1
|
Predicting in vivo therapeutic efficacy of bioorthogonally labeled endothelial progenitor cells in hind limb ischemia models via non-invasive fluorescence molecular tomography. Biomaterials 2020; 266:120472. [PMID: 33120201 DOI: 10.1016/j.biomaterials.2020.120472] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 10/04/2020] [Accepted: 10/18/2020] [Indexed: 01/15/2023]
Abstract
Human embryonic stem cells-derived endothelial progenitor cells (hEPCs) were utilized as cell therapeutics for the treatment of ischemic diseases. However, in vivo tracking of hEPCs for predicting their therapeutic efficacy is very difficult. Herein, we developed bioorthogonal labeling strategy of hEPCs that could non-invasively track them after transplantation in hind limb ischemia models. First, hEPCs were treated with tetraacylated N-azidomannosamine (Ac4ManNAz) for generating unnatural azide groups on the hEPCs surface. Second, near-infrared fluorescence (NIRF) dye, Cy5, conjugated dibenzocylooctyne (DBCO-Cy5) was chemically conjugated to the azide groups on the hEPC surface via copper-free click chemistry, resulting Cy5-hEPCs. The bioorthogonally labeled Cy5-hEPCs showed strong NIRF signal without cytotoxicity and functional perturbation in tubular formation, oxygen consumption and paracrine effect of hEPCs in vitro. In hind limb ischemia models, the distribution and migration of transplanted Cy5-hEPCs were successfully monitored via fluorescence molecular tomography (FMT) for 28 days. Notably, blood reperfusion and therapeutic neovascularization effects were significantly correlated with the initial transplantation forms of Cy5-hEPCs such as 'condensed round shape' and 'spread shape' in the ischemic lesion. The condensed transplanted Cy5-hEPCs substantially increased the therapeutic efficacy of hind limb ischemia, compared to that of spread Cy5-hEPCs. Therefore, our new stem cell labeling strategy can be used to predict therapeutic efficacy in hind limb ischemia and it can be applied a potential application in developing cell therapeutics for regenerative medicine.
Collapse
|
2
|
Kim SW, Ryu HA, Lee YS, Jeong IS, Kim S. Generation of directly reprogrammed human endothelial cells derived from fibroblast using ultrasound. J Mol Cell Cardiol 2018; 126:118-128. [PMID: 30500375 DOI: 10.1016/j.yjmcc.2018.11.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/12/2018] [Accepted: 11/22/2018] [Indexed: 11/24/2022]
Abstract
Physical microenvironment plays an important role in determining cellular reprogramming. In this study, we first generated directly reprogrammed human dermal fibroblasts (HDFs) into endothelial cells (ECs) mediated by environmental transition-guided cellular reprogramming (e/Entr) using ultrasound and characterized e/Entr. Ultrasound stimulus was introduced to ECs culture media and HDFs and induced into ECs-like cells. We performed microarray, RT-PCR, protein analysis, matrigel plug assay and e/Entr were transplanted into ischemic hindlimb mice model. Here we show that the activation of MAPK signaling pathways and the modulation of histone proteins such as Hp1-α, H3K27me3 and H3K4me3 in e/Entr contribute to the changes in chromatin configuration and reprogramming. Microarray data demonstrated that e/Entr highly expressed genes associated with ECs transcription factors and angiogenesis. In addition, the transplantation of e/Entr into hindlimb ischemia showed a high recovery of blood perfusion, limb salvage and e/Entr contributed to the formation of new vessels. In conclusion, the present study provided the first evidence that ultrasound reprogramming can induce postnatal cells to functional ECs. Therefore, our data suggest that physical stimulus-mediated reprogramming is a highly effective and safe strategy for the novel therapeutic alternatives.
Collapse
Affiliation(s)
- Sung-Whan Kim
- Institute for Bio-Medical Convergence, Department Medicine, Catholic Kwandong University College of Medicine, Gangneung, Republic of Korea; Catholic Kwandong University International St. Mary's Hospital, Metropolitan City, Incheon 404-834, Republic of Korea.
| | - Hyun Aae Ryu
- Institute for Bio-Medical Convergence, Department Medicine, Catholic Kwandong University College of Medicine, Gangneung, Republic of Korea; Catholic Kwandong University International St. Mary's Hospital, Metropolitan City, Incheon 404-834, Republic of Korea
| | - Yong Seung Lee
- Institute for Bio-Medical Convergence, Department Medicine, Catholic Kwandong University College of Medicine, Gangneung, Republic of Korea; Catholic Kwandong University International St. Mary's Hospital, Metropolitan City, Incheon 404-834, Republic of Korea
| | - In Sil Jeong
- Institute for Bio-Medical Convergence, Department Medicine, Catholic Kwandong University College of Medicine, Gangneung, Republic of Korea; Catholic Kwandong University International St. Mary's Hospital, Metropolitan City, Incheon 404-834, Republic of Korea
| | - Soonhag Kim
- Institute for Bio-Medical Convergence, Department Medicine, Catholic Kwandong University College of Medicine, Gangneung, Republic of Korea; Catholic Kwandong University International St. Mary's Hospital, Metropolitan City, Incheon 404-834, Republic of Korea.
| |
Collapse
|
3
|
Moon SH, Ju J, Park SJ, Bae D, Chung HM, Lee SH. Optimizing human embryonic stem cells differentiation efficiency by screening size-tunable homogenous embryoid bodies. Biomaterials 2014; 35:5987-97. [PMID: 24780170 DOI: 10.1016/j.biomaterials.2014.04.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 04/01/2014] [Indexed: 01/16/2023]
Abstract
Human embryonic stem cells (hESCs) are generally induced to differentiate by forming spherical structures termed embryoid bodies (EBs) in the presence of soluble growth factors. hEBs are generated by suspending small clumps of hESC colonies; however, the resulting hEBs are heterogeneous because this method lacks the ability to control the number of cells in individual EBs. This heterogeneity affects factors that influence differentiation such as cell-cell contact and the diffusion of soluble factors, and consequently, the differentiation capacity of each EB varies. Here, we fabricated size-tunable concave microwells to control the physical environment, thereby regulating the size of EBs formed from single hESCs. Defined numbers of single hESCs were forced to aggregate and generate uniformly sized EBs with high fidelity, and the size of the EBs was controlled using concave microwells of different diameters. Differentiation patterns in H9- and CHA15-hESCs were affected by EB size in both the absence and presence of growth factors. By screening EB size in the presence of various BMP4 concentrations, a two-fold increase in endothelial cell differentiation was achieved. Because each hESC line has unique characteristics, the findings of this study demonstrate that concave microwells could be used to screen different EB sizes and growth factor concentrations to optimize differentiation for each hESC line.
Collapse
Affiliation(s)
- Sung-Hwan Moon
- Department of Stem Cell Biology, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Jongil Ju
- Department of Biomedical Engineering, College of Health Science, Korea University, Jeongneung 3-dong, Seongbuk-gu, Seoul 136-703, Republic of Korea
| | - Soon-Jung Park
- Department of Stem Cell Biology, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 143-701, Republic of Korea
| | - Daekyeong Bae
- CHA Bio & Diostech Co., Ltd., Seoul 135-081, Republic of Korea
| | - Hyung-Min Chung
- Department of Stem Cell Biology, School of Medicine, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 143-701, Republic of Korea.
| | - Sang-Hoon Lee
- Department of Biomedical Engineering, College of Health Science, Korea University, Jeongneung 3-dong, Seongbuk-gu, Seoul 136-703, Republic of Korea.
| |
Collapse
|
4
|
Habib O, Habib G, Moon SH, Hong KS, Do JT, Choi Y, Chang SW, Chung HM. Ground-state conditions promote robust Prdm14 reactivation and maintain an active Dlk1-Dio3 region during reprogramming. Mol Cells 2014; 37:31-5. [PMID: 24552707 PMCID: PMC3907008 DOI: 10.14348/molcells.2014.2212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 11/06/2013] [Accepted: 11/15/2013] [Indexed: 11/27/2022] Open
Abstract
Induced pluripotent stem cells (iPSCs) are capable of unlimited self-renewal and can give rise to all three germ layers, thereby providing a new platform with which to study mammalian development and epigenetic reprogramming. However, iPSC generation may result in subtle epigenetic variations, such as the aberrant methylation of the Dlk1-Dio3 locus, among the clones, and this heterogeneity constitutes a major drawback to harnessing the full potential of iPSCs. Vitamin C has recently emerged as a safeguard to ensure the normal imprinting of the Dlk1-Dio3 locus during reprogramming. Here, we show that vitamin C exerts its effect in a manner that is independent of the reprogramming kinetics. Moreover, we demonstrate that reprogramming cells under 2i conditions leads to the early upregulation of Prdm14, which in turn results in a highly homogeneous population of authentic pluripotent colonies and prevents the abnormal silencing of the Dlk1-Dio3 locus.
Collapse
Affiliation(s)
- Omer Habib
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul 143-701,
Korea
- Stem Cell Research Laboratory, CHA Stem Cell Institute, CHA University, Seoul 135-907,
Korea
| | - Gizem Habib
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul 143-701,
Korea
| | - Sung-Hwan Moon
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul 143-701,
Korea
| | - Ki-Sung Hong
- Stem Cell Research Laboratory, CHA Stem Cell Institute, CHA University, Seoul 135-907,
Korea
| | - Jeong Tae Do
- Laboratory of Stem Cell and Developmental Biology Department of Animal Biotechnology, College of Animal Bioscience and Technology, Konkuk University, Seoul 143-701,
Korea
| | - Youngsok Choi
- Department of Biomedical Science, CHA University, Seoul 135-907,
Korea
| | - Sung Woon Chang
- Department of Obstetrics and Gynecology, Bundang CHA General Hospital, Seoul 463-836,
Korea
| | - Hyung-Min Chung
- Department of Stem Cell Biology, School of Medicine, Konkuk University, Seoul 143-701,
Korea
- Stem Cell Research Laboratory, CHA Stem Cell Institute, CHA University, Seoul 135-907,
Korea
| |
Collapse
|
5
|
Calloni R, Cordero EAA, Henriques JAP, Bonatto D. Reviewing and updating the major molecular markers for stem cells. Stem Cells Dev 2013; 22:1455-76. [PMID: 23336433 PMCID: PMC3629778 DOI: 10.1089/scd.2012.0637] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Stem cells (SC) are able to self-renew and to differentiate into many types of committed cells, making SCs interesting for cellular therapy. However, the pool of SCs in vivo and in vitro consists of a mix of cells at several stages of differentiation, making it difficult to obtain a homogeneous population of SCs for research. Therefore, it is important to isolate and characterize unambiguous molecular markers that can be applied to SCs. Here, we review classical and new candidate molecular markers that have been established to show a molecular profile for human embryonic stem cells (hESCs), mesenchymal stem cells (MSCs), and hematopoietic stem cells (HSCs). The commonly cited markers for embryonic ESCs are Nanog, Oct-4, Sox-2, Rex-1, Dnmt3b, Lin-28, Tdgf1, FoxD3, Tert, Utf-1, Gal, Cx43, Gdf3, Gtcm1, Terf1, Terf2, Lefty A, and Lefty B. MSCs are primarily identified by the expression of CD13, CD29, CD44, CD49e, CD54, CD71, CD73, CD90, CD105, CD106, CD166, and HLA-ABC and lack CD14, CD31, CD34, CD45, CD62E, CD62L, CD62P, and HLA-DR expression. HSCs are mainly isolated based on the expression of CD34, but the combination of this marker with CD133 and CD90, together with a lack of CD38 and other lineage markers, provides the most homogeneous pool of SCs. Here, we present new and alternative markers for SCs, along with microRNA profiles, for these cells.
Collapse
Affiliation(s)
- Raquel Calloni
- Departamento de Biologia Molecular e Biotecnologia, Centro de Biotecnologia da Universidade Federal do Rio Grande do Sul, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | | | | | | |
Collapse
|
6
|
Mengarelli I, Barberi T. Derivation of multiple cranial tissues and isolation of lens epithelium-like cells from human embryonic stem cells. Stem Cells Transl Med 2013; 2:94-106. [PMID: 23341438 DOI: 10.5966/sctm.2012-0100] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Human embryonic stem cells (hESCs) provide a powerful tool to investigate early events occurring during human embryonic development. In the present study, we induced differentiation of hESCs in conditions that allowed formation of neural and non-neural ectoderm and to a lesser extent mesoderm. These tissues are required for correct specification of the neural plate border, an early embryonic transient structure from which neural crest cells (NCs) and cranial placodes (CPs) originate. Although isolation of CP derivatives from hESCs has not been previously reported, isolation of hESC-derived NC-like cells has been already described. We performed a more detailed analysis of fluorescence-activated cell sorting (FACS)-purified cell populations using the surface antigens previously used to select hESC-derived NC-like cells, p75 and HNK-1, and uncovered their heterogeneous nature. In addition to the NC component, we identified a neural component within these populations using known surface markers, such as CD15 and FORSE1. We have further exploited this information to facilitate the isolation and purification by FACS of a CP derivative, the lens, from differentiating hESCs. Two surface markers expressed on lens cells, c-Met/HGFR and CD44, were used for positive selection of multiple populations with a simultaneous subtraction of the neural/NC component mediated by p75, HNK-1, and CD15. In particular, the c-Met/HGFR allowed early isolation of proliferative lens epithelium-like cells capable of forming lentoid bodies. Isolation of hESC-derived lens cells represents an important step toward the understanding of human lens development and regeneration and the devising of future therapeutic applications.
Collapse
Affiliation(s)
- Isabella Mengarelli
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | | |
Collapse
|
7
|
Liu W, Guo L, He W, Li Q, Sun X. Higher copy number variation and diverse X chromosome inactivation in parthenote-derived human embryonic stem cells. J Reprod Dev 2012; 58:642-8. [PMID: 22813599 DOI: 10.1262/jrd.2012-076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Parthenote-derived human embryonic stem cells (phESCs) have many advantages over conventionally derived human embryonic stem cells (hESCs), but a more thorough investigation of these cells is needed before they can be implemented in cell therapies. In this work, we used a Cytogenetics Whole-Genome Array to study the copy number variation (CNV) status in phESCs and hESCs. We also investigated X chromosome inactivation (XCI) and expression levels of marker genes in these cells. More CNVs were found in phESCs than in hESCs in the present study, and gene expression appeared to be associated with the gain or loss of CNVs. In addition, a variable XCI status and different expression pattern of paternally expressed imprinted gene were also found in phESCs. In conclusion, although phESCs had a similar pluripotent profile to conventionally derived hESCs, these cells differed in imprinted gene expression, XCI status and number of CNVs. Our work highlights the need for a deeper investigation to elucidate the genetic and epigenetic characteristics of these cells.
Collapse
Affiliation(s)
- WeiQiang Liu
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, Experimental Department of Institute of Gynecology and Obstetrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China.
| | | | | | | | | |
Collapse
|
8
|
Gocan AG, Bachg D, Schindler AE, Rohr UD. Managing immunity in resistant cancer patients correlates to survival: results and discussion of a pilot study. Horm Mol Biol Clin Investig 2011; 8:455-69. [PMID: 25961344 DOI: 10.1515/hmbci.2011.122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Accepted: 10/13/2011] [Indexed: 01/07/2023]
Abstract
Many cancer patients do not die due to impaired organ functions, but as a result of reduced general conditions, such as cachexia, sarcopenia, depression, infections, or stress. Reduced general health may be caused by immune modifying cytokines released from the tumor into the body. Improvement of immunity would not only reduce cancer side effects through inhibiting cytokine release from the tumor into the blood, but also, according to a new hypothesis, modify the cancer stem cells (CSC) in the tumor, which are believed to drive cancer growth and metastasis. We reported previously several investigations with a dietary fermented soy formulation (FSWW08) in cancer patients, where we saw a) strong reduction of cancer symptoms, b) broken resistance to chemotherapy, and c) a strong reduction of chemotherapy's toxic side effects, when taken in combination. This publication reports two new findings from a pilot study with postsurgical, treatment resistant patients conducted over four years. First, neither treatment resistance nor side effects were observed. Second, more patients have survived than expected. The improved health and immunity is detected together with increased CSC differentiation, suggesting lower aggressiveness, which was corroborated by increased gene expressions, particularly of steroidal hormones, MAPkinase, NF-κB, and tumor suppressor factor p53, a typical marker of "stemness" or cell differentiation. Although limited by its small, homogenous sample size, the results of this pilot study illustrate the relationship between CSCs differentiation, and the clinical symptoms of immunity, which influence survival outcomes and raise the clinical potential of measuring CSCs in ovarian, prostate, and breast cancers. The improved survival rates are also seen in larger cohort studies, which show similar gene expression profiles, which were induced by FSWW08 in the treatment resistant cancer patients in this study.
Collapse
|
9
|
Angiopoietin-1 promotes endothelial differentiation from embryonic stem cells and induced pluripotent stem cells. Blood 2011; 118:2094-104. [PMID: 21680798 DOI: 10.1182/blood-2010-12-323907] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Angiopoietin-1 (Ang1) plays a crucial role in vascular and hematopoietic development, mainly through its cognate receptor Tie2. However, little is known about the precise role of Ang1 in embryonic stem cell (ESC) differentiation. In the present study, we used COMP-Ang1 (a soluble and potent variant of Ang1) to explore the effect of Ang1 on endothelial and hematopoietic differentiation of mouse ESCs in an OP9 coculture system and found that Ang1 promoted endothelial cell (EC) differentiation from Flk-1(+) mesodermal precursors. This effect mainly occurred through Tie2 signaling and was altered in the presence of soluble Tie2-Fc. We accounted for this Ang1-induced expansion of ECs as enhanced proliferation and survival. Ang1 also had an effect on CD41(+) cells, transient precursors that can differentiate into both endothelial and hematopoietic lineages. Intriguingly, Ang1 induced the preferential differentiation of CD41(+) cells toward ECs instead of hematopoietic cells. This EC expansion promoted by Ang1 was also recapitulated in induced pluripotent stem cells (iPSCs) and human ESCs. We successfully achieved in vivo neovascularization in mice by transplantation of ECs obtained from Ang1-stimulated ESCs. We conclude that Ang1/Tie2 signaling has a pivotal role in ESC-EC differentiation and that this effect can be exploited to expand EC populations.
Collapse
|