Pathology and Applied Neurobiology; Graduate School of Medical Science; Kyoto Prefectural University of Medicine; Kyoto Japan
| | - Shinji Fushiki
- Department of Pathology and Applied Neurobiology; Graduate School of Medical Science; Kyoto Prefectural University of Medicine; Kyoto Japan
| |
Collapse
|
9
|
Nagaraj K, Mualla R, Hortsch M. The L1 Family of Cell Adhesion Molecules: A Sickening Number of Mutations and Protein Functions. ADVANCES IN NEUROBIOLOGY 2014; 8:195-229. [DOI: 10.1007/978-1-4614-8090-7_9] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
10
|
Yamamoto H, Maruo T, Majima T, Ishizaki H, Tanaka-Okamoto M, Miyoshi J, Mandai K, Takai Y. Genetic deletion of afadin causes hydrocephalus by destruction of adherens junctions in radial glial and ependymal cells in the midbrain. PLoS One 2013; 8:e80356. [PMID: 24236178 PMCID: PMC3827428 DOI: 10.1371/journal.pone.0080356] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 10/11/2013] [Indexed: 12/23/2022] Open
Abstract
Adherens junctions (AJs) play a role in mechanically connecting adjacent cells to maintain tissue structure, particularly in epithelial cells. The major cell–cell adhesion molecules at AJs are cadherins and nectins. Afadin binds to both nectins and α-catenin and recruits the cadherin-β-catenin complex to the nectin-based cell–cell adhesion site to form AJs. To explore the role of afadin in radial glial and ependymal cells in the brain, we generated mice carrying a nestin-Cre-mediated conditional knockout (cKO) of the afadin gene. Newborn afadin-cKO mice developed hydrocephalus and died neonatally. The afadin-cKO brain displayed enlarged lateral ventricles and cerebral aqueduct, resulting from stenosis of the caudal end of the cerebral aqueduct and obliteration of the ventral part of the third ventricle. Afadin deficiency further caused the loss of ependymal cells from the ventricular and aqueductal surfaces. During development, radial glial cells, which terminally differentiate into ependymal cells, scattered from the ventricular zone and were replaced by neurons that eventually covered the ventricular and aqueductal surfaces of the afadin-cKO midbrain. Moreover, the denuded ependymal cells were only occasionally observed in the third ventricle and the cerebral aqueduct of the afadin-cKO midbrain. Afadin was co-localized with nectin-1 and N-cadherin at AJs of radial glial and ependymal cells in the control midbrain, but these proteins were not concentrated at AJs in the afadin-cKO midbrain. Thus, the defects in the afadin-cKO midbrain most likely resulted from the destruction of AJs, because AJs in the midbrain were already established before afadin was genetically deleted. These results indicate that afadin is essential for the maintenance of AJs in radial glial and ependymal cells in the midbrain and is required for normal morphogenesis of the cerebral aqueduct and ventral third ventricle in the midbrain.
Collapse
Affiliation(s)
- Hideaki Yamamoto
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
- Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | - Tomohiko Maruo
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
- Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
| | - Takashi Majima
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- Department of Molecular Biology, Osaka Medical Center for Cancer and Cardiovascular Disease, Osaka, Japan
| | - Hiroyoshi Ishizaki
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
- Department of Molecular Biology, Osaka Medical Center for Cancer and Cardiovascular Disease, Osaka, Japan
| | - Miki Tanaka-Okamoto
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
- Department of Molecular Biology, Osaka Medical Center for Cancer and Cardiovascular Disease, Osaka, Japan
| | - Jun Miyoshi
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
- Department of Molecular Biology, Osaka Medical Center for Cancer and Cardiovascular Disease, Osaka, Japan
| | - Kenji Mandai
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
- Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
- * E-mail: (KT); (KM)
| | - Yoshimi Takai
- Division of Pathogenetic Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
- Division of Molecular and Cellular Biology, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Hyogo, Japan
- CREST, Japan Science and Technology Agency, Kawaguchi, Saitama, Japan
- Department of Molecular Biology and Biochemistry, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
- * E-mail: (KT); (KM)
| |
Collapse
|
11
|
Lee L. Riding the wave of ependymal cilia: genetic susceptibility to hydrocephalus in primary ciliary dyskinesia. J Neurosci Res 2013; 91:1117-32. [PMID: 23686703 DOI: 10.1002/jnr.23238] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 03/22/2013] [Accepted: 03/20/2013] [Indexed: 12/17/2022]
Abstract
Congenital hydrocephalus is a relatively common and debilitating birth defect with several known physiological causes. Dysfunction of motile cilia on the ependymal cells that line the ventricular surface of the brain can result in hydrocephalus by hindering the proper flow of cerebrospinal fluid. As a result, hydrocephalus can be associated with primary ciliary dyskinesia, a rare pediatric syndrome resulting from defects in ciliary and flagellar motility. Although the prevalence of hydrocephalus in primary ciliary dyskinesia patients is low, it is a common hallmark of the disease in mouse models, suggesting that distinct genetic mechanisms underlie the differences in the development and physiology of human and mouse brains. Mouse models of primary ciliary dyskinesia reveal strain-specific differences in the appearance and severity of hydrocephalus, indicating the presence of genetic modifiers segregating in inbred strains. These models may provide valuable insight into the genetic mechanisms that regulate susceptibility to hydrocephalus under the conditions of ependymal ciliary dysfunction.
Collapse
Affiliation(s)
- Lance Lee
- Sanford Children's Health Research Center, Sanford Research USD, Sioux Falls, South Dakota, USA.
| |
Collapse
|
12
|
|
13
|
Kishimoto T, Itoh K, Umekage M, Tonosaki M, Yaoi T, Fukui K, Lemmon VP, Fushiki S. Downregulation of L1 perturbs neuronal migration and alters the expression of transcription factors in murine neocortex. J Neurosci Res 2012; 91:42-50. [PMID: 23073969 PMCID: PMC3533181 DOI: 10.1002/jnr.23141] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 08/15/2012] [Accepted: 08/21/2012] [Indexed: 01/12/2023]
Abstract
L1 is a cell adhesion molecule associated with a spectrum of human neurological diseases, the most well-known being X-linked hydrocephalus. L1 knockout (L1-KO) mice have revealed a variety of functions of L1 that were crucial in brain development in different brain regions. However; the function of L1 in neuronal migration during cortical histogenesis remains to be clarified. We therefore investigated the corticogenesis of mouse embryos in which L1 molecules were knocked down in selected neurons, by employing in utero electroporation with shRNAs targeting L1 (L1 shRNA). Although more than 50% of the cells transfected with no small hairpin RNA (shRNA; monster green fluorescent protein: MGFP only) vector at embryonic day 13 (E13) reached the cortical plate at E16, significantly fewer (27%) cells transfected with L1 shRNA migrated to the same extent. At E17, 22% of cells transfected with the MGFP-only vector were found in the intermediate zone, and significantly more (34%) cells transfected with L1 shRNA remained in the same zone. Furthermore, the directions of the leading process of neurons transfected with L1 shRNA became more dispersed compared with cells with the MGFP-only vector. In addition, two transcription factors expressed in the neurons, Satb2 and Tbr1, were shown to be reduced or aberrantly expressed in neurons transfected with L1 shRNA. These observations suggest that L1 plays an important role in regulating the locomotion and orientation of migrating neurons and the expression of transcription factors during neocortical development that might partially be responsible for the abnormal tract formation seen in L1-KO mice. © 2012 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Tomokazu Kishimoto
- Department of Pathology and Applied Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, Japan
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Wyss L, Schäfer J, Liebner S, Mittelbronn M, Deutsch U, Enzmann G, Adams RH, Aurrand-Lions M, Plate KH, Imhof BA, Engelhardt B. Junctional adhesion molecule (JAM)-C deficient C57BL/6 mice develop a severe hydrocephalus. PLoS One 2012; 7:e45619. [PMID: 23029139 PMCID: PMC3445510 DOI: 10.1371/journal.pone.0045619] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 08/20/2012] [Indexed: 11/18/2022] Open
Abstract
The junctional adhesion molecule (JAM)-C is a widely expressed adhesion molecule regulating cell adhesion, cell polarity and inflammation. JAM-C expression and function in the central nervous system (CNS) has been poorly characterized to date. Here we show that JAM-C−/− mice backcrossed onto the C57BL/6 genetic background developed a severe hydrocephalus. An in depth immunohistochemical study revealed specific immunostaining for JAM-C in vascular endothelial cells in the CNS parenchyma, the meninges and in the choroid plexus of healthy C57BL/6 mice. Additional JAM-C immunostaining was detected on ependymal cells lining the ventricles and on choroid plexus epithelial cells. Despite the presence of hemorrhages in the brains of JAM-C−/− mice, our study demonstrates that development of the hydrocephalus was not due to a vascular function of JAM-C as endothelial re-expression of JAM-C failed to rescue the hydrocephalus phenotype of JAM-C−/− C57BL/6 mice. Evaluation of cerebrospinal fluid (CSF) circulation within the ventricular system of JAM-C−/− mice excluded occlusion of the cerebral aqueduct as the cause of hydrocephalus development but showed the acquisition of a block or reduction of CSF drainage from the lateral to the 3rd ventricle in JAM-C−/− C57BL/6 mice. Taken together, our study suggests that JAM-C−/− C57BL/6 mice model the important role for JAM-C in brain development and CSF homeostasis as recently observed in humans with a loss-of-function mutation in JAM-C.
Collapse
Affiliation(s)
- Lena Wyss
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Julia Schäfer
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Stefan Liebner
- Edinger Institute, Goethe University Medical School, Frankfurt/Main, Germany
| | - Michel Mittelbronn
- Edinger Institute, Goethe University Medical School, Frankfurt/Main, Germany
| | - Urban Deutsch
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Gaby Enzmann
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
| | - Ralf H. Adams
- Max Planck Institute for Molecular Biomedicine, Department of Tissue Morphogenesis, Münster, Germany
- Faculty of Medicine, University of Münster, Münster, Germany
| | - Michel Aurrand-Lions
- INSERM, Centre de Recherche en Cancérologie de Marseille, Institut Paoli-Calmettes, Marseille, France
| | - Karl H. Plate
- Edinger Institute, Goethe University Medical School, Frankfurt/Main, Germany
| | - Beat A. Imhof
- Department of Pathology and Immunology, University of Geneva, CMU, Geneva, Switzerland
| | - Britta Engelhardt
- Theodor Kocher Institute, University of Bern, Bern, Switzerland
- * E-mail:
| |
Collapse
|
15
|
Role of L1CAM for axon sprouting and branching. Cell Tissue Res 2012; 349:39-48. [DOI: 10.1007/s00441-012-1345-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 01/25/2012] [Indexed: 01/02/2023]
|
16
|
Xu Y, Ye H, Shen Y, Xu Q, Zhu L, Liu J, Wu JY. Dscam mutation leads to hydrocephalus and decreased motor function. Protein Cell 2011; 2:647-55. [PMID: 21904980 DOI: 10.1007/s13238-011-1072-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2011] [Accepted: 05/30/2011] [Indexed: 11/28/2022] Open
Abstract
The nervous system is one of the most complicated organ systems in invertebrates and vertebrates. Down syndrome cell adhesion molecule (DSCAM) of the immunoglobulin (Ig) superfamily is expressed widely in the nervous system during embryonic development. Previous studies in Drosophila suggest that Dscam plays important roles in neural development including axon branching, dendritic tiling and cell spacing. However, the function of the mammalian DSCAM gene in the formation of the nervous system remains unclear. Here, we show that Dscam ( del17 ) mutant mice exhibit severe hydrocephalus, decreased motor function and impaired motor learning ability. Our data indicate that the mammalian DSCAM gene is critical for the formation of the central nervous system.
Collapse
Affiliation(s)
- Yiliang Xu
- National Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Science and Peking Union Medical College, Tsinghua University, Beijing 100084, China
| | | | | | | | | | | | | |
Collapse
|
17
|
Ekici AB, Hilfinger D, Jatzwauk M, Thiel CT, Wenzel D, Lorenz I, Boltshauser E, Goecke TW, Staatz G, Morris-Rosendahl DJ, Sticht H, Hehr U, Reis A, Rauch A. Disturbed Wnt Signalling due to a Mutation in CCDC88C Causes an Autosomal Recessive Non-Syndromic Hydrocephalus with Medial Diverticulum. Mol Syndromol 2010; 1:99-112. [PMID: 21031079 DOI: 10.1159/000319859] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2010] [Accepted: 07/22/2010] [Indexed: 01/27/2023] Open
Abstract
The etiology of non-syndromic hydrocephalus is poorly understood. Via positional cloning in a consanguineous family with autosomal recessive hydrocephalus we have now identified a homozygous splice site mutation in the CCDC88C gene as a novel cause of a complex hydrocephalic brain malformation. The only living patient showed normal psychomotor development at the age of 3 years and 3 months and her deceased aunt, who was assumed to suffer from the same condition, had mild mental retardation. The mutation in the affected patients, a homozygous substitution in the donor splice site of intron 29, resulted in a shorter transcript due to exclusion of exon 29 and loss of functional protein, as shown by Western blotting (p.S1591HfsX7). In normal human tissue panels, we found CCDC88C ubiquitously expressed, but most prominently in the fetal brain, especially in pons and cerebellum, while expression in the adult brain appeared to be restricted to cortex and medulla oblongata. CCDC88C encodes DAPLE (HkRP2), a Hook-related protein with a binding domain for the central Wnt signalling pathway protein Dishevelled. Targeted quantitative RT-PCR and expression profiling of 84 genes from the Wnt signalling pathway in peripheral blood from the index patient and her healthy mother revealed increased mRNA levels of CCDC88C indicating transcriptional upregulation. Due to loss of CCDC88C function β-catenin (CTNNB1) and the downstream target LEF1 showed increased mRNA levels in the patient, but many genes from the Wnt pathway and transcriptional target genes showed reduced expression, which might be explained by a complex negative feedback loop. We have thus identified a further essential component of the Wnt signalling pathway in human brain development.
Collapse
Affiliation(s)
- A B Ekici
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Chen L, Zhou S. "CRASH"ing with the worm: insights into L1CAM functions and mechanisms. Dev Dyn 2010; 239:1490-501. [PMID: 20225255 DOI: 10.1002/dvdy.22269] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The L1 family of cell adhesion molecules (L1CAMs) in vertebrates has long been studied for its roles in nervous system development and function. Members of this family have been associated with distinct neurological disorders that include CRASH, autism, 3p syndrome, and schizophrenia. The conservation of L1CAMs in Drosophila and Caenorhabditis elegans allows the opportunity to take advantage of these simple model organisms and their accessible genetic manipulations to dissect L1CAM functions and mechanisms of action. This review summarizes the discoveries of L1CAMs made in C. elegans, showcasing this simple model organism as a powerful system to uncover L1CAM mechanisms and roles in healthy and diseased states.
Collapse
Affiliation(s)
- Lihsia Chen
- Department of Genetics, Cell Biology, and Development, Developmental Biology Center, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | |
Collapse
|
19
|
Smith RP, Lerch-Haner JK, Pardinas JR, Buchser WJ, Bixby JL, Lemmon VP. Transcriptional profiling of intrinsic PNS factors in the postnatal mouse. Mol Cell Neurosci 2010; 46:32-44. [PMID: 20696251 DOI: 10.1016/j.mcn.2010.07.015] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2010] [Revised: 07/22/2010] [Accepted: 07/27/2010] [Indexed: 11/25/2022] Open
Abstract
Neurons in the peripheral nervous system (PNS) display a higher capacity to regenerate after injury than those in the central nervous system, suggesting cell specific transcriptional modules underlying axon growth and inhibition. We report a systems biology based search for PNS specific transcription factors (TFs). Messenger RNAs enriched in dorsal root ganglion (DRG) neurons compared to cerebellar granule neurons (CGNs) were identified using subtractive hybridization and DNA microarray approaches. Network and transcription factor binding site enrichment analyses were used to further identify TFs that may be differentially active. Combining these techniques, we identified 32 TFs likely to be enriched and/or active in the PNS. Twenty-five of these TFs were then tested for an ability to promote CNS neurite outgrowth in an overexpression screen. Real-time PCR and immunohistochemical studies confirmed that one representative TF, STAT3, is intrinsic to PNS neurons, and that constitutively active STAT3 is sufficient to promote CGN neurite outgrowth.
Collapse
Affiliation(s)
- Robin P Smith
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, Miller School of Medicine, University of Miami, 1400 NW 12th Ave, Miami, FL 33136, USA
| | | | | | | | | | | |
Collapse
|
20
|
Schäfer MKE, Altevogt P. L1CAM malfunction in the nervous system and human carcinomas. Cell Mol Life Sci 2010; 67:2425-37. [PMID: 20237819 PMCID: PMC11115577 DOI: 10.1007/s00018-010-0339-1] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 01/30/2010] [Accepted: 02/11/2010] [Indexed: 12/14/2022]
Abstract
Research over the last 25 years on the cell adhesion molecule L1 has revealed its pivotal role in nervous system function. Mutations of the human L1CAM gene have been shown to cause neurodevelopmental disorders such as X-linked hydrocephalus, spastic paraplegia and mental retardation. Impaired L1 function has been also implicated in the aetiology of fetal alcohol spectrum disorders, defective enteric nervous system development and malformations of the renal system. Importantly, aberrant expression of L1 has emerged as a critical factor in the development of human carcinomas, where it enhances cell proliferation, motility and chemoresistance. This discovery promoted collaborative work between tumour biologists and neurobiologists, which has led to a substantial expansion of the basic knowledge about L1 function and regulation. Here we provide an overview of the pathological conditions caused by L1 malfunction. We further discuss how the available data on gene regulation, molecular interactions and posttranslational processing of L1 may contribute to a better understanding of associated neurological and cancerous diseases.
Collapse
Affiliation(s)
- Michael K E Schäfer
- Center for Neurosciences, Institute of Anatomy and Cell Biology, University of Freiburg, Freiburg, Germany.
| | | |
Collapse
|
21
|
L1 syndrome mutations impair neuronal L1 function at different levels by divergent mechanisms. Neurobiol Dis 2010; 40:222-37. [PMID: 20621658 DOI: 10.1016/j.nbd.2010.05.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 05/19/2010] [Accepted: 05/25/2010] [Indexed: 11/22/2022] Open
Abstract
Mutations in the human L1CAM gene cause neurodevelopmental disorders collectively referred to as L1 syndrome. Here, we investigated cellular pathomechanisms underlying two L1 syndrome mutations, R184Q and W1036L. We demonstrate that these mutations cause partial endoplasmic reticulum (ER) retention of L1, reduce L1 cell surface expression, but do not induce ER stress in neuronal NSC-34 cells. We provide evidence that surface trafficking of mutated L1 is affected by defective sorting to ER exit sites and attenuated ER export. However, in differentiated neuronal cultures and long-term cultured hippocampal slices, the L1-R184Q protein is restricted to cell bodies, whereas L1-W1036L also aberrantly localizes to dendrites. These trafficking defects preclude axonal targeting of L1, thereby affecting L1-mediated axon growth and arborization. Our results indicate that L1 syndrome mutations impair neuronal L1 function at different levels, firstly by attenuating ER export and secondly by interfering with polarized neuronal trafficking.
Collapse
|
22
|
Nagaraj K, Kristiansen LV, Skrzynski A, Castiella C, Garcia-Alonso L, Hortsch M. Pathogenic human L1-CAM mutations reduce the adhesion-dependent activation of EGFR. Hum Mol Genet 2009; 18:3822-31. [PMID: 19617634 PMCID: PMC2748892 DOI: 10.1093/hmg/ddp325] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 07/08/2009] [Accepted: 07/16/2009] [Indexed: 11/13/2022] Open
Abstract
L1-cell adhesion molecule (L1-CAM) belongs to a functionally conserved group of neural cell adhesion molecules that are implicated in many aspects of nervous system development. In many neuronal cells the adhesive function of L1-type CAMs induces cellular signaling processes that involves the activation of neuronal tyrosine protein kinases and among other functions regulates axonal growth and guidance. Mutations in the human L1-CAM gene are responsible for a complex neurodevelopmental condition, generally referred to as L1 syndrome. Several pathogenic L1-CAM mutations have been identified in humans that cause L1 syndrome in affected individuals without affecting the level of L1-CAM-mediated homophilic cell adhesion when tested in vitro. In this study, an analysis of two different pathogenic human L1-CAM molecules indicates that although both induce normal L1-CAM-mediated cell aggregation, they are defective in stimulating human epidermal growth factor receptor tyrosine kinase activity in vitro and are unable to rescue L1 loss-of-function conditions in a Drosophila transgenic model in vivo. These results indicate that the L1 syndrome-associated phenotype might involve the disruption of L1-CAM's functions at different levels. Either by reducing or abolishing L1-CAM protein expression, by interfering with L1-CAM's cell surface expression, by reducing L1-CAM's adhesive ability or by impeding further downstream adhesion-dependent signaling processes.
Collapse
Affiliation(s)
- Kakanahalli Nagaraj
- Department of Cell and Developmental Biology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA
| | - Lars V. Kristiansen
- Department of Cell and Developmental Biology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA
- The Protein Laboratory, Department of Neuroscience and Pharmacology, Panum Institute, University of Copenhagen, DK-2200 Copenhagen, Denmark and
- Instituto de Neurociencias CSIC-UMH, Universidad Miguel Hernandez, 03550 Sant Joan d'Alacant, Spain
| | - Adam Skrzynski
- Department of Cell and Developmental Biology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA
| | - Carlos Castiella
- Instituto de Neurociencias CSIC-UMH, Universidad Miguel Hernandez, 03550 Sant Joan d'Alacant, Spain
| | - Luis Garcia-Alonso
- Instituto de Neurociencias CSIC-UMH, Universidad Miguel Hernandez, 03550 Sant Joan d'Alacant, Spain
| | - Michael Hortsch
- Department of Cell and Developmental Biology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA
| |
Collapse
|