1
|
Paulhus K, Glasscock E. Novel Genetic Variants Expand the Functional, Molecular, and Pathological Diversity of KCNA1 Channelopathy. Int J Mol Sci 2023; 24:8826. [PMID: 37240170 PMCID: PMC10219020 DOI: 10.3390/ijms24108826] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
The KCNA1 gene encodes Kv1.1 voltage-gated potassium channel α subunits, which are crucial for maintaining healthy neuronal firing and preventing hyperexcitability. Mutations in the KCNA1 gene can cause several neurological diseases and symptoms, such as episodic ataxia type 1 (EA1) and epilepsy, which may occur alone or in combination, making it challenging to establish simple genotype-phenotype correlations. Previous analyses of human KCNA1 variants have shown that epilepsy-linked mutations tend to cluster in regions critical for the channel's pore, whereas EA1-associated mutations are evenly distributed across the length of the protein. In this review, we examine 17 recently discovered pathogenic or likely pathogenic KCNA1 variants to gain new insights into the molecular genetic basis of KCNA1 channelopathy. We provide the first systematic breakdown of disease rates for KCNA1 variants in different protein domains, uncovering potential location biases that influence genotype-phenotype correlations. Our examination of the new mutations strengthens the proposed link between the pore region and epilepsy and reveals new connections between epilepsy-related variants, genetic modifiers, and respiratory dysfunction. Additionally, the new variants include the first two gain-of-function mutations ever discovered for KCNA1, the first frameshift mutation, and the first mutations located in the cytoplasmic N-terminal domain, broadening the functional and molecular scope of KCNA1 channelopathy. Moreover, the recently identified variants highlight emerging links between KCNA1 and musculoskeletal abnormalities and nystagmus, conditions not typically associated with KCNA1. These findings improve our understanding of KCNA1 channelopathy and promise to enhance personalized diagnosis and treatment for individuals with KCNA1-linked disorders.
Collapse
Affiliation(s)
| | - Edward Glasscock
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275, USA;
| |
Collapse
|
2
|
Hassan A. Episodic Ataxias: Primary and Secondary Etiologies, Treatment, and Classification Approaches. Tremor Other Hyperkinet Mov (N Y) 2023; 13:9. [PMID: 37008993 PMCID: PMC10064912 DOI: 10.5334/tohm.747] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
Background Episodic ataxia (EA), characterized by recurrent attacks of cerebellar dysfunction, is the manifestation of a group of rare autosomal dominant inherited disorders. EA1 and EA2 are most frequently encountered, caused by mutations in KCNA1 and CACNA1A. EA3-8 are reported in rare families. Advances in genetic testing have broadened the KCNA1 and CACNA1A phenotypes, and detected EA as an unusual presentation of several other genetic disorders. Additionally, there are various secondary causes of EA and mimicking disorders. Together, these can pose diagnostic challenges for neurologists. Methods A systematic literature review was performed in October 2022 for 'episodic ataxia' and 'paroxysmal ataxia', restricted to publications in the last 10 years to focus on recent clinical advances. Clinical, genetic, and treatment characteristics were summarized. Results EA1 and EA2 phenotypes have further broadened. In particular, EA2 may be accompanied by other paroxysmal disorders of childhood with chronic neuropsychiatric features. New treatments for EA2 include dalfampridine and fampridine, in addition to 4-aminopyridine and acetazolamide. There are recent proposals for EA9-10. EA may also be caused by gene mutations associated with chronic ataxias (SCA-14, SCA-27, SCA-42, AOA2, CAPOS), epilepsy syndromes (KCNA2, SCN2A, PRRT2), GLUT-1, mitochondrial disorders (PDHA1, PDHX, ACO2), metabolic disorders (Maple syrup urine disease, Hartnup disease, type I citrullinemia, thiamine and biotin metabolism defects), and others. Secondary causes of EA are more commonly encountered than primary EA (vascular, inflammatory, toxic-metabolic). EA can be misdiagnosed as migraine, peripheral vestibular disorders, anxiety, and functional symptoms. Primary and secondary EA are frequently treatable which should prompt a search for the cause. Discussion EA may be overlooked or misdiagnosed for a variety of reasons, including phenotype-genotype variability and clinical overlap between primary and secondary causes. EA is highly treatable, so it is important to consider in the differential diagnosis of paroxysmal disorders. Classical EA1 and EA2 phenotypes prompt single gene test and treatment pathways. For atypical phenotypes, next generation genetic testing can aid diagnosis and guide treatment. Updated classification systems for EA are discussed which may assist diagnosis and management.
Collapse
|
3
|
Harvey S, King MD, Gorman KM. Paroxysmal Movement Disorders. Front Neurol 2021; 12:659064. [PMID: 34177764 PMCID: PMC8232056 DOI: 10.3389/fneur.2021.659064] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/20/2021] [Indexed: 11/13/2022] Open
Abstract
Paroxysmal movement disorders (PxMDs) are a clinical and genetically heterogeneous group of movement disorders characterized by episodic involuntary movements (dystonia, dyskinesia, chorea and/or ataxia). Historically, PxMDs were classified clinically (triggers and characteristics of the movements) and this directed single-gene testing. With the advent of next-generation sequencing (NGS), how we classify and investigate PxMDs has been transformed. Next-generation sequencing has enabled new gene discovery (RHOBTB2, TBC1D24), expansion of phenotypes in known PxMDs genes and a better understanding of disease mechanisms. However, PxMDs exhibit phenotypic pleiotropy and genetic heterogeneity, making it challenging to predict genotype based on the clinical phenotype. For example, paroxysmal kinesigenic dyskinesia is most commonly associated with variants in PRRT2 but also variants identified in PNKD, SCN8A, and SCL2A1. There are no radiological or biochemical biomarkers to differentiate genetic causes. Even with NGS, diagnosis rates are variable, ranging from 11 to 51% depending on the cohort studied and technology employed. Thus, a large proportion of patients remain undiagnosed compared to other neurological disorders such as epilepsy, highlighting the need for further genomic research in PxMDs. Whole-genome sequencing, deep-sequencing, copy number variant analysis, detection of deep-intronic variants, mosaicism and repeat expansions, will improve diagnostic rates. Identifying the underlying genetic cause has a significant impact on patient care, modification of treatment, long-term prognostication and genetic counseling. This paper provides an update on the genetics of PxMDs, description of PxMDs classified according to causative gene rather than clinical phenotype, highlighting key clinical features and providing an algorithm for genetic testing of PxMDs.
Collapse
Affiliation(s)
- Susan Harvey
- Department of Paediatric Neurology and Clinical Neurophysiology, Children's Health Ireland at Temple Street, Dublin, Ireland
| | - Mary D King
- Department of Paediatric Neurology and Clinical Neurophysiology, Children's Health Ireland at Temple Street, Dublin, Ireland.,School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| | - Kathleen M Gorman
- Department of Paediatric Neurology and Clinical Neurophysiology, Children's Health Ireland at Temple Street, Dublin, Ireland.,School of Medicine and Medical Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
4
|
Evidence Supporting the Regulatory Relationships through a Paracrine Pathway between the Sternum and Pectoral Muscles in Ducks. Genes (Basel) 2021; 12:genes12040463. [PMID: 33804959 PMCID: PMC8063953 DOI: 10.3390/genes12040463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 11/16/2022] Open
Abstract
Muscles and bones are anatomically closely linked, and they can conduct communication by mechanical and chemical signals. However, the specific regulatory mechanism between the pectoral muscle and sternum in birds was largely unknown. The present study explored the potential relationship between them in ducks. The result of the sections showed that more nuclei in proliferate states were observed in the pectoral muscle fibers attached to the calcified sternum, than those attached to the un-calcified sternum. The RNA-seq identified 328 differentially expressed genes (DEGs) in the sternum between the calcified and un-calcified groups. Gene ontology (GO) showed that the DEGs were mainly enriched in pathways associated with calcification. In addition, DEGs in the muscles between the calcified and un-calcified sternum groups were mainly annotated to signal transduction receptor pathways. The expression patterns of genes encoding for secreted proteins, in bone (CXCL12, BMP7 and CTSK) and muscle (LGI1), were clustered with muscle development (MB) and bone calcification (KCNA1, OSTN, COL9A3, and DCN) related genes, respectively, indicating the regulatory relationships through a paracrine pathway existing between the sternum and pectoral muscles in ducks. Together, we demonstrated that the pectoral muscle development was affected by the sternal ossification states in ducks. The VEGFA, CXCL12, SPP1, NOG, and BMP7 were possibly the key genes to participate in the ossification of the duck sternum. We firstly listed evidence supporting the regulatory relationships through a paracrine pathway between the sternum and pectoral muscles in ducks, which provided scientific data for the study of the synergistic development of bone and skeletal muscle.
Collapse
|
5
|
Imbrici P, Accogli A, Blunck R, Altamura C, Iacomino M, D’Adamo MC, Allegri A, Pedemonte M, Brolatti N, Vari S, Cataldi M, Capra V, Gustincich S, Zara F, Desaphy JF, Fiorillo C. Musculoskeletal Features without Ataxia Associated with a Novel de novo Mutation in KCNA1 Impairing the Voltage Sensitivity of Kv1.1 Channel. Biomedicines 2021; 9:75. [PMID: 33466780 PMCID: PMC7829709 DOI: 10.3390/biomedicines9010075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/02/2021] [Accepted: 01/06/2021] [Indexed: 02/06/2023] Open
Abstract
The KCNA1 gene encodes the α subunit of the voltage-gated Kv1.1 potassium channel that critically regulates neuronal excitability in the central and peripheral nervous systems. Mutations in KCNA1 have been classically associated with episodic ataxia type 1 (EA1), a movement disorder triggered by physical and emotional stress. Additional features variably reported in recent years include epilepsy, myokymia, migraine, paroxysmal dyskinesia, hyperthermia, hypomagnesemia, and cataplexy. Interestingly, a few individuals with neuromyotonia, either isolated or associated with skeletal deformities, have been reported carrying variants in the S2-S3 transmembrane segments of Kv1.1 channels in the absence of any other symptoms. Here, we have identified by whole-exome sequencing a novel de novo variant, T268K, in KCNA1 in a boy displaying recurrent episodes of neuromyotonia, muscle hypertrophy, and skeletal deformities. Through functional analysis in heterologous cells and structural modeling, we show that the mutation, located at the extracellular end of the S3 helix, causes deleterious effects, disrupting Kv1.1 function by altering the voltage dependence of activation and kinetics of deactivation, likely due to abnormal interactions with the voltage sensor in the S4 segment. Our study supports previous evidence suggesting that specific residues within the S2 and S3 segments of Kv1.1 result in a distinctive phenotype with predominant musculoskeletal presentation.
Collapse
Affiliation(s)
- Paola Imbrici
- Department of Pharmacy-Drug Sciences, University of Bari Aldo Moro, 70121 Bari, Italy
| | - Andrea Accogli
- Medical Genetics Unit, IRCCS Institute “G. Gaslini”, 80131 Genoa, Italy; (A.A.); (M.I.)
| | - Rikard Blunck
- Department of Physics, Université de Montréal, Montréal, QC H3C 3J7, Canada;
| | - Concetta Altamura
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, 70121 Bari, Italy; (C.A.); (J.-F.D.)
| | - Michele Iacomino
- Medical Genetics Unit, IRCCS Institute “G. Gaslini”, 80131 Genoa, Italy; (A.A.); (M.I.)
| | - Maria Cristina D’Adamo
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, MDS-2080 Msida, Malta;
| | - Anna Allegri
- Paediatric Endocrinology Unit, IRCCS Institute “G. Gaslini”, 80131 Genoa, Italy;
| | - Marina Pedemonte
- Paediatric Neurology and Neuromuscular Disorders Unit, IRCCS Institute “G. Gaslini”, 80131 Genoa, Italy; (M.P.); (N.B.); (S.V.); (C.F.)
| | - Noemi Brolatti
- Paediatric Neurology and Neuromuscular Disorders Unit, IRCCS Institute “G. Gaslini”, 80131 Genoa, Italy; (M.P.); (N.B.); (S.V.); (C.F.)
| | - Stella Vari
- Paediatric Neurology and Neuromuscular Disorders Unit, IRCCS Institute “G. Gaslini”, 80131 Genoa, Italy; (M.P.); (N.B.); (S.V.); (C.F.)
| | - Matteo Cataldi
- Neuropsychiatric Unit, IRCCS Institute “G. Gaslini”, 80131 Genoa, Italy;
| | - Valeria Capra
- Neurosurgery Unit, IRCCS Institute “G. Gaslini”, 80131 Genoa, Italy;
| | - Stefano Gustincich
- Department of Neuroscience and Brain Technologies, Istituto Italiano di Tecnologia, 80131 Genoa, Italy;
| | - Federico Zara
- Medical Genetics Unit, IRCCS Institute “G. Gaslini”, 80131 Genoa, Italy; (A.A.); (M.I.)
| | - Jean-Francois Desaphy
- Department of Biomedical Sciences and Human Oncology, School of Medicine, University of Bari Aldo Moro, 70121 Bari, Italy; (C.A.); (J.-F.D.)
| | - Chiara Fiorillo
- Paediatric Neurology and Neuromuscular Disorders Unit, IRCCS Institute “G. Gaslini”, 80131 Genoa, Italy; (M.P.); (N.B.); (S.V.); (C.F.)
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16126 Genoa, Italy
| |
Collapse
|
6
|
A Common Kinetic Property of Mutations Linked to Episodic Ataxia Type 1 Studied in the Shaker Kv Channel. Int J Mol Sci 2020; 21:ijms21207602. [PMID: 33066705 PMCID: PMC7589002 DOI: 10.3390/ijms21207602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 12/21/2022] Open
Abstract
(1) Background: Episodic ataxia type 1 is caused by mutations in the KCNA1 gene encoding for the voltage-gated potassium channel Kv1.1. There have been many mutations in Kv1.1 linked to episodic ataxia reported and typically investigated by themselves or in small groups. The aim of this article is to determine whether we can define a functional parameter common to all Kv1.1 mutants that have been linked to episodic ataxia. (2) Methods: We introduced the disease mutations linked to episodic ataxia in the drosophila analog of Kv1.1, the Shaker Kv channel, and expressed the channels in Xenopus oocytes. Using the cut-open oocyte technique, we characterized the gating and ionic currents. (3) Results: We found that the episodic ataxia mutations variably altered the different gating mechanisms described for Kv channels. The common characteristic was a conductance voltage relationship and inactivation shifted to less polarized potentials. (4) Conclusions: We suggest that a combination of a prolonged action potential and slowed and incomplete inactivation leads to development of ataxia when Kv channels cannot follow or adapt to high firing rates.
Collapse
|
7
|
Clinical and Genetic Overview of Paroxysmal Movement Disorders and Episodic Ataxias. Int J Mol Sci 2020; 21:ijms21103603. [PMID: 32443735 PMCID: PMC7279391 DOI: 10.3390/ijms21103603] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 12/15/2022] Open
Abstract
Paroxysmal movement disorders (PMDs) are rare neurological diseases typically manifesting with intermittent attacks of abnormal involuntary movements. Two main categories of PMDs are recognized based on the phenomenology: Paroxysmal dyskinesias (PxDs) are characterized by transient episodes hyperkinetic movement disorders, while attacks of cerebellar dysfunction are the hallmark of episodic ataxias (EAs). From an etiological point of view, both primary (genetic) and secondary (acquired) causes of PMDs are known. Recognition and diagnosis of PMDs is based on personal and familial medical history, physical examination, detailed reconstruction of ictal phenomenology, neuroimaging, and genetic analysis. Neurophysiological or laboratory tests are reserved for selected cases. Genetic knowledge of PMDs has been largely incremented by the advent of next generation sequencing (NGS) methodologies. The wide number of genes involved in the pathogenesis of PMDs reflects a high complexity of molecular bases of neurotransmission in cerebellar and basal ganglia circuits. In consideration of the broad genetic and phenotypic heterogeneity, a NGS approach by targeted panel for movement disorders, clinical or whole exome sequencing should be preferred, whenever possible, to a single gene approach, in order to increase diagnostic rate. This review is focused on clinical and genetic features of PMDs with the aim to (1) help clinicians to recognize, diagnose and treat patients with PMDs as well as to (2) provide an overview of genes and molecular mechanisms underlying these intriguing neurogenetic disorders.
Collapse
|
8
|
D’Adamo MC, Liantonio A, Rolland JF, Pessia M, Imbrici P. Kv1.1 Channelopathies: Pathophysiological Mechanisms and Therapeutic Approaches. Int J Mol Sci 2020; 21:ijms21082935. [PMID: 32331416 PMCID: PMC7215777 DOI: 10.3390/ijms21082935] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 04/19/2020] [Accepted: 04/20/2020] [Indexed: 12/27/2022] Open
Abstract
Kv1.1 belongs to the Shaker subfamily of voltage-gated potassium channels and acts as a critical regulator of neuronal excitability in the central and peripheral nervous systems. KCNA1 is the only gene that has been associated with episodic ataxia type 1 (EA1), an autosomal dominant disorder characterized by ataxia and myokymia and for which different and variable phenotypes have now been reported. The iterative characterization of channel defects at the molecular, network, and organismal levels contributed to elucidating the functional consequences of KCNA1 mutations and to demonstrate that ataxic attacks and neuromyotonia result from cerebellum and motor nerve alterations. Dysfunctions of the Kv1.1 channel have been also associated with epilepsy and kcna1 knock-out mouse is considered a model of sudden unexpected death in epilepsy. The tissue-specific association of Kv1.1 with other Kv1 members, auxiliary and interacting subunits amplifies Kv1.1 physiological roles and expands the pathogenesis of Kv1.1-associated diseases. In line with the current knowledge, Kv1.1 has been proposed as a novel and promising target for the treatment of brain disorders characterized by hyperexcitability, in the attempt to overcome limited response and side effects of available therapies. This review recounts past and current studies clarifying the roles of Kv1.1 in and beyond the nervous system and its contribution to EA1 and seizure susceptibility as well as its wide pharmacological potential.
Collapse
Affiliation(s)
- Maria Cristina D’Adamo
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida MDS-2080, Malta; (M.C.D.); (M.P.)
| | - Antonella Liantonio
- Department of Pharmacy–Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy;
| | | | - Mauro Pessia
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Msida MDS-2080, Malta; (M.C.D.); (M.P.)
- Department of Physiology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain Po Box 17666, UAE
| | - Paola Imbrici
- Department of Pharmacy–Drug Sciences, University of Bari “Aldo Moro”, 70125 Bari, Italy;
- Correspondence:
| |
Collapse
|
9
|
Clinical Spectrum of KCNA1 Mutations: New Insights into Episodic Ataxia and Epilepsy Comorbidity. Int J Mol Sci 2020; 21:ijms21082802. [PMID: 32316562 PMCID: PMC7215408 DOI: 10.3390/ijms21082802] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/14/2020] [Accepted: 04/16/2020] [Indexed: 12/13/2022] Open
Abstract
Mutations in the KCNA1 gene, which encodes voltage-gated Kv1.1 potassium channel α-subunits, cause a variety of human diseases, complicating simple genotype–phenotype correlations in patients. KCNA1 mutations are primarily associated with a rare neurological movement disorder known as episodic ataxia type 1 (EA1). However, some patients have EA1 in combination with epilepsy, whereas others have epilepsy alone. KCNA1 mutations can also cause hypomagnesemia and paroxysmal dyskinesia in rare cases. Why KCNA1 variants are associated with such phenotypic heterogeneity in patients is not yet understood. In this review, literature databases (PubMed) and public genetic archives (dbSNP and ClinVar) were mined for known pathogenic or likely pathogenic mutations in KCNA1 to examine whether patterns exist between mutation type and disease manifestation. Analyses of the 47 deleterious KCNA1 mutations that were identified revealed that epilepsy or seizure-related variants tend to cluster in the S1/S2 transmembrane domains and in the pore region of Kv1.1, whereas EA1-associated variants occur along the whole length of the protein. In addition, insights from animal models of KCNA1 channelopathy were considered, as well as the possible influence of genetic modifiers on disease expressivity and severity. Elucidation of the complex relationship between KCNA1 variants and disease will enable better diagnostic risk assessment and more personalized therapeutic strategies for KCNA1 channelopathy.
Collapse
|
10
|
Bianchi F, Simoncini C, Brugnoni R, Ricci G, Siciliano G. Neuromuscular tetanic hyperexcitability syndrome associated to a heterozygous Kv1.1 N255D mutation with normal serum magnesium levels. ACTA MYOLOGICA : MYOPATHIES AND CARDIOMYOPATHIES : OFFICIAL JOURNAL OF THE MEDITERRANEAN SOCIETY OF MYOLOGY 2020; 39:36-39. [PMID: 32607479 PMCID: PMC7315896 DOI: 10.36185/2532-1900-007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 03/09/2020] [Indexed: 06/11/2023]
Abstract
Mutations of the main voltage-gated K channel members Kv1.1 are linked to several clinical conditions, such as periodic ataxia type 1, myokymia and seizure disorders. Due to their role in active magnesium reabsorption through the renal distal convoluted tubule segment, mutations in the KCNA1 gene encoding for Kv1.1 has been associated with hypomagnesemia with myokymia and tetanic crises. Here we describe a case of a young female patient who came to our attention for a history of muscular spasms, tetanic episodes and muscle weakness, initially misdiagnosed for fibromyalgia. After a genetic screening she was found to be carrier of the c.736A > G (p.Asn255Asp) mutation in KCNA1, previously described in a family with autosomal dominant hypomagnesemia with muscular spasms, myokymia and tetanic episodes. However, our patient has always presented normal serum and urinary magnesium values, whereas she was affected by hypocalcemia. Calcium supplementation gave only partial clinical benefit, with an improvement on tetanic episodes yet without a clinical remission of her spasms, whereas magnesium supplementation worsened her muscular symptomatology.
Collapse
Affiliation(s)
- Francesca Bianchi
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Italy
| | - Costanza Simoncini
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Italy
| | - Raffaella Brugnoni
- Neurology IV - Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giulia Ricci
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Italy
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Italy
| |
Collapse
|
11
|
Verdura E, Fons C, Schlüter A, Ruiz M, Fourcade S, Casasnovas C, Castellano A, Pujol A. Complete loss of KCNA1 activity causes neonatal epileptic encephalopathy and dyskinesia. J Med Genet 2019; 57:132-137. [PMID: 31586945 PMCID: PMC7029237 DOI: 10.1136/jmedgenet-2019-106373] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/12/2019] [Accepted: 09/15/2019] [Indexed: 11/29/2022]
Abstract
Background Since 1994, over 50 families affected by the episodic ataxia type 1 disease spectrum have been described with mutations in KCNA1, encoding the voltage-gated K+ channel subunit Kv1.1. All of these mutations are either transmitted in an autosomal-dominant mode or found as de novo events. Methods A patient presenting with a severe combination of dyskinesia and neonatal epileptic encephalopathy was sequenced by whole-exome sequencing (WES). A candidate variant was tested using cellular assays and patch-clamp recordings. Results WES revealed a homozygous variant (p.Val368Leu) in KCNA1, involving a conserved residue in the pore domain, close to the selectivity signature sequence for K+ ions (TVGYG). Functional analysis showed that mutant protein alone failed to produce functional channels in homozygous state, while coexpression with wild-type produced no effects on K+ currents, similar to wild-type protein alone. Treatment with oxcarbazepine, a sodium channel blocker, proved effective in controlling seizures. Conclusion This newly identified variant is the first to be reported to act in a recessive mode of inheritance in KCNA1. These findings serve as a cautionary tale for the diagnosis of channelopathies, in which an unreported phenotypic presentation or mode of inheritance for the variant of interest can hinder the identification of causative variants and adequate treatment choice.
Collapse
Affiliation(s)
- Edgard Verdura
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Catalunya, Spain.,Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Carme Fons
- Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain.,Pediatric Neurology Department, Hospital Sant Joan de Déu, Esplugues de Llobregat, Barcelona, Catalunya, Spain.,Sant Joan de Déu Research Institute (IRSJD), Esplugues de Llobregat, Barcelona, Catalunya, Spain
| | - Agatha Schlüter
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Catalunya, Spain.,Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Montserrat Ruiz
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Catalunya, Spain.,Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Stéphane Fourcade
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Catalunya, Spain.,Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain
| | - Carlos Casasnovas
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Catalunya, Spain.,Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain.,Neuromuscular Unit, Neurology Department, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Catalunya, Spain
| | - Antonio Castellano
- Institute of Biomedicine of Seville (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain.,Medical Physiology and Biophysics Departament, Universidad de Sevilla, Sevilla, Spain
| | - Aurora Pujol
- Neurometabolic Diseases Laboratory, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Catalunya, Spain .,Centre for Biomedical Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Barcelona, Spain.,Catalan Institution of Research and Advanced Studies (ICREA), Barcelona, Catalunya, Spain
| |
Collapse
|
12
|
Yin XM, Lin JH, Cao L, Zhang TM, Zeng S, Zhang KL, Tian WT, Hu ZM, Li N, Wang JL, Guo JF, Wang RX, Xia K, Zhang ZH, Yin F, Peng J, Liao WP, Yi YH, Liu JY, Yang ZX, Chen Z, Mao X, Yan XX, Jiang H, Shen L, Chen SD, Zhang LM, Tang BS. Familial paroxysmal kinesigenic dyskinesia is associated with mutations in the KCNA1 gene. Hum Mol Genet 2019; 27:625-637. [PMID: 29294000 DOI: 10.1093/hmg/ddx430] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 12/15/2017] [Indexed: 12/23/2022] Open
Abstract
Paroxysmal kinesigenic dyskinesia (PKD) is a heterogeneous movement disorder characterized by recurrent dyskinesia attacks triggered by sudden movement. PRRT2 has been identified as the first causative gene of PKD. However, it is only responsible for approximately half of affected individuals, indicating that other loci are most likely involved in the etiology of this disorder. To explore the underlying causative gene of PRRT2-negative PKD, we used a combination strategy including linkage analysis, whole-exome sequencing and copy number variations analysis to detect the genetic variants within a family with PKD. We identified a linkage locus on chromosome 12 (12p13.32-12p12.3) and detected a novel heterozygous mutation c.956 T>G (p.319 L>R) in the potassium voltage-gated channel subfamily A member 1, KCNA1. Whole-exome sequencing in another 58 Chinese patients with PKD who lacked mutations in PRRT2 revealed another novel mutation in the KCNA1 gene [c.765 C>A (p.255 N>K)] within another family. Biochemical analysis revealed that the L319R mutant accelerated protein degradation via the proteasome pathway and disrupted membrane expression of the Kv1.1 channel. Electrophysiological examinations in transfected HEK293 cells showed that both the L319R and N255K mutants resulted in reduced potassium currents and respective altered gating properties, with a dominant negative effect on the Kv1.1 wild-type channel. Our study suggests that these mutations in KCNA1 cause the Kv1.1 channel dysfunction, which leads to familial PKD. The current study further extended the genotypic spectrum of this disorder, indicating that Kv1.1 channel dysfunction maybe one of the underlying defects in PKD.
Collapse
Affiliation(s)
- Xiao-Meng Yin
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jing-Han Lin
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Li Cao
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Tong-Mei Zhang
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.,The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Sheng Zeng
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Kai-Lin Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Wo-Tu Tian
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zheng-Mao Hu
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China
| | - Nan Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan 410008, China
| | - Jun-Ling Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.,Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan 410008, China
| | - Ji-Feng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.,Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, Hunan 410008, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan 410008, China
| | - Ruo-Xi Wang
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China.,Institute of Precision Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Kun Xia
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China
| | - Zhuo-Hua Zhang
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China.,Institute of Precision Medicine, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.,Department of Neurosciences, School of Medicine, University of South China, Hengyang, Hunan 420001, China
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.,Hunan Intellectual and Development Disabilities Research Center, Changsha, Hunan 410008, China
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.,Hunan Intellectual and Development Disabilities Research Center, Changsha, Hunan 410008, China
| | - Wei-Ping Liao
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and Ministry of Education of China, Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Institute of Neuroscience, Guangzhou Medical University, Guangzhou 510260, China
| | - Yong-Hong Yi
- Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and Ministry of Education of China, Department of Neurology of the Second Affiliated Hospital of Guangzhou Medical University, Institute of Neuroscience, Guangzhou Medical University, Guangzhou 510260, China
| | - Jing-Yu Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhi-Xian Yang
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Zhong Chen
- Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Department of Pharmacology, College of Pharmaceutical Sciences, School of Medicine, Zhejiang University, Hangzhou 310027, China.,Epilepsy Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310027, China
| | - Xiao Mao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Xin-Xiang Yan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Hong Jiang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.,Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, Hunan 410008, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan 410008, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.,Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, Hunan 410008, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan 410008, China
| | - Sheng-Di Chen
- Department of Neurology and Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Li-Ming Zhang
- Department of Neurology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Bei-Sha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China.,Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan 410008, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, Hunan 410008, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan 410008, China.,Collaborative Innovation Center for Brain Science, Shanghai 200032, China.,Collaborative Innovation Center for Genetics and Development, Shanghai 200433, China
| |
Collapse
|
13
|
Koide M, Hagiwara Y, Tsuchiya M, Kanzaki M, Hatakeyama H, Tanaka Y, Minowa T, Takemura T, Ando A, Sekiguchi T, Yabe Y, Itoi E. Retained Myogenic Potency of Human Satellite Cells from Torn Rotator Cuff Muscles Despite Fatty Infiltration. TOHOKU J EXP MED 2018; 244:15-24. [PMID: 29311489 DOI: 10.1620/tjem.244.15] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Rotator cuff tears (RCTs) are a common shoulder problem in the elderly that can lead to both muscle atrophy and fatty infiltration due to less physical load. Satellite cells, quiescent cells under the basal lamina of skeletal muscle fibers, play a major role in muscle regeneration. However, the myogenic potency of human satellite cells in muscles with fatty infiltration is unclear due to the difficulty in isolating from small samples, and the mechanism of the progression of fatty infiltration has not been elucidated. The purpose of this study was to analyze the population of myogenic and adipogenic cells in disused supraspinatus (SSP) and intact subscapularis (SSC) muscles of the RCTs from the same patients using fluorescence-activated cell sorting. The microstructure of the muscle with fatty infiltration was observed as a whole mount condition under multi-photon microscopy. Myogenic differentiation potential and gene expression were evaluated in satellite cells. The results showed that the SSP muscle with greater fatty infiltration surrounded by collagen fibers compared with the SSC muscle under multi-photon microscopy. A positive correlation was observed between the ratio of muscle volume to fat volume and the ratio of myogenic precursor to adipogenic precursor. Although no difference was observed in the myogenic potential between the two groups in cell culture, satellite cells in the disused SSP muscle showed higher intrinsic myogenic gene expression than those in the intact SSC muscle. Our results indicate that satellite cells from the disused SSP retain sufficient potential of muscle growth despite the fatty infiltration.
Collapse
Affiliation(s)
- Masashi Koide
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine
| | - Yoshihiro Hagiwara
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine
| | | | - Makoto Kanzaki
- Graduate School of Biomedical Engineering, Tohoku University
| | - Hiroyasu Hatakeyama
- Graduate School of Biomedical Engineering, Tohoku University.,Frontier Research Institute for Interdisciplinary Sciences, Tohoku University
| | - Yukinori Tanaka
- Department of Oral Immunology, Tohoku University Graduate School of Dentistry
| | | | | | - Akira Ando
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine
| | - Takuya Sekiguchi
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine
| | - Yutaka Yabe
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine
| | - Eiji Itoi
- Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine
| |
Collapse
|
14
|
The expanding spectrum of paroxysmal movement disorders: update from clinical features to therapeutics. Curr Opin Neurol 2018; 31:491-497. [DOI: 10.1097/wco.0000000000000576] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Rogers A, Golumbek P, Cellini E, Doccini V, Guerrini R, Wallgren-Pettersson C, Thuresson AC, Gurnett CA. De novo KCNA1 variants in the PVP motif cause infantile epileptic encephalopathy and cognitive impairment similar to recurrent KCNA2 variants. Am J Med Genet A 2018; 176:1748-1752. [PMID: 30055040 DOI: 10.1002/ajmg.a.38840] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 04/15/2018] [Accepted: 04/19/2018] [Indexed: 11/08/2022]
Abstract
Derangements in voltage-gated potassium channel function are responsible for a range of paroxysmal neurologic disorders. Pathogenic variants in the KCNA1 gene, which encodes the voltage-gated potassium channel Kv1.1, are responsible for Episodic Ataxia Type 1 (EA1). Patients with EA1 have an increased incidence of epilepsy, but KCNA1 variants have not been described in epileptic encephalopathy. Here, we describe four patients with infantile-onset epilepsy and cognitive impairment who harbor de novo KCNA1 variants located within the Kv-specific Pro-Val-Pro (PVP) motif which is essential for channel gating. The first two patients have KCNA1 variants resulting in (p.Pro405Ser) and (p.Pro405Leu), respectively, and a set of identical twins has a variant affecting a nearby residue (p.Pro403Ser). Notably, recurrent de novo variants in the paralogous PVP motif of KCNA2 have previously been shown to abolish channel function and also cause early-onset epileptic encephalopathy. Importantly, this report extends the range of phenotypes associated with KCNA1 variants to include epileptic encephalopathy when the PVP motif is involved.
Collapse
Affiliation(s)
- Amanda Rogers
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri
| | - Paul Golumbek
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri
| | - Elena Cellini
- Anna Meyer Children's Hospital, University of Florence, Firenze, Italy
| | - Viola Doccini
- Anna Meyer Children's Hospital, University of Florence, Firenze, Italy
| | - Renzo Guerrini
- Anna Meyer Children's Hospital, University of Florence, Firenze, Italy
| | - Carina Wallgren-Pettersson
- Department of Medical and Clinical Genetics, Folkhaelsan Institute of Genetics, University of Helsinki, Helsinki, Finland
| | - Ann-Charlotte Thuresson
- Science for Life Laboratory, Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden
| | - Christina A Gurnett
- Department of Neurology, Washington University in St. Louis, St. Louis, Missouri
| |
Collapse
|
16
|
Zhu P, Li J, Zhang L, Liang Z, Tang B, Liao WP, Yi YH, Su T. Development-related aberrations in Kv1.1 α-subunit exert disruptive effects on bioelectrical activities of neurons in a mouse model of fragile X syndrome. Prog Neuropsychopharmacol Biol Psychiatry 2018; 84:140-151. [PMID: 29481897 DOI: 10.1016/j.pnpbp.2018.02.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 02/22/2018] [Accepted: 02/22/2018] [Indexed: 10/18/2022]
Abstract
Kv1.1, a Shaker homologue potassium channel, plays a critical role in homeostatic regulation of neuronal excitability. Aberrations in the functional properties of Kv1.1 have been implicated in several neurological disorders featured by neuronal hyperexcitability. Fragile X syndrome (FXS), the most common form of inherited mental retardation, is characterized by hyperexcitability in neural network and intrinsic membrane properties. The Kv1.1 channel provides an intriguing mechanistic candidate for FXS. We investigated the development-related expression pattern of the Kv1.1 α-subunit by using a Fmr1 knockout (KO) mouse model of FXS. Markedly decreased protein expression of Kv1.1 was found in neonatal and adult stages when compared to age-matched wild-type (WT) mice. Immunohistochemical investigations supported the delayed development-related increases in Kv1.1 expression, especially in CA3 pyramidal neurons. By applying a Kv1.1-specific blocker, dendrotoxin-κ (DTX-κ), we isolated the Kv1.1-mediated currents in the CA3 pyramidal neurons. The isolated DTX-κ-sensitive current of neurons from KO mice exhibited decreased amplitude, lower threshold of activation, and faster recovery from inactivation. The equivalent reduction in potassium current in the WT neurons following application of the appropriate amount of DTX-κ reproduced the enhanced firing abilities of KO neurons, suggesting the Kv1.1 channel as a critical contributor to the hyperexcitability of KO neurons. The role of Kv1.1 in controlling neuronal discharges was further supported by the parallel developmental trajectories of Kv1.1 expression, current amplitude, and discharge impacts, with a significant correlation between the amplitude of Kv1.1-mediated currents and Kv1.1-blocking-induced firing enhancement. These data suggest that the expression of the Kv1.1 α-subunit has a profound pathological relevance to hyperexcitability in FXS, as well as implications for normal development, maintenance, and control of neuronal activities.
Collapse
Affiliation(s)
- Pingping Zhu
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Guangzhou, China; Department of Neurology, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Jialing Li
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Guangzhou, China
| | - Liting Zhang
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Guangzhou, China
| | - Zhanrong Liang
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Guangzhou, China
| | - Bin Tang
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Guangzhou, China
| | - Wei-Ping Liao
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Guangzhou, China
| | - Yong-Hong Yi
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Guangzhou, China
| | - Tao Su
- Institute of Neuroscience and the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of the Ministry of Education of China, Guangzhou, China.
| |
Collapse
|
17
|
van der Wijst J, Konrad M, Verkaart SAJ, Tkaczyk M, Latta F, Altmüller J, Thiele H, Beck B, Schlingmann KP, de Baaij JHF. A de novo KCNA1 Mutation in a Patient with Tetany and Hypomagnesemia. Nephron Clin Pract 2018; 139:359-366. [PMID: 29791908 DOI: 10.1159/000488954] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 03/31/2018] [Indexed: 11/19/2022] Open
Abstract
Mutations in the KCNA1 gene encoding the voltage-gated potassium (K+) channel Kv1.1 have been linked to rare neurological syndromes, episodic ataxia type 1 (EA1) and myokymia. In 2009, a KCNA1 mutation was identified in a large family with autosomal dominant hypomagnesemia. Despite efforts in establishing a genotype-phenotype correlation for the wide variety of symptoms in EA1, little is known on the serum magnesium (Mg2+) levels in these patients. In the present study, we describe a new de novo KCNA1 mutation in a Polish patient with tetany and hypomagnesemia. Electrophysiological and biochemical analyses were performed to determine the pathogenicity of the mutation. A female patient presented with low serum Mg2+ levels, renal Mg2+ wasting, muscle cramps, and tetanic episodes. Whole exome sequencing identified a p.Leu328Val mutation in KCNA1 encoding the Kv1.1 K+ channel. Electrophysiological examinations demonstrated that the p.Leu328Val mutation caused a dominant-negative loss of function of the encoded Kv1.1 channel. Cell surface biotinylation showed normal plasma membrane expression. Taken together, this is the second report linking KCNA1 with hypomagnesemia, thereby emphasizing the need for further evaluation of the clinical phenotypes observed in patients carrying KCNA1 mutations.
Collapse
Affiliation(s)
- Jenny van der Wijst
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Martin Konrad
- Department of General Pediatrics, University Children's Hospital, Münster, Germany
| | - Sjoerd A J Verkaart
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marcin Tkaczyk
- Department of Pediatrics, Immunology and Nephrology, Polish Mother's Memorial Hospital Research Institute, Lodz, Poland
| | - Femke Latta
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Janine Altmüller
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Holger Thiele
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Bodo Beck
- Department of Human Genetics, University of Cologne, Cologne, Germany
| | | | - Jeroen H F de Baaij
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
18
|
De Novo Mutations in Protein Kinase Genes CAMK2A and CAMK2B Cause Intellectual Disability. Am J Hum Genet 2017; 101:768-788. [PMID: 29100089 DOI: 10.1016/j.ajhg.2017.10.003] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 10/09/2017] [Indexed: 02/08/2023] Open
Abstract
Calcium/calmodulin-dependent protein kinase II (CAMK2) is one of the first proteins shown to be essential for normal learning and synaptic plasticity in mice, but its requirement for human brain development has not yet been established. Through a multi-center collaborative study based on a whole-exome sequencing approach, we identified 19 exceedingly rare de novo CAMK2A or CAMK2B variants in 24 unrelated individuals with intellectual disability. Variants were assessed for their effect on CAMK2 function and on neuronal migration. For both CAMK2A and CAMK2B, we identified mutations that decreased or increased CAMK2 auto-phosphorylation at Thr286/Thr287. We further found that all mutations affecting auto-phosphorylation also affected neuronal migration, highlighting the importance of tightly regulated CAMK2 auto-phosphorylation in neuronal function and neurodevelopment. Our data establish the importance of CAMK2A and CAMK2B and their auto-phosphorylation in human brain function and expand the phenotypic spectrum of the disorders caused by variants in key players of the glutamatergic signaling pathway.
Collapse
|
19
|
Set KK, Ghosh D, Huq AHM, Luat AF. Episodic Ataxia Type 1 (K-channelopathy) Manifesting as Paroxysmal Nonkinesogenic Dyskinesia: Expanding the Phenotype. Mov Disord Clin Pract 2017; 4:784-786. [PMID: 30363417 DOI: 10.1002/mdc3.12518] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 05/20/2017] [Accepted: 06/10/2017] [Indexed: 01/13/2023] Open
Abstract
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)2330-1619/homepage/mdc312518-sup-v001.htm.
Collapse
Affiliation(s)
- Kallol K Set
- Department of Pediatrics Children's Hospital of Michigan Detroit Medical Center Wayne State University School of Medicine Detroit Michigan USA.,Department of Neurology Children's Hospital of Michigan Detroit Medical Center Wayne State University School of Medicine Detroit Michigan USA
| | - Debabrata Ghosh
- Department of Pediatric Neurology Nationwide Children's Hospital Columbus Ohio USA
| | - A H M Huq
- Department of Pediatrics Children's Hospital of Michigan Detroit Medical Center Wayne State University School of Medicine Detroit Michigan USA.,Department of Neurology Children's Hospital of Michigan Detroit Medical Center Wayne State University School of Medicine Detroit Michigan USA
| | - Aimee F Luat
- Department of Pediatrics Children's Hospital of Michigan Detroit Medical Center Wayne State University School of Medicine Detroit Michigan USA.,Department of Neurology Children's Hospital of Michigan Detroit Medical Center Wayne State University School of Medicine Detroit Michigan USA
| |
Collapse
|
20
|
Imbrici P, Altamura C, Gualandi F, Mangiatordi GF, Neri M, De Maria G, Ferlini A, Padovani A, D'Adamo MC, Nicolotti O, Pessia M, Conte D, Filosto M, Desaphy JF. A novel KCNA1 mutation in a patient with paroxysmal ataxia, myokymia, painful contractures and metabolic dysfunctions. Mol Cell Neurosci 2017; 83:6-12. [PMID: 28666963 DOI: 10.1016/j.mcn.2017.06.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 04/05/2017] [Accepted: 06/25/2017] [Indexed: 11/26/2022] Open
Abstract
Episodic ataxia type 1 (EA1) is a human dominant neurological syndrome characterized by continuous myokymia, episodic attacks of ataxic gait and spastic contractions of skeletal muscles that can be triggered by emotional stress and fatigue. This rare disease is caused by missense mutations in the KCNA1 gene coding for the neuronal voltage gated potassium channel Kv1.1, which contributes to nerve cell excitability in the cerebellum, hippocampus, cortex and peripheral nervous system. We identified a novel KCNA1 mutation, E283K, in an Italian proband presenting with paroxysmal ataxia and myokymia aggravated by painful contractures and metabolic dysfunctions. The E283K mutation is located in the S3-S4 extracellular linker belonging to the voltage sensor domain of Kv channels. In order to test whether the E283K mutation affects Kv1.1 biophysical properties we transfected HEK293 cells with WT or mutant cDNAs alone or in a 1:1 combination, and recorded relative potassium currents in the whole-cell configuration of patch-clamp. Mutant E283K channels display voltage-dependent activation shifted by 10mV toward positive potentials and kinetics of activation slowed by ~2 fold compared to WT channels. Potassium currents resulting from heteromeric WT/E283K channels show voltage-dependent gating and kinetics of activation intermediate between WT and mutant homomeric channels. Based on homology modeling studies of the mutant E283K, we propose a molecular explanation for the reduced voltage sensitivity and slow channel opening. Overall, our results suggest that the replacement of a negatively charged residue with a positively charged lysine at position 283 in Kv1.1 causes a drop of potassium current that likely accounts for EA-1 symptoms in the heterozygous carrier.
Collapse
Affiliation(s)
- Paola Imbrici
- Department of Pharmacy - Drug Sciences, University of Bari Aldo Moro, Bari, Italy.
| | - Concetta Altamura
- Department of Pharmacy - Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Francesca Gualandi
- Logistic Unit of Medical Genetics, Department of Medical Sciences, University-Hospital of Ferrara, Italy
| | | | - Marcella Neri
- Logistic Unit of Medical Genetics, Department of Medical Sciences, University-Hospital of Ferrara, Italy
| | | | - Alessandra Ferlini
- Logistic Unit of Medical Genetics, Department of Medical Sciences, University-Hospital of Ferrara, Italy
| | - Alessandro Padovani
- Center for Neuromuscular Diseases and Neuropathies, Unit of Neurology, ASST "Spedali Civili", and University of Brescia, Brescia, Italy
| | - Maria Cristina D'Adamo
- Faculty of Medicine, Department of Physiology and Biochemistry, University of Malta, MSD-2080 Msida, Malta
| | - Orazio Nicolotti
- Department of Pharmacy - Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Mauro Pessia
- Faculty of Medicine, Department of Physiology and Biochemistry, University of Malta, MSD-2080 Msida, Malta; Department of Experimental Medicine, Section of Physiology & Biochemistry, University of Perugia School of Medicine, Perugia, Italy
| | - Diana Conte
- Department of Pharmacy - Drug Sciences, University of Bari Aldo Moro, Bari, Italy
| | - Massimiliano Filosto
- Center for Neuromuscular Diseases and Neuropathies, Unit of Neurology, ASST "Spedali Civili", and University of Brescia, Brescia, Italy
| | - Jean-Francois Desaphy
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
21
|
Pillen S, Pizza F, Dhondt K, Scammell TE, Overeem S. Cataplexy and Its Mimics: Clinical Recognition and Management. Curr Treat Options Neurol 2017; 19:23. [PMID: 28478511 DOI: 10.1007/s11940-017-0459-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OPINION STATEMENT This review describes the diagnosis and management of cataplexy: attacks of bilateral loss of muscle tone, triggered by emotions and with preserved consciousness. Although cataplexy is rare, its recognition is important as in most cases, it leads to a diagnosis of narcolepsy, a disorder that still takes a median of 9 years to be diagnosed. The expression of cataplexy varies widely, from partial episodes affecting only the neck muscles to generalized attacks leading to falls. Moreover, childhood cataplexy differs from the presentation in adults, with a prominent facial involvement, already evident without clear emotional triggers ('cataplectic facies') and 'active' motor phenomena especially of the tongue and perioral muscles. Next to narcolepsy, cataplexy can sometimes be caused by other diseases, such as Niemann-Pick type C, Prader Willi Syndrome, or lesions in the hypothalamic or pontomedullary region. Cataplexy mimics include syncope, epilepsy, hyperekplexia, drop attacks and pseudocataplexy. They can be differentiated from cataplexy using thorough history taking, supplemented with (home)video recordings whenever possible. Childhood narcolepsy, with its profound facial hypotonia, can be confused with neuromuscular disorders, and the active motor phenomenona resemble those found in childhood movement disorders such as Sydenham's chorea. Currently, the diagnosis of cataplexy is made almost solely on clinical grounds, based on history taking and (home) videos. Cataplexy shows remarkable differences in childhood compared to adults, with profound facial hypotonia and complex active motor phenomena. Over time, these severe symptoms evolve to the milder adult phenotype, and this pattern is crucial to recognize when assessing the outcome of uncontrolled case series with potential treatments such as immunomodulation. Symptomatic treatment is possible with antidepressants and sodium oxybate. Importantly, management also needs to involve sleep hygiene advice, safety measures whenever applicable and guidance with regard to the social sequelae of cataplexy.
Collapse
Affiliation(s)
- Sigrid Pillen
- Sleep Medicine Center Kempenhaeghe, P.O. Box 61, , 5590 AB, Heeze, The Netherlands.
| | - Fabio Pizza
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, Italy.,IRCCS Institute of the Neurological SciencesAUSL di Bologna, Bologna, Italy
| | - Karlien Dhondt
- Department Pediatrics, Division of Child Neurology & Metabolism, Pediatric Sleep Center, Ghent University Hospital, Ghent, Belgium
| | - Thomas E Scammell
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston Children's Hospital, Boston, MA, USA
| | - Sebastiaan Overeem
- Sleep Medicine Center Kempenhaeghe, P.O. Box 61, , 5590 AB, Heeze, The Netherlands.,Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
22
|
Tristán-Clavijo E, Scholl FG, Macaya A, Iglesias G, Rojas AM, Lucas M, Castellano A, Martinez-Mir A. Dominant-negative mutation p.Arg324Thr in KCNA1 impairs Kv1.1 channel function in episodic ataxia. Mov Disord 2016; 31:1743-1748. [PMID: 27477325 DOI: 10.1002/mds.26737] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 06/09/2016] [Accepted: 06/26/2016] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Episodic ataxia type 1 is a rare autosomal dominant neurological disorder caused by mutations in the KCNA1 gene that encodes the α subunit of voltage-gated potassium channel Kv1.1. The functional consequences of identified mutations on channel function do not fully correlate with the clinical phenotype of patients. METHODS A clinical and genetic study was performed in a family with 5 patients with episodic ataxia type 1, with concurrent epilepsy in 1 of them. Protein expression, modeling, and electrophysiological analyses were performed to study Kv1.1 function. RESULTS Whole-genome linkage and candidate gene analyses revealed the novel heterozygous mutation p.Arg324Thr in the KCNA1 gene. The encoded mutant Kv1.1 channel displays reduced currents and altered activation and inactivation. CONCLUSIONS Taken together, we provide genetic and functional evidence that mutation p.Arg324Thr in the KCNA1 gene is pathogenic and results in episodic ataxia type 1 through a dominant-negative effect. © 2016 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Enriqueta Tristán-Clavijo
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Francisco G Scholl
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain.,Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Sevilla, Spain
| | - Alfons Macaya
- Grup de Recerca en Neurologia Infantil, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Gemma Iglesias
- Servicio de Pediatría, Neuropediatría, Hospital Universitario Puerta de Hierro, Majadahonda, Madrid, Spain
| | - Ana M Rojas
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| | - Miguel Lucas
- Servicio de Biología Molecular, Hospital Universitario Virgen Macarena, Facultad de Medicina, Sevilla, Spain
| | - Antonio Castellano
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain.,Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Sevilla, Spain
| | - Amalia Martinez-Mir
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Sevilla, Spain
| |
Collapse
|
23
|
A novel KCNA1 mutation in a family with episodic ataxia and malignant hyperthermia. Neurogenetics 2016; 17:245-249. [PMID: 27271339 DOI: 10.1007/s10048-016-0486-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 05/26/2016] [Indexed: 10/21/2022]
Abstract
Episodic ataxia type 1 (EA1) is an autosomal dominant channelopathy caused by mutations in KCNA1, which encodes the voltage-gated potassium channel, Kv1.1. Eleven members of an EA family were evaluated with molecular and functional studies. A novel c.746T>G (p.Phe249Cys) missense mutation of KCNA1 segregated in the family members with episodic ataxia, myokymia, and malignant hyperthermia susceptibility. No mutations were found in the known malignant hyperthermia genes RYR1 or CACNA1S. The Phe249Cys-Kv1.1 channels did not show any currents upon functional expression, confirming a pathogenic role of the mutation. Malignant hyperthermia may be a presentation of KCNA1 mutations, which has significant implications for the clinical care of these patients and illustrates the phenotypic heterogeneity of KCNA1 mutations.
Collapse
|