1
|
Berth SH, Vo L, Kwon DH, Grider T, Damayanti YS, Kosmanopoulos G, Fox A, Lau AR, Carr P, Donohue JK, Hoke M, Thomas S, Karam C, Fay AJ, Meltzer E, Crawford TO, Gaudet R, Shy ME, Hellmich UA, Lee SY, Sumner CJ, McCray BA. Combined clinical, structural and cellular studies discriminate pathogenic and benign TRPV4 variants. Brain 2025; 148:564-579. [PMID: 39021275 DOI: 10.1093/brain/awae243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 06/04/2024] [Accepted: 06/28/2024] [Indexed: 07/20/2024] Open
Abstract
Dominant mutations in the calcium-permeable ion channel TRPV4 (transient receptor potential vanilloid 4) cause diverse and largely distinct channelopathies, including inherited forms of neuromuscular disease, skeletal dysplasias and arthropathy. Pathogenic TRPV4 mutations cause gain of ion channel function and toxicity that can be rescued by small molecule TRPV4 antagonists in cellular and animal models, suggesting that TRPV4 antagonism could be therapeutic for patients. Numerous variants in TRPV4 have been detected with targeted and whole exome/genome sequencing, but for the vast majority, their pathogenicity remains unclear. Here, we used a combination of clinical information and experimental structure-function analyses to evaluate 30 TRPV4 variants across various functional protein domains. We report clinical features of seven patients with TRPV4 variants of unknown significance and provide extensive functional characterization of these and an additional 17 variants, including structural position, ion channel function, subcellular localization, expression level, cytotoxicity and protein-protein interactions. We find that gain-of-function mutations within the TRPV4 intracellular ankyrin repeat domain target charged amino acid residues important for RhoA interaction, whereas ankyrin repeat domain residues outside of the RhoA interface have normal or reduced ion channel activity. We further identify a cluster of gain-of-function variants within the intracellular intrinsically disordered region that may cause toxicity via altered interactions with membrane lipids. In contrast, assessed variants in the transmembrane domain and other regions of the intrinsically disordered region do not cause gain of function and are likely benign. Clinical features associated with gain of function and cytotoxicity include congenital onset of disease, vocal cord weakness and motor-predominant disease, whereas patients with likely benign variants often demonstrated late-onset and sensory-predominant disease. These results provide a framework for assessing additional TRPV4 variants with respect to likely pathogenicity, which will yield critical information to inform patient selection for future clinical trials for TRPV4 channelopathies.
Collapse
Affiliation(s)
- Sarah H Berth
- Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Linh Vo
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Do Hoon Kwon
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Tiffany Grider
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Yasmine S Damayanti
- Faculty of Chemistry and Earth Sciences, Friedrich Schiller University Jena, Institute of Organic Chemistry and Macromolecular Chemistry, Jena 07743, Germany
| | - Gage Kosmanopoulos
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Andrew Fox
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Alexander R Lau
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Patrice Carr
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jack K Donohue
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Maya Hoke
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Simone Thomas
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Chafic Karam
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alex J Fay
- Department of Neurology, UCSF Benioff Children's Hospital, San Francisco, CA 94158, USA
| | - Ethan Meltzer
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, TX 78712, USA
| | - Thomas O Crawford
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rachelle Gaudet
- Department of Molecular and Cellular Biology, Harvard University, Boston, MA 02138, USA
| | - Michael E Shy
- Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Ute A Hellmich
- Faculty of Chemistry and Earth Sciences, Friedrich Schiller University Jena, Institute of Organic Chemistry and Macromolecular Chemistry, Jena 07743, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena 07743, Germany
- Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University, Frankfurt 60438, Germany
| | - Seok-Yong Lee
- Department of Biochemistry, Duke University School of Medicine, Durham, NC 27710, USA
| | - Charlotte J Sumner
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Brett A McCray
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
2
|
Hernández-Vega AM, García-Villegas R, Rosenbaum T. Roles for TRPV4 in disease: A discussion of possible mechanisms. Cell Calcium 2024; 124:102972. [PMID: 39609180 DOI: 10.1016/j.ceca.2024.102972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 11/30/2024]
Abstract
The transient receptor potential vanilloid 4 (TRPV4) ion channel is a ubiquitously expressed Ca2+-permeable ion channel that controls intracellular calcium ([Ca2+]i) homeostasis in various types of cells. The physiological roles for TRPV4 are tissue specific and the mechanisms behind this specificity remain mostly unclarified. It is noteworthy that mutations in the TRPV4 channel have been associated to a broad spectrum of congenital diseases, with most of these mutations mainly resulting in gain-of-function. Mutations have been identified in human patients showing a variety of phenotypes and symptoms, mostly related to skeletal and neuromuscular disorders. Since TRPV4 is so widely expressed throughout the body, it comes as no surprise that the literature is growing in evidence linking this protein to malfunction in systems other than the skeletal and neuromuscular. In this review, we summarize the expression patterns of TRPV4 in several tissues and highlight findings of recent studies that address critical structural and functional features of this channel, particularly focusing on its interactions and signaling pathways related to Ca2+ entry. Moreover, we discuss the roles of TRPV4 mutations in some diseases and pinpoint some of the mechanisms underlying pathological states where TRPV4's malfunction is prominent.
Collapse
Affiliation(s)
- Ana M Hernández-Vega
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Refugio García-Villegas
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Ciudad de México, 07360, México
| | - Tamara Rosenbaum
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico.
| |
Collapse
|
3
|
Hernández-Vega AM, Llorente I, Sánchez-Hernández R, Segura Y, Tusié-Luna T, Morales-Buenrostro LE, García-Villegas R, Islas LD, Rosenbaum T. Identification and Properties of TRPV4 Mutant Channels Present in Polycystic Kidney Disease Patients. FUNCTION 2024; 5:zqae031. [PMID: 38984987 PMCID: PMC11384909 DOI: 10.1093/function/zqae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/10/2024] [Accepted: 06/11/2024] [Indexed: 07/11/2024] Open
Abstract
Polycystic kidney disease (PKD), a disease characterized by the enlargement of the kidney through cystic growth is the fourth leading cause of end-stage kidney disease world-wide. Transient receptor potential Vanilloid 4 (TRPV4), a calcium-permeable TRP, channel participates in kidney cell physiology and since TRPV4 forms complexes with another channel whose malfunction is associated to PKD, TRPP2 (or PKD2), we sought to determine whether patients with PKD, exhibit previously unknown mutations in TRPV4. Here, we report the presence of mutations in the TRPV4 gene in patients diagnosed with PKD and determine that they produce gain-of-function (GOF). Mutations in the sequence of the TRPV4 gene have been associated to a broad spectrum of neuropathies and skeletal dysplasias but not PKD, and their biophysical effects on channel function have not been elucidated. We identified and examined the functional behavior of a novel E6K mutant and of the previously known S94L and A217S mutant TRVP4 channels. The A217S mutation has been associated to mixed neuropathy and/or skeletal dysplasia phenotypes, however, the PKD carriers of these variants had not been diagnosed with these reported clinical manifestations. The presence of certain mutations in TRPV4 may influence the progression and severity of PKD through GOF mechanisms. PKD patients carrying TRVP4 mutations are putatively more likely to require dialysis or renal transplant as compared to those without these mutations.
Collapse
Affiliation(s)
- Ana M Hernández-Vega
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Itzel Llorente
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Raúl Sánchez-Hernández
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Yayoi Segura
- Unidad de Biología Molecular y Medicina Genómica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México14080, Mexico
| | - Teresa Tusié-Luna
- Unidad de Biología Molecular y Medicina Genómica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México14080, Mexico
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Luis E Morales-Buenrostro
- Departmento de Nefrología y Metabolismo Mineral, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México 14080, México
| | - Refugio García-Villegas
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico
| | - León D Islas
- Departamento de Fisiología, Facultad de Medicina. Universidad Nacional Autónoma de México,Ciudad de México 04510, Mexico
| | - Tamara Rosenbaum
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| |
Collapse
|
4
|
Sullivan JM, Bagnell AM, Alevy J, Avila EM, Mihaljević L, Saavedra-Rivera PC, Kong L, Huh JS, McCray BA, Aisenberg WH, Zuberi AR, Bogdanik L, Lutz CM, Qiu Z, Quinlan KA, Searson PC, Sumner CJ. Gain-of-function mutations of TRPV4 acting in endothelial cells drive blood-CNS barrier breakdown and motor neuron degeneration in mice. Sci Transl Med 2024; 16:eadk1358. [PMID: 38776392 PMCID: PMC11316273 DOI: 10.1126/scitranslmed.adk1358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 05/01/2024] [Indexed: 05/25/2024]
Abstract
Blood-CNS barrier disruption is a hallmark of numerous neurological disorders, yet whether barrier breakdown is sufficient to trigger neurodegenerative disease remains unresolved. Therapeutic strategies to mitigate barrier hyperpermeability are also limited. Dominant missense mutations of the cation channel transient receptor potential vanilloid 4 (TRPV4) cause forms of hereditary motor neuron disease. To gain insights into the cellular basis of these disorders, we generated knock-in mouse models of TRPV4 channelopathy by introducing two disease-causing mutations (R269C and R232C) into the endogenous mouse Trpv4 gene. TRPV4 mutant mice exhibited weakness, early lethality, and regional motor neuron loss. Genetic deletion of the mutant Trpv4 allele from endothelial cells (but not neurons, glia, or muscle) rescued these phenotypes. Symptomatic mutant mice exhibited focal disruptions of blood-spinal cord barrier (BSCB) integrity, associated with a gain of function of mutant TRPV4 channel activity in neural vascular endothelial cells (NVECs) and alterations of NVEC tight junction structure. Systemic administration of a TRPV4-specific antagonist abrogated channel-mediated BSCB impairments and provided a marked phenotypic rescue of symptomatic mutant mice. Together, our findings show that mutant TRPV4 channels can drive motor neuron degeneration in a non-cell autonomous manner by precipitating focal breakdown of the BSCB. Further, these data highlight the reversibility of TRPV4-mediated BSCB impairments and identify a potential therapeutic strategy for patients with TRPV4 mutations.
Collapse
Affiliation(s)
- Jeremy M. Sullivan
- Department of Neurology, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
| | - Anna M. Bagnell
- Department of Neurology, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
| | - Jonathan Alevy
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
| | - Elvia Mena Avila
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island; Kingston, RI 02881, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island; Kingston, RI 02881, USA
| | - Ljubica Mihaljević
- Department of Physiology, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
| | | | - Lingling Kong
- Department of Neurology, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
| | - Jennifer S. Huh
- Department of Neurology, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
| | - Brett A. McCray
- Department of Neurology, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
| | - William H. Aisenberg
- Department of Neurology, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
| | | | | | | | - Zhaozhu Qiu
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
- Department of Physiology, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
| | - Katharina A. Quinlan
- George and Anne Ryan Institute for Neuroscience, University of Rhode Island; Kingston, RI 02881, USA
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island; Kingston, RI 02881, USA
| | - Peter C. Searson
- Institute for Nanobiotechnology, Johns Hopkins University; Baltimore, MD 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University; Baltimore, MD 21218, USA
- Department of Materials Science and Engineering, Johns Hopkins University; Baltimore, MD 21218, USA
| | - Charlotte J. Sumner
- Department of Neurology, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine; Baltimore, MD 21205, USA
| |
Collapse
|
5
|
Chaigne S, Barbeau S, Ducret T, Guinamard R, Benoist D. Pathophysiological Roles of the TRPV4 Channel in the Heart. Cells 2023; 12:1654. [PMID: 37371124 DOI: 10.3390/cells12121654] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/10/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
The transient receptor potential vanilloid 4 (TRPV4) channel is a non-selective cation channel that is mostly permeable to calcium (Ca2+), which participates in intracellular Ca2+ handling in cardiac cells. It is widely expressed through the body and is activated by a large spectrum of physicochemical stimuli, conferring it a role in a variety of sensorial and physiological functions. Within the cardiovascular system, TRPV4 expression is reported in cardiomyocytes, endothelial cells (ECs) and smooth muscle cells (SMCs), where it modulates mitochondrial activity, Ca2+ homeostasis, cardiomyocytes electrical activity and contractility, cardiac embryonic development and fibroblast proliferation, as well as vascular permeability, dilatation and constriction. On the other hand, TRPV4 channels participate in several cardiac pathological processes such as the development of cardiac fibrosis, hypertrophy, ischemia-reperfusion injuries, heart failure, myocardial infarction and arrhythmia. In this manuscript, we provide an overview of TRPV4 channel implications in cardiac physiology and discuss the potential of the TRPV4 channel as a therapeutic target against cardiovascular diseases.
Collapse
Affiliation(s)
- Sébastien Chaigne
- IHU LIRYC Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, 33600 Bordeaux, France
- Centre de Recherche Cardio-Thoracique de Bordeaux, INSERM U1045, University of Bordeaux, 33600 Pessac, France
- Electrophysiology and Ablation Unit, Bordeaux University Hospital, 33604 Pessac, France
| | - Solène Barbeau
- Centre de Recherche Cardio-Thoracique de Bordeaux, INSERM U1045, University of Bordeaux, 33600 Pessac, France
| | - Thomas Ducret
- Centre de Recherche Cardio-Thoracique de Bordeaux, INSERM U1045, University of Bordeaux, 33600 Pessac, France
| | - Romain Guinamard
- UR4650, Physiopathologie et Stratégies d'Imagerie du Remodelage Cardiovasculaire, GIP Cyceron, Université de Caen Normandie, 14032 Caen, France
| | - David Benoist
- IHU LIRYC Electrophysiology and Heart Modeling Institute, Fondation Bordeaux Université, 33600 Bordeaux, France
- Centre de Recherche Cardio-Thoracique de Bordeaux, INSERM U1045, University of Bordeaux, 33600 Pessac, France
| |
Collapse
|
6
|
Mei Y, Jiang Y, Zhang Z, Zhang H. Muscle and bone characteristics of a Chinese family with spinal muscular atrophy, lower extremity predominant 1 (SMALED1) caused by a novel missense DYNC1H1 mutation. BMC Med Genomics 2023; 16:47. [PMID: 36882741 PMCID: PMC9990223 DOI: 10.1186/s12920-023-01472-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 02/27/2023] [Indexed: 03/09/2023] Open
Abstract
BACKGROUND Spinal muscular atrophy, lower extremity predominant (SMALED) is a type of non-5q spinal muscular atrophy characterised by weakness and atrophy of lower limb muscles without sensory abnormalities. SMALED1 can be caused by dynein cytoplasmic 1 heavy chain 1 (DYNC1H1) gene variants. However, the phenotype and genotype of SMALED1 may overlap with those of other neuromuscular diseases, making it difficult to diagnose clinically. Additionally, bone metabolism and bone mineral density (BMD) in patients with SMALED1 have never been reported. METHODS We investigated a Chinese family in which 5 individuals from 3 generations had lower limb muscle atrophy and foot deformities. Clinical manifestations and biochemical and radiographic indices were analysed, and mutational analysis was performed by whole-exome sequencing (WES) and Sanger sequencing. RESULTS A novel mutation in exon 4 of the DYNC1H1 gene (c.587T > C, p.Leu196Ser) was identified in the proband and his affected mother by WES. Sanger sequencing confirmed that the proband and 3 affected family members were carriers of this mutation. As leucine is a hydrophobic amino acid and serine is hydrophilic, the hydrophobic interaction resulting from mutation of amino acid residue 196 could influence the stability of the DYNC1H1 protein. Leg muscle magnetic resonance imaging of the proband revealed severe atrophy and fatty infiltration, and electromyographic recordings showed chronic neurogenic impairment of the lower extremities. Bone metabolism markers and BMD of the proband were all within normal ranges. None of the 4 patients had experienced fragility fractures. CONCLUSION This study identified a novel DYNC1H1 mutation and expands the spectrum of phenotypes and genotypes of DYNC1H1-related disorders. This is the first report of bone metabolism and BMD in patients with SMALED1.
Collapse
Affiliation(s)
- Yazhao Mei
- Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Diseases, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
| | - Yunyi Jiang
- Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Diseases, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China
| | - Zhenlin Zhang
- Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Diseases, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China.
| | - Hao Zhang
- Shanghai Clinical Research Center of Bone Disease, Department of Osteoporosis and Bone Diseases, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, 200233, Shanghai, China.
| |
Collapse
|
7
|
Zeng ML, Kong S, Chen TX, Peng BW. Transient Receptor Potential Vanilloid 4: a Double-Edged Sword in the Central Nervous System. Mol Neurobiol 2023; 60:1232-1249. [PMID: 36434370 DOI: 10.1007/s12035-022-03141-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/17/2022] [Indexed: 11/26/2022]
Abstract
Transient receptor potential vanilloid 4 (TRPV4) is a nonselective cation channel that can be activated by diverse stimuli, such as heat, mechanical force, hypo-osmolarity, and arachidonic acid metabolites. TRPV4 is widely expressed in the central nervous system (CNS) and participates in many significant physiological processes. However, accumulative evidence has suggested that deficiency, abnormal expression or distribution, and overactivation of TRPV4 are involved in pathological processes of multiple neurological diseases. Here, we review the latest studies concerning the known features of this channel, including its expression, structure, and its physiological and pathological roles in the CNS, proposing an emerging therapeutic strategy for CNS diseases.
Collapse
Affiliation(s)
- Meng-Liu Zeng
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Donghu Rd185#, Wuhan, 430071, Hubei, China.,Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Shuo Kong
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Donghu Rd185#, Wuhan, 430071, Hubei, China
| | - Tao-Xiang Chen
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Donghu Rd185#, Wuhan, 430071, Hubei, China
| | - Bi-Wen Peng
- Department of Physiology, Hubei Provincial Key Laboratory of Developmentally Originated Disease, Taikang Medical School (School of Basic Medical Sciences), Wuhan University, Donghu Rd185#, Wuhan, 430071, Hubei, China.
| |
Collapse
|
8
|
Taga A, Peyton MA, Goretzki B, Gallagher TQ, Ritter A, Harper A, Crawford TO, Hellmich UA, Sumner CJ, McCray BA. TRPV4 mutations causing mixed neuropathy and skeletal phenotypes result in severe gain of function. Ann Clin Transl Neurol 2022; 9:375-391. [PMID: 35170874 PMCID: PMC8935273 DOI: 10.1002/acn3.51523] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE Distinct dominant mutations in the calcium-permeable ion channel TRPV4 (transient receptor potential vanilloid 4) typically cause nonoverlapping diseases of either the neuromuscular or skeletal systems. However, accumulating evidence suggests that some patients develop mixed phenotypes that include elements of both neuromuscular and skeletal disease. We sought to define the genetic and clinical features of these patients. METHODS We report a 2-year-old with a novel R616G mutation in TRPV4 with a severe neuropathy phenotype and bilateral vocal cord paralysis. Interestingly, a different substitution at the same residue, R616Q, has been reported in families with isolated skeletal dysplasia. To gain insight into clinical features and potential genetic determinants of mixed phenotypes, we perform in-depth analysis of previously reported patients along with functional and structural assessment of selected mutations. RESULTS We describe a wide range of neuromuscular and skeletal manifestations and highlight specific mutations that are more frequently associated with overlap syndromes. We find that mutations causing severe, mixed phenotypes have an earlier age of onset and result in more marked elevations of intracellular calcium, increased cytotoxicity, and reduced sensitivity to TRPV4 antagonism. Structural analysis of the two mutations with the most dramatic gain of ion channel function suggests that these mutants likely cause constitutive channel opening through disruption of the TRPV4 S5 transmembrane domain. INTERPRETATION These findings demonstrate that the degree of baseline calcium elevation correlates with development of mixed phenotypes and sensitivity to pharmacologic channel inhibition, observations that will be critical for the design of future clinical trials for TRPV4 channelopathies.
Collapse
Affiliation(s)
- Arens Taga
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Margo A Peyton
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Benedikt Goretzki
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Jena, 07743, Germany.,Centre for Biomolecular Magnetic Resonance, Goethe-University, Frankfurt, 60438, Germany
| | - Thomas Q Gallagher
- Departments of Otolaryngology - Head & Neck Surgery & Pediatrics, Eastern Virginia Medical School, and Department of Pediatric Otolaryngology, Children's Hospital of the King's Daughters, Norfolk, Virginia, 23508, USA
| | - Ann Ritter
- Department of Neurosurgery, Virginia Commonwealth University Health System, Richmond, Virginia, 23298, USA
| | - Amy Harper
- Department of Neurology, Virginia Commonwealth University Health System, Richmond, Virginia, 23298, USA
| | - Thomas O Crawford
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Ute A Hellmich
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich Schiller University Jena, Jena, 07743, Germany.,Centre for Biomolecular Magnetic Resonance, Goethe-University, Frankfurt, 60438, Germany
| | - Charlotte J Sumner
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA.,The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| | - Brett A McCray
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA
| |
Collapse
|
9
|
Role of TRPV4 in skeletal function and its mutant-mediated skeletal disorders. CURRENT TOPICS IN MEMBRANES 2022; 89:221-246. [DOI: 10.1016/bs.ctm.2022.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
10
|
Zhao S, Rohacs T. The newest TRP channelopathy: Gain of function TRPM3 mutations cause epilepsy and intellectual disability. Channels (Austin) 2021; 15:386-397. [PMID: 33853504 PMCID: PMC8057083 DOI: 10.1080/19336950.2021.1908781] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 12/13/2022] Open
Abstract
Transient Receptor Potential Melastatin 3 (TRPM3) is a Ca2+ permeable nonselective cation channel, activated by heat and chemical agonists, such as the endogenous neuro-steroid Pregnenolone Sulfate (PregS) and the chemical compound CIM0216. TRPM3 is expressed in peripheral sensory neurons of the dorsal root ganglia (DRG), and its role in noxious heat sensation in mice is well established. TRPM3 is also expressed in a number of other tissues, including the brain, but its role there has been largely unexplored. Recent reports showed that two mutations in TRPM3 are associated with a developmental and epileptic encephalopathy, pointing to an important role of TRPM3 in the human brain. Subsequent reports found that the two disease-associated mutations increased basal channel activity, and sensitivity of the channel to activation by heat and chemical agonists. This review will discuss these mutations in the context of human diseases caused by mutations in other TRP channels, and in the context of the biophysical properties and physiological functions of TRPM3.
Collapse
Affiliation(s)
- Siyuan Zhao
- Department of Pharmacology, Physiology and Neuroscience, Rutgers, New Jersey Medical School, Newark, NJ, USA
| | - Tibor Rohacs
- Department of Pharmacology, Physiology and Neuroscience, Rutgers, New Jersey Medical School, Newark, NJ, USA
| |
Collapse
|
11
|
Abstract
The transient receptor potential (TRP) channel superfamily consists of a large group of non-selective cation channels that serve as cellular sensors for a wide spectrum of physical and environmental stimuli. The 28 mammalian TRPs, categorized into six subfamilies, including TRPC (canonical), TRPV (vanilloid), TRPM (melastatin), TRPA (ankyrin), TRPML (mucolipin) and TRPP (polycystin), are widely expressed in different cells and tissues. TRPs exhibit a variety of unique features that not only distinguish them from other superfamilies of ion channels, but also confer diverse physiological functions. Located at the plasma membrane or in the membranes of intracellular organelles, TRPs are the cellular safeguards that sense various cell stresses and environmental stimuli and translate this information into responses at the organismal level. Loss- or gain-of-function mutations of TRPs cause inherited diseases and pathologies in different physiological systems, whereas up- or down-regulation of TRPs is associated with acquired human disorders. In this Cell Science at a Glance article and the accompanying poster, we briefly summarize the history of the discovery of TRPs, their unique features, recent advances in the understanding of TRP activation mechanisms, the structural basis of TRP Ca2+ selectivity and ligand binding, as well as potential roles in mammalian physiology and pathology.
Collapse
Affiliation(s)
- Lixia Yue
- Calhoun Cardiology Center, Department of Cell Biology, University of Connecticut School of Medicine (UConn Health), Farmington, CT 06030, USA
| | - Haoxing Xu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
12
|
Transient Receptor Potential Vanilloid in the Brain Gliovascular Unit: Prospective Targets in Therapy. Pharmaceutics 2021; 13:pharmaceutics13030334. [PMID: 33806707 PMCID: PMC7999963 DOI: 10.3390/pharmaceutics13030334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 12/25/2022] Open
Abstract
The gliovascular unit (GVU) is composed of the brain microvascular endothelial cells forming blood–brain barrier and the neighboring surrounding “mural” cells (e.g., pericytes) and astrocytes. Modulation of the GVU/BBB features could be observed in a variety of vascular, immunologic, neuro-psychiatric diseases, and cancers, which can disrupt the brain homeostasis. Ca2+ dynamics have been regarded as a major factor in determining BBB/GVU properties, and previous studies have demonstrated the role of transient receptor potential vanilloid (TRPV) channels in modulating Ca2+ and BBB/GVU properties. The physiological role of thermosensitive TRPV channels in the BBB/GVU, as well as their possible therapeutic potential as targets in treating brain diseases via preserving the BBB are reviewed. TRPV2 and TRPV4 are the most abundant isoforms in the human BBB, and TRPV2 was evidenced to play a main role in regulating human BBB integrity. Interspecies differences in TRPV2 and TRPV4 BBB expression complicate further preclinical validation. More studies are still needed to better establish the physiopathological TRPV roles such as in astrocytes, vascular smooth muscle cells, and pericytes. The effect of the chronic TRPV modulation should also deserve further studies to evaluate their benefit and innocuity in vivo.
Collapse
|
13
|
TRPing to the Point of Clarity: Understanding the Function of the Complex TRPV4 Ion Channel. Cells 2021; 10:cells10010165. [PMID: 33467654 PMCID: PMC7830798 DOI: 10.3390/cells10010165] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 02/07/2023] Open
Abstract
The transient receptor potential vanilloid 4 channel (TRPV4) belongs to the mammalian TRP superfamily of cation channels. TRPV4 is ubiquitously expressed, activated by a disparate array of stimuli, interacts with a multitude of proteins, and is modulated by a range of post-translational modifications, the majority of which we are only just beginning to understand. Not surprisingly, a great number of physiological roles have emerged for TRPV4, as have various disease states that are attributable to the absence, or abnormal functioning, of this ion channel. This review will highlight structural features of TRPV4, endogenous and exogenous activators of the channel, and discuss the reported roles of TRPV4 in health and disease.
Collapse
|
14
|
Liu Y, Yan X, Chen Y, He Z, Ouyang Y. Novel TRPV4 mutation in a large Chinese family with congenital distal spinal muscular atrophy, skeletal dysplasia and scaly skin. J Neurol Sci 2020; 419:117153. [DOI: 10.1016/j.jns.2020.117153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 09/20/2020] [Accepted: 09/21/2020] [Indexed: 12/28/2022]
|
15
|
Espadas-Álvarez H, Martínez-Rendón J, Larre I, Matamoros-Volante A, Romero-García T, Rosenbaum T, Rueda A, García-Villegas R. TRPV4 activity regulates nuclear Ca 2+ and transcriptional functions of β-catenin in a renal epithelial cell model. J Cell Physiol 2020; 236:3599-3614. [PMID: 33044004 DOI: 10.1002/jcp.30096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 11/11/2022]
Abstract
TRPV4 is a nonselective cationic channel responsive to several physical and chemical stimuli. Defects in TRPV4 channel function result in human diseases, such as skeletal dysplasias, arthropathies, and peripheral neuropathies. Nonetheless, little is known about the role of TRPV4 in other cellular functions, such as nuclear Ca2+ homeostasis or Ca2+ -regulated transcription. Here, we confirmed the presence of the full-length TRPV4 channel in the nuclei of nonpolarized Madin-Darby canine kidney cells. Confocal Ca2+ imaging showed that activation of the channel increases cytoplasmic and nuclear Ca2+ leading to translocation of TRPV4 out of the nucleus together with β-catenin, a transcriptional regulator in the Wnt signaling pathway fundamental in embryogenesis, organogenesis, and cellular homeostasis. TRPV4 inhibits β-catenin transcriptional activity through a direct interaction dependent upon channel activity. This interaction also occurs in undifferentiated osteoblastoma and neuroblastoma cell models. Our results suggest a mechanism in which TRPV4 may regulate differentiation in several cellular contexts.
Collapse
Affiliation(s)
- Heidi Espadas-Álvarez
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | - Jacqueline Martínez-Rendón
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | - Isabel Larre
- Marshall Institute for Interdisciplinary Research and Department of Clinical and Translational Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, USA
| | | | - Tatiana Romero-García
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | - Tamara Rosenbaum
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Angélica Rueda
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| | - Refugio García-Villegas
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México, México
| |
Collapse
|
16
|
MRI patterns of muscle involvement in type 2 and 3 spinal muscular atrophy patients. J Neurol 2019; 267:898-912. [DOI: 10.1007/s00415-019-09646-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/05/2019] [Accepted: 11/18/2019] [Indexed: 12/17/2022]
|
17
|
Velilla J, Marchetti MM, Toth-Petroczy A, Grosgogeat C, Bennett AH, Carmichael N, Estrella E, Darras BT, Frank NY, Krier J, Gaudet R, Gupta VA. Homozygous TRPV4 mutation causes congenital distal spinal muscular atrophy and arthrogryposis. NEUROLOGY-GENETICS 2019; 5:e312. [PMID: 31041394 PMCID: PMC6454305 DOI: 10.1212/nxg.0000000000000312] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 01/22/2019] [Indexed: 01/17/2023]
Abstract
Objective To identify the genetic cause of disease in a form of congenital spinal muscular atrophy and arthrogryposis (CSMAA). Methods A 2-year-old boy was diagnosed with arthrogryposis multiplex congenita, severe skeletal abnormalities, torticollis, vocal cord paralysis, and diminished lower limb movement. Whole-exome sequencing (WES) was performed on the proband and family members. In silico modeling of protein structure and heterologous protein expression and cytotoxicity assays were performed to validate pathogenicity of the identified variant. Results WES revealed a homozygous mutation in the TRPV4 gene (c.281C>T; p.S94L). The identification of a recessive mutation in TRPV4 extends the spectrum of mutations in recessive forms of the TRPV4-associated disease. p.S94L and other previously identified TRPV4 variants in different protein domains were compared in structural modeling and functional studies. In silico structural modeling suggests that the p.S94L mutation is in the disordered N-terminal region proximal to important regulatory binding sites for phosphoinositides and for PACSIN3, which could lead to alterations in trafficking and/or channel sensitivity. Functional studies by Western blot and immunohistochemical analysis show that p.S94L increased TRPV4 activity-based cytotoxicity and resultant decreased TRPV4 expression levels, therefore involves a gain-of-function mechanism. Conclusions This study identifies a novel homozygous mutation in TRPV4 as a cause of the recessive form of CSMAA.
Collapse
Affiliation(s)
- Jose Velilla
- Department of Molecular and Cellular Biology (J.V., R.G.), Harvard University, Cambridge; Division of Genetics (M.M.M., A.T.-P., C.G., A.H.B., N.C., B.T.D., N.Y.F., J.K., V.A.G.), Brigham Genomic Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston; Division of Genetics (E.E.), Boston Children's Hospital; and Division of Neurology (B.T.D.), Boston Children's Hospital, Harvard Medical School, MA
| | - Michael Mario Marchetti
- Department of Molecular and Cellular Biology (J.V., R.G.), Harvard University, Cambridge; Division of Genetics (M.M.M., A.T.-P., C.G., A.H.B., N.C., B.T.D., N.Y.F., J.K., V.A.G.), Brigham Genomic Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston; Division of Genetics (E.E.), Boston Children's Hospital; and Division of Neurology (B.T.D.), Boston Children's Hospital, Harvard Medical School, MA
| | - Agnes Toth-Petroczy
- Department of Molecular and Cellular Biology (J.V., R.G.), Harvard University, Cambridge; Division of Genetics (M.M.M., A.T.-P., C.G., A.H.B., N.C., B.T.D., N.Y.F., J.K., V.A.G.), Brigham Genomic Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston; Division of Genetics (E.E.), Boston Children's Hospital; and Division of Neurology (B.T.D.), Boston Children's Hospital, Harvard Medical School, MA
| | - Claire Grosgogeat
- Department of Molecular and Cellular Biology (J.V., R.G.), Harvard University, Cambridge; Division of Genetics (M.M.M., A.T.-P., C.G., A.H.B., N.C., B.T.D., N.Y.F., J.K., V.A.G.), Brigham Genomic Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston; Division of Genetics (E.E.), Boston Children's Hospital; and Division of Neurology (B.T.D.), Boston Children's Hospital, Harvard Medical School, MA
| | - Alexis H Bennett
- Department of Molecular and Cellular Biology (J.V., R.G.), Harvard University, Cambridge; Division of Genetics (M.M.M., A.T.-P., C.G., A.H.B., N.C., B.T.D., N.Y.F., J.K., V.A.G.), Brigham Genomic Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston; Division of Genetics (E.E.), Boston Children's Hospital; and Division of Neurology (B.T.D.), Boston Children's Hospital, Harvard Medical School, MA
| | - Nikkola Carmichael
- Department of Molecular and Cellular Biology (J.V., R.G.), Harvard University, Cambridge; Division of Genetics (M.M.M., A.T.-P., C.G., A.H.B., N.C., B.T.D., N.Y.F., J.K., V.A.G.), Brigham Genomic Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston; Division of Genetics (E.E.), Boston Children's Hospital; and Division of Neurology (B.T.D.), Boston Children's Hospital, Harvard Medical School, MA
| | - Elicia Estrella
- Department of Molecular and Cellular Biology (J.V., R.G.), Harvard University, Cambridge; Division of Genetics (M.M.M., A.T.-P., C.G., A.H.B., N.C., B.T.D., N.Y.F., J.K., V.A.G.), Brigham Genomic Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston; Division of Genetics (E.E.), Boston Children's Hospital; and Division of Neurology (B.T.D.), Boston Children's Hospital, Harvard Medical School, MA
| | - Basil T Darras
- Department of Molecular and Cellular Biology (J.V., R.G.), Harvard University, Cambridge; Division of Genetics (M.M.M., A.T.-P., C.G., A.H.B., N.C., B.T.D., N.Y.F., J.K., V.A.G.), Brigham Genomic Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston; Division of Genetics (E.E.), Boston Children's Hospital; and Division of Neurology (B.T.D.), Boston Children's Hospital, Harvard Medical School, MA
| | - Natasha Y Frank
- Department of Molecular and Cellular Biology (J.V., R.G.), Harvard University, Cambridge; Division of Genetics (M.M.M., A.T.-P., C.G., A.H.B., N.C., B.T.D., N.Y.F., J.K., V.A.G.), Brigham Genomic Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston; Division of Genetics (E.E.), Boston Children's Hospital; and Division of Neurology (B.T.D.), Boston Children's Hospital, Harvard Medical School, MA
| | - Joel Krier
- Department of Molecular and Cellular Biology (J.V., R.G.), Harvard University, Cambridge; Division of Genetics (M.M.M., A.T.-P., C.G., A.H.B., N.C., B.T.D., N.Y.F., J.K., V.A.G.), Brigham Genomic Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston; Division of Genetics (E.E.), Boston Children's Hospital; and Division of Neurology (B.T.D.), Boston Children's Hospital, Harvard Medical School, MA
| | - Rachelle Gaudet
- Department of Molecular and Cellular Biology (J.V., R.G.), Harvard University, Cambridge; Division of Genetics (M.M.M., A.T.-P., C.G., A.H.B., N.C., B.T.D., N.Y.F., J.K., V.A.G.), Brigham Genomic Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston; Division of Genetics (E.E.), Boston Children's Hospital; and Division of Neurology (B.T.D.), Boston Children's Hospital, Harvard Medical School, MA
| | - Vandana A Gupta
- Department of Molecular and Cellular Biology (J.V., R.G.), Harvard University, Cambridge; Division of Genetics (M.M.M., A.T.-P., C.G., A.H.B., N.C., B.T.D., N.Y.F., J.K., V.A.G.), Brigham Genomic Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston; Division of Genetics (E.E.), Boston Children's Hospital; and Division of Neurology (B.T.D.), Boston Children's Hospital, Harvard Medical School, MA
| |
Collapse
|
18
|
Castiglioni C, Lozano-Arango A. Atrofias musculares espinales no asociadas a SMN1. REVISTA MÉDICA CLÍNICA LAS CONDES 2018. [DOI: 10.1016/j.rmclc.2018.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
19
|
Deng Z, Paknejad N, Maksaev G, Sala-Rabanal M, Nichols CG, Hite RK, Yuan P. Cryo-EM and X-ray structures of TRPV4 reveal insight into ion permeation and gating mechanisms. Nat Struct Mol Biol 2018; 25:252-260. [PMID: 29483651 DOI: 10.1038/s41594-018-0037-5] [Citation(s) in RCA: 148] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 01/26/2018] [Indexed: 12/15/2022]
Abstract
The transient receptor potential (TRP) channel TRPV4 participates in multiple biological processes, and numerous TRPV4 mutations underlie several distinct and devastating diseases. Here we present the cryo-EM structure of Xenopus tropicalis TRPV4 at 3.8-Å resolution. The ion-conduction pore contains an intracellular gate formed by the inner helices, but lacks any extracellular gate in the selectivity filter, as observed in other TRPV channels. Anomalous X-ray diffraction analyses identify a single ion-binding site in the selectivity filter, thus explaining TRPV4 nonselectivity. Structural comparisons with other TRP channels and distantly related voltage-gated cation channels reveal an unprecedented, unique packing interface between the voltage-sensor-like domain and the pore domain, suggesting distinct gating mechanisms. Moreover, our structure begins to provide mechanistic insights to the large set of pathogenic mutations, offering potential opportunities for drug development.
Collapse
Affiliation(s)
- Zengqin Deng
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA.,Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Navid Paknejad
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Grigory Maksaev
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA.,Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Monica Sala-Rabanal
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA.,Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Colin G Nichols
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA.,Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Richard K Hite
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Peng Yuan
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA. .,Center for the Investigation of Membrane Excitability Diseases, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
20
|
Das J, Lilleker JB, Jabbal K, Ealing J. A missense mutation in DYNC1H1 gene causing spinal muscular atrophy - Lower extremity, dominant. Neurol Neurochir Pol 2017; 52:293-297. [PMID: 29306600 DOI: 10.1016/j.pjnns.2017.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/21/2017] [Accepted: 12/08/2017] [Indexed: 12/11/2022]
Abstract
Spinal muscular atrophy (SMA) is a hereditary neuromuscular disorder, which causes progressive muscle weakness and in severe cases respiratory failure and death. Although the majority of the SMA cases are autosomal recessive, there is an autosomal dominant variant of SMA that primarily affects the lower extremities, known as 'spinal muscular atrophy - lower extremity, dominant' (SMALED). Mutations in the Dynein Cytoplasmic 1 Heavy Chain 1 (DYNC1H1) gene were the first to be associated with SMALED. Here we report a family with SMALED caused by a pathogenic heterozygous missense c.1809 A>T, p.glu603Asp mutation in DYNC1H1. The main clinical features were congenital hip displacement, talipes, delayed motor development, wasting and weakness in lower limbs with relative sparing of upper extremities and very slow disease progression. SMALED is extremely rare and only a handful of families have been reported. Over the years other phenotypes including Charcot Marie Tooth type 2 and hereditary mental retardation with cortical neural migration defects have also been reported to be caused by DYNC1H1 mutations. This report aims to increase our awareness of SMALED and various other phenotypes associated with mutations in this gene.
Collapse
Affiliation(s)
- Joyutpal Das
- Department of Neurology, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Glossop Road, Sheffield S10 2JF, United Kingdom.
| | - James B Lilleker
- Greater Manchester Neurosciences Centre, Salford Royal NHS Foundation Trust, Stott Lane, Salford M6 8HD, United Kingdom.
| | - Kavaldeep Jabbal
- Greater Manchester Neurosciences Centre, Salford Royal NHS Foundation Trust, Stott Lane, Salford M6 8HD, United Kingdom.
| | - John Ealing
- Greater Manchester Neurosciences Centre, Salford Royal NHS Foundation Trust, Stott Lane, Salford M6 8HD, United Kingdom.
| |
Collapse
|
21
|
Thibodeau ML, Peters CH, Townsend KN, Shen Y, Hendson G, Adam S, Selby K, Macleod PM, Gershome C, Ruben P, Jones SJM, Friedman JM, Gibson WT, Horvath GA. Compound heterozygous TRPV4 mutations in two siblings with a complex phenotype including severe intellectual disability and neuropathy. Am J Med Genet A 2017; 173:3087-3092. [PMID: 28898540 DOI: 10.1002/ajmg.a.38400] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 06/22/2017] [Accepted: 07/24/2017] [Indexed: 11/05/2022]
Abstract
TRPV4 encodes a polymodal calcium-permeable plasma membrane channel. Dominant pathogenic mutations in TRPV4 lead to a wide spectrum of abnormal phenotypes. This is the first report of biallelic TRPV4 mutations and we describe two compound heterozygous siblings presenting with a complex phenotype including severe neuromuscular involvement. In light of previously well described dominant inheritance for TRPV4-related neuromuscular disease, our study suggests a role for compound heterozygosity and loss-of-function as a potential novel disease mechanism for this group of disorders. Profound intellectual disability was also noted in both affected children, suggesting that TRPV4 may be necessary for normal brain development.
Collapse
Affiliation(s)
- My Linh Thibodeau
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Colin H Peters
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| | - Katelin N Townsend
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada.,BC Children's Hospital Research Institute, University of British Columbia, Vancouver, Canada
| | - Yaoqing Shen
- Canada's Michael Smith Genome Sciences Centre, Vancouver, Canada
| | - Glenda Hendson
- Department of Anatomic Pathology, University of British Columbia, Vancouver, Canada
| | - Shelin Adam
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Kathryn Selby
- Department of Pediatrics, Division of Pediatric Neurology, University of British Columbia, Vancouver, Canada
| | - Patrick M Macleod
- Victoria General Hospital, Division of Medical Genetics, Victoria, Canada
| | - Cynthia Gershome
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| | - Peter Ruben
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| | - Steven J M Jones
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada.,Canada's Michael Smith Genome Sciences Centre, Vancouver, Canada
| | | | - Jan M Friedman
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - William T Gibson
- Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Gabriella A Horvath
- Department of Pediatrics, Division of Biochemical Diseases, University of British Columbia, Vancouver, Canada
| |
Collapse
|
22
|
White JPM, Cibelli M, Urban L, Nilius B, McGeown JG, Nagy I. TRPV4: Molecular Conductor of a Diverse Orchestra. Physiol Rev 2017; 96:911-73. [PMID: 27252279 DOI: 10.1152/physrev.00016.2015] [Citation(s) in RCA: 277] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Transient receptor potential vanilloid type 4 (TRPV4) is a calcium-permeable nonselective cation channel, originally described in 2000 by research teams led by Schultz (Nat Cell Biol 2: 695-702, 2000) and Liedtke (Cell 103: 525-535, 2000). TRPV4 is now recognized as being a polymodal ionotropic receptor that is activated by a disparate array of stimuli, ranging from hypotonicity to heat and acidic pH. Importantly, this ion channel is constitutively expressed and capable of spontaneous activity in the absence of agonist stimulation, which suggests that it serves important physiological functions, as does its widespread dissemination throughout the body and its capacity to interact with other proteins. Not surprisingly, therefore, it has emerged more recently that TRPV4 fulfills a great number of important physiological roles and that various disease states are attributable to the absence, or abnormal functioning, of this ion channel. Here, we review the known characteristics of this ion channel's structure, localization and function, including its activators, and examine its functional importance in health and disease.
Collapse
Affiliation(s)
- John P M White
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Mario Cibelli
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Laszlo Urban
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Bernd Nilius
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - J Graham McGeown
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| | - Istvan Nagy
- Anaesthetics, Pain Medicine and Intensive Care Section, Department of Surgery and Cancer, Imperial College London, London, United Kingdom; Department of Anaesthetics, The Queen Elizabeth Hospital, Birmingham, United Kingdom; Academic Department of Anaesthesia and Intensive Care Medicine, School of Clinical and Experimental Medicine, University of Birmingham, Birmingham, United Kingdom; Preclinical Secondary Pharmacology, Preclinical Safety, Novartis Institute for Biomedical Research, Cambridge, Massachusetts; Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg, Leuven, Belgium; and School of Medicine, Dentistry and Biomedical Science, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
23
|
Biasini F, Portaro S, Mazzeo A, Vita G, Fabrizi GM, Taioli F, Toscano A, Rodolico C. TRPV4 related scapuloperoneal spinal muscular atrophy: Report of an Italian family and review of the literature. Neuromuscul Disord 2016; 26:312-5. [PMID: 26948711 DOI: 10.1016/j.nmd.2016.02.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 02/15/2016] [Indexed: 10/22/2022]
Abstract
Scapuloperoneal spinal muscular atrophy (SPSMA) is a rare autosomal dominant disorder caused by heterozygous mutations in the transient receptor potential cation channel (TRPV4) gene, characterized by progressive scapuloperoneal atrophy and weakness. Additional features, such as vocal cord paralysis, scoliosis and/or arthrogryposis, are likely to occur. We report the first Italian family with SPSMA, harboring the c.806G>A mutation in TRPV4 gene (p. R269H). The pattern of expression was variable: the father showed a mild muscular involvement, while the son presented at birth skeletal dysplasia and a progressive course. We reinforce the concept that the disease can be more severe in the following generations. The disorder should be considered in scapuloperoneal syndromes with autosomal dominant inheritance and a neurogenic pattern. The presence of skeletal deformities strongly supports this suspicion. An early diagnosis of SPSMA may be crucial in order to prevent the more severe congenital form.
Collapse
Affiliation(s)
- F Biasini
- Department of Neurosciences, University of Messina, Messina, Italy
| | - S Portaro
- IRCCS Centro Neurolesi "Bonino Pulejo", Messina, Italy
| | - A Mazzeo
- Department of Neurosciences, University of Messina, Messina, Italy
| | - G Vita
- Department of Neurosciences, University of Messina, Messina, Italy
| | - G M Fabrizi
- Department of Neurological, Biomedical and Movement Sciences, University of Verona, Verona, Italy; Department of Neurosciences, AOUI, Verona, Italy
| | - F Taioli
- Department of Neurological, Biomedical and Movement Sciences, University of Verona, Verona, Italy; Department of Neurosciences, AOUI, Verona, Italy
| | - A Toscano
- Department of Neurosciences, University of Messina, Messina, Italy
| | - C Rodolico
- Department of Neurosciences, University of Messina, Messina, Italy.
| |
Collapse
|
24
|
Sullivan JM, Zimanyi CM, Aisenberg W, Bears B, Chen DH, Day JW, Bird TD, Siskind CE, Gaudet R, Sumner CJ. Novel mutations highlight the key role of the ankyrin repeat domain in TRPV4-mediated neuropathy. NEUROLOGY-GENETICS 2015; 1:e29. [PMID: 27066566 PMCID: PMC4811381 DOI: 10.1212/nxg.0000000000000029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 09/10/2015] [Indexed: 01/18/2023]
Abstract
Objective: To characterize 2 novel TRPV4 mutations in 2 unrelated families exhibiting the Charcot-Marie-Tooth disease type 2C (CMT2C) phenotype. Methods: Direct CMT gene testing was performed on 2 unrelated families with CMT2C. A 4-fold symmetric tetramer model of human TRPV4 was generated to map the locations of novel TRPV4 mutations in these families relative to previously identified disease-causing mutations (neuropathy, skeletal dysplasia, and osteoarthropathy). Effects of the mutations on TRPV4 expression, localization, and channel activity were determined by immunocytochemical, immunoblotting, Ca2+ imaging, and cytotoxicity assays. Results: Previous studies suggest that neuropathy-causing mutations occur primarily at arginine residues on the convex face of the TRPV4 ankyrin repeat domain (ARD). Further highlighting the key role of this domain in TRPV4-mediated hereditary neuropathy, we report 2 novel heterozygous missense mutations in the TRPV4-ARD convex face (p.Arg237Gly and p.Arg237Leu). Generation of a model of the TRPV4 homotetramer revealed that while ARD residues mutated in neuropathy (including Arg237) are likely accessible for intermolecular interactions, skeletal dysplasia–causing TRPV4 mutations occur at sites suggesting disruption of intramolecular and/or intersubunit interactions. Like previously described neuropathy-causing mutations, the p.Arg237Gly and p.Arg237Leu substitutions do not alter TRPV4 subcellular localization in transfected cells but cause elevations of cytosolic Ca2+ levels and marked cytotoxicity. Conclusions: These findings expand the number of ARD residues mutated in TRPV4-mediated neuropathy, providing further evidence of the central importance of this domain to TRPV4 function in peripheral nerve.
Collapse
Affiliation(s)
- Jeremy M Sullivan
- Department of Neurology (J.M.S., W.A., B.B., C.J.S.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Molecular and Cellular Biology (C.M.Z., R.G.), Harvard University, Cambridge, MA; Department of Neurology (D.-H.C., T.D.B.), University of Washington School of Medicine, Seattle, WA; Department of Neurology (J.W.D., C.E.S.), Stanford Health Care, Stanford, CA; and Department of Neuroscience (C.J.S.), Johns Hopkins University, Baltimore, MD
| | - Christina M Zimanyi
- Department of Neurology (J.M.S., W.A., B.B., C.J.S.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Molecular and Cellular Biology (C.M.Z., R.G.), Harvard University, Cambridge, MA; Department of Neurology (D.-H.C., T.D.B.), University of Washington School of Medicine, Seattle, WA; Department of Neurology (J.W.D., C.E.S.), Stanford Health Care, Stanford, CA; and Department of Neuroscience (C.J.S.), Johns Hopkins University, Baltimore, MD
| | - William Aisenberg
- Department of Neurology (J.M.S., W.A., B.B., C.J.S.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Molecular and Cellular Biology (C.M.Z., R.G.), Harvard University, Cambridge, MA; Department of Neurology (D.-H.C., T.D.B.), University of Washington School of Medicine, Seattle, WA; Department of Neurology (J.W.D., C.E.S.), Stanford Health Care, Stanford, CA; and Department of Neuroscience (C.J.S.), Johns Hopkins University, Baltimore, MD
| | - Breanne Bears
- Department of Neurology (J.M.S., W.A., B.B., C.J.S.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Molecular and Cellular Biology (C.M.Z., R.G.), Harvard University, Cambridge, MA; Department of Neurology (D.-H.C., T.D.B.), University of Washington School of Medicine, Seattle, WA; Department of Neurology (J.W.D., C.E.S.), Stanford Health Care, Stanford, CA; and Department of Neuroscience (C.J.S.), Johns Hopkins University, Baltimore, MD
| | - Dong-Hui Chen
- Department of Neurology (J.M.S., W.A., B.B., C.J.S.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Molecular and Cellular Biology (C.M.Z., R.G.), Harvard University, Cambridge, MA; Department of Neurology (D.-H.C., T.D.B.), University of Washington School of Medicine, Seattle, WA; Department of Neurology (J.W.D., C.E.S.), Stanford Health Care, Stanford, CA; and Department of Neuroscience (C.J.S.), Johns Hopkins University, Baltimore, MD
| | - John W Day
- Department of Neurology (J.M.S., W.A., B.B., C.J.S.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Molecular and Cellular Biology (C.M.Z., R.G.), Harvard University, Cambridge, MA; Department of Neurology (D.-H.C., T.D.B.), University of Washington School of Medicine, Seattle, WA; Department of Neurology (J.W.D., C.E.S.), Stanford Health Care, Stanford, CA; and Department of Neuroscience (C.J.S.), Johns Hopkins University, Baltimore, MD
| | - Thomas D Bird
- Department of Neurology (J.M.S., W.A., B.B., C.J.S.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Molecular and Cellular Biology (C.M.Z., R.G.), Harvard University, Cambridge, MA; Department of Neurology (D.-H.C., T.D.B.), University of Washington School of Medicine, Seattle, WA; Department of Neurology (J.W.D., C.E.S.), Stanford Health Care, Stanford, CA; and Department of Neuroscience (C.J.S.), Johns Hopkins University, Baltimore, MD
| | - Carly E Siskind
- Department of Neurology (J.M.S., W.A., B.B., C.J.S.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Molecular and Cellular Biology (C.M.Z., R.G.), Harvard University, Cambridge, MA; Department of Neurology (D.-H.C., T.D.B.), University of Washington School of Medicine, Seattle, WA; Department of Neurology (J.W.D., C.E.S.), Stanford Health Care, Stanford, CA; and Department of Neuroscience (C.J.S.), Johns Hopkins University, Baltimore, MD
| | - Rachelle Gaudet
- Department of Neurology (J.M.S., W.A., B.B., C.J.S.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Molecular and Cellular Biology (C.M.Z., R.G.), Harvard University, Cambridge, MA; Department of Neurology (D.-H.C., T.D.B.), University of Washington School of Medicine, Seattle, WA; Department of Neurology (J.W.D., C.E.S.), Stanford Health Care, Stanford, CA; and Department of Neuroscience (C.J.S.), Johns Hopkins University, Baltimore, MD
| | - Charlotte J Sumner
- Department of Neurology (J.M.S., W.A., B.B., C.J.S.), Johns Hopkins University School of Medicine, Baltimore, MD; Department of Molecular and Cellular Biology (C.M.Z., R.G.), Harvard University, Cambridge, MA; Department of Neurology (D.-H.C., T.D.B.), University of Washington School of Medicine, Seattle, WA; Department of Neurology (J.W.D., C.E.S.), Stanford Health Care, Stanford, CA; and Department of Neuroscience (C.J.S.), Johns Hopkins University, Baltimore, MD
| |
Collapse
|
25
|
Hsu AK, Rosow DE, Wallerstein RJ, April MM. Familial congenital bilateral vocal fold paralysis: a novel gene translocation. Int J Pediatr Otorhinolaryngol 2015; 79:323-7. [PMID: 25617187 DOI: 10.1016/j.ijporl.2014.12.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 12/08/2014] [Accepted: 12/09/2014] [Indexed: 11/28/2022]
Abstract
OBJECTIVES True vocal fold (TVF) paralysis is a common cause of neonatal stridor and airway obstruction, though bilateral TVF paralysis is seen less frequently. Rare cases of familial congenital TVF paralysis have been described with implied genetic origin, but few genetic abnormalities have been discovered to date. The purpose of this study is to describe a novel chromosomal translocation responsible for congenital bilateral TVF immobility. METHODS The charts of three patients were retrospectively reviewed: a 35 year-old woman and her two children. The mother had bilateral TVF paralysis at birth requiring tracheotomy. Her oldest child had a similar presentation at birth and also required tracheotomy, while the younger child had laryngomalacia without TVF paralysis. Standard karyotype analysis was done using samples from all three patients and the parents of the mother, to assess whether a chromosomal abnormality was responsible. RESULTS Karyotype analysis revealed the same balanced translocation between chromosomes 5 and 14, t(5;14) (p15.3, q11.2) in the mother and her two daughters. No other genetic abnormalities were identified. Neither maternal grandparent had the translocation, which appeared to be a spontaneous mutation in the mother with autosomal dominant inheritance and variable penetrance. CONCLUSIONS A novel chromosomal translocation was identified that appears to be responsible for familial congenital bilateral TVF paralysis. While there are other reports of genetic abnormalities responsible for this condition, we believe this is the first describing this particular translocation.
Collapse
Affiliation(s)
- Amy K Hsu
- Department of Otolaryngology/Head and Neck Surgery, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States
| | - David E Rosow
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, FL, United States.
| | - Robert J Wallerstein
- Department of Pediatrics, Santa Clara Valley Medical Center, San Jose, CA, United States
| | - Max M April
- Department of Otolaryngology/Head and Neck Surgery, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
26
|
Abstract
Aminoacylase 1 (ACY1) deficiency is a rare inborn error of metabolism presenting with heterogeneous neurological symptoms such as psychomotor delay, seizures, intellectual disability and it is characterized by increased urinary excretion of N-acetylated amino acids. We report on a new patient who presented ACY1 deficiency in association with isolated mild intellectual disability, but neither neurological symptoms nor autistic features. The child showed a compound heterozygous mutation (p.Glu233Asp) and a novel p.Ser192Arg fs*64, predicting an unstable transcript and resulting in very low protein levels.This new ACY1 deficient child was identified through regular screening for inborn error of metabolism adopted in our department in all cases of intellectual disability. This report supports a recommendation to perform metabolic investigations in patients with isolated mild intellectual disability.
Collapse
|
27
|
Abundant expression and functional participation of TRPV1 at Zusanli acupoint (ST36) in mice: mechanosensitive TRPV1 as an "acupuncture-responding channel". BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 14:96. [PMID: 24612851 PMCID: PMC3984709 DOI: 10.1186/1472-6882-14-96] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 02/13/2014] [Indexed: 02/07/2023]
Abstract
Background Acupuncture is a therapy that involves applying mechanical stimulation to acupoints using needles. Although acupuncture is believed to trigger neural regulation by opioids or adenosine, still little is known about how physical stimulation is turned into neurological signaling. The transient receptor potential vanilloid receptors 1 and 4 (TRPV1 and TRPV4) and the acid-sensing ion channel 3 (ASIC3) are regarded as mechanosensitive channels. This study aimed to clarify their role at the Zusanli acupoint (ST36) and propose possible sensing pathways linking channel activation to neurological signaling. Methods First, tissues from different anatomical layers of ST36 and the sham point were sampled, and channel expressions between the two points were compared using western blotting. Second, immunofluorescence was performed at ST36 to reveal distribution pattern of the channels. Third, agonist of the channels were injected into ST36 and tested in a mouse inflammatory pain model to seek if agonist injection could replicate acupuncture-like analgesic effect. Last, the components of proposed downstream sensing pathway were tested with western blotting to determine if they were expressed in tissues with positive mechanosensitive channel expression. Results The results from western blotting demonstrated an abundance of TRPV1, TRPV4, and ASIC3 in anatomical layers of ST36. Furthermore, immunofluorescence showed these channels were expressed in both neural and non-neural cells at ST36. However, only capsaicin, a TRPV1 agonist, replicated the analgesic effect of acupuncture when injected into ST36. Components of calcium wave propagation (CWP, the proposed downstream sensing pathway) were also expressed in tissues with abundant TRPV1 expression, the muscle and epimysium layers. Conclusions The results demonstrated mechanosensitive channel TRPV1 is highly expressed at ST36 and possibly participated in acupuncture related analgesia. Since CWP was reported by other to occur during acupuncture and its components were shown here to express in tissues with positive TRPV1 expression. These findings suggest TRPV1 might act as acupuncture-responding channel by sensing physical stimulation from acupuncture and conducting the signaling via CWP to nerve terminals. This study provided a better understanding between physical stimulation from acupuncture to neurological signaling.
Collapse
|
28
|
Pappalardo A, Pitto L, Fiorillo C, Alice Donati M, Bruno C, Santorelli FM. Neuromuscular disorders in zebrafish: state of the art and future perspectives. Neuromolecular Med 2013; 15:405-19. [PMID: 23584918 DOI: 10.1007/s12017-013-8228-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2012] [Accepted: 03/30/2013] [Indexed: 12/22/2022]
Abstract
Neuromuscular disorders are a broad group of inherited conditions affecting the structure and function of the motor system with polymorphic clinical presentation and disease severity. Although individually rare, collectively neuromuscular diseases have an incidence of 1 in 3,000 and represent a significant cause of disability of the motor system. The past decade has witnessed the identification of a large number of human genes causing muscular disorders, yet the underlying pathogenetic mechanisms remain largely unclear, limiting the developing of targeted therapeutic strategies. To overcome this barrier, model systems that replicate the different steps of human disorders are increasingly being developed. Among these, the zebrafish (Danio rerio) has emerged as an excellent organism for studying genetic disorders of the central and peripheral motor systems. In this review, we will encounter most of the available zebrafish models for childhood neuromuscular disorders, providing a brief overview of results and the techniques, mainly transgenesis and chemical biology, used for genetic manipulation. The amount of data collected in the past few years will lead zebrafish to became a common functional tool for assessing rapidly drug efficacy and off-target effects in neuromuscular diseases and, furthermore, to shed light on new etiologies emerging from large-scale massive sequencing studies.
Collapse
Affiliation(s)
- Andrea Pappalardo
- Molecular Medicine, and Neuromuscular Lab, IRCCS Stella Maris, Via dei Giacinti 2, 56128 Pisa, Italy
| | | | | | | | | | | |
Collapse
|
29
|
Nilius B, Voets T. The puzzle of TRPV4 channelopathies. EMBO Rep 2013; 14:152-63. [PMID: 23306656 DOI: 10.1038/embor.2012.219] [Citation(s) in RCA: 218] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2012] [Accepted: 12/10/2012] [Indexed: 11/09/2022] Open
Abstract
Hereditary channelopathies, that is, mutations in channel genes that alter channel function and are causal for the pathogenesis of the disease, have been described for several members of the transient receptor potential channel family. Mutations in the TRPV4 gene, encoding a polymodal Ca(2+) permeable channel, are causative for several human diseases, which affect the skeletal system and the peripheral nervous system, with highly variable phenotypes. In this review, we describe the phenotypes of TRPV4 channelopathies and overlapping symptoms. Putative mechanisms to explain the puzzle, and how mutations in the same region of the channel cause different diseases, are discussed and experimental approaches to tackle this surprising problem are suggested.
Collapse
Affiliation(s)
- Bernd Nilius
- KU Leuven, Department of Cellular & Molecular Medicine, Laboratory of Ion Channel Research, Campus Gasthuisberg, Leuven, Belgium.
| | | |
Collapse
|