1
|
Zhang X, Yan K, Deng L, Liang J, Liang H, Feng D, Ling B. Cyclooxygenase 2 Promotes Proliferation and Invasion in Ovarian Cancer Cells via the PGE2/NF-κB Pathway. Cell Transplant 2019; 28:1S-13S. [PMID: 31822119 PMCID: PMC7016469 DOI: 10.1177/0963689719890597] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Ovarian cancer is the leading cause of death among gynecological malignancies. Cyclooxygenase 2 is widely expressed in various cancer cells and participates in the occurrence and development of tumors by regulating a variety of downstream signaling pathways. However, the function and molecular mechanisms of cyclooxygenase 2 remain unclear in ovarian cancer. Here, we demonstrated that cyclooxygenase 2 was highly expressed in ovarian cancer and the expression level was highly correlated with ovarian tumor grades. Further, ovarian cancer cells with high expression of cyclooxygenase 2 exhibit enhanced proliferation and invasion abilities. Specifically, cyclooxygenase 2 promoted the release of prostaglandin E2 upregulated the phosphorylation levels of phospho-nuclear factor-kappa B p65. Celecoxib, AH6809, and BAY11-7082 all can inhibit the promoting effect of cyclooxygenase 2 on SKOV3 and OVCAR3 cell proliferation and invasion. Besides, celecoxib inhibited SKOV3 cell growth in the xenograft tumor model. These data suggest that high expression of cyclooxygenase 2 promotes the proliferation and invasion of ovarian cancer cells through the prostaglandin E2/nuclear factor-kappa B signaling pathway. Cyclooxygenase 2 may be a potential therapeutic target for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Obstetrics and Gynaecology, China-Japan Friendship Hospital, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, China
| | - Keqin Yan
- Department of Obstetrics and Gynaecology, China-Japan Friendship Hospital, China
| | - Lin Deng
- Department of Obstetrics and Gynaecology, China-Japan Friendship Hospital, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, China
| | - Jing Liang
- Department of Obstetrics and Gynaecology, China-Japan Friendship Hospital, China
| | - Haiyan Liang
- Department of Obstetrics and Gynaecology, China-Japan Friendship Hospital, China
| | - Dingqing Feng
- Department of Obstetrics and Gynaecology, China-Japan Friendship Hospital, China
| | - Bin Ling
- Department of Obstetrics and Gynaecology, China-Japan Friendship Hospital, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, China
| |
Collapse
|
2
|
Analysis of the Mechanisms of Action of Naphthoquinone-Based Anti-Acute Myeloid Leukemia Chemotherapeutics. Molecules 2019; 24:molecules24173121. [PMID: 31466259 PMCID: PMC6749238 DOI: 10.3390/molecules24173121] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 08/24/2019] [Accepted: 08/25/2019] [Indexed: 01/02/2023] Open
Abstract
Acute myeloid leukemia (AML) is a neoplastic disorder resulting from clonal proliferation of poorly differentiated immature myeloid cells. Distinct genetic and epigenetic aberrations are key features of AML that account for its variable response to standard therapy. Irrespective of their oncogenic mutations, AML cells produce elevated levels of reactive oxygen species (ROS). They also alter expression and activity of antioxidant enzymes to promote cell proliferation and survival. Subsequently, selective targeting of redox homeostasis in a molecularly heterogeneous disease, such as AML, has been an appealing approach in the development of novel anti-leukemic chemotherapeutics. Naphthoquinones are able to undergo redox cycling and generate ROS in cancer cells, which have made them excellent candidates for testing against AML cells. In addition to inducing oxidative imbalance in AML cells, depending on their structure, naphthoquinones negatively affect other cellular apparatus causing neoplastic cell death. Here we provide an overview of the anti-AML activities of naphthoquinone derivatives, as well as analysis of their mechanism of action, including induction of reduction-oxidation imbalance, alteration in mitochondrial transmembrane potential, Bcl-2 modulation, initiation of DNA damage, and modulation of MAPK and STAT3 activity, alterations in the unfolded protein response and translocation of FOX-related transcription factors to the nucleus.
Collapse
|
3
|
Zhang Y, Bala V, Mao Z, Chhonker YS, Murry DJ. A concise review of quantification methods for determination of vitamin K in various biological matrices. J Pharm Biomed Anal 2019; 169:133-141. [PMID: 30861405 DOI: 10.1016/j.jpba.2019.03.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 01/31/2019] [Accepted: 03/03/2019] [Indexed: 12/31/2022]
Abstract
Vitamin K is an essential nutrient in the body and involved in numerous physiological and pathophysiological functions. Both the lack and surplus of vitamin K can put human health at risk. Therefore, it becomes necessary to monitor vitamin K concentrations in different biomatrices through establishing sensitive and specific analytical methods. This review collectively describes an updated overview of the sample pretreatment methodologies and methods for quantitative determination of vitamin K that have been used in last two decades. High Performance Liquid Chromatography (HPLC) is commonly utilized as a standard for separation of vitamin K in combination with different detection including spectroscopic, spectrometric, fluorometric and mass spectroscopy. Recent progress in sample pretreatment technologies and quantitation methodologies have enhanced the ability to identify and quantitate vitamin K in biomatrices to further advance our understanding of the role of this vitamin in human health and disease.
Collapse
Affiliation(s)
- Yuning Zhang
- Clinical Pharmacological Laboratory, Department of Pharmacy Practice, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Veenu Bala
- Department of Pharmaceutical Sciences, Mohanlal Sukhadia University, Udaipur, India
| | - Zhihao Mao
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, United States; Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, NE 68198, United States
| | - Yashpal S Chhonker
- Clinical Pharmacological Laboratory, Department of Pharmacy Practice, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Daryl J Murry
- Clinical Pharmacological Laboratory, Department of Pharmacy Practice, University of Nebraska Medical Center, Omaha, NE 68198, United States; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, United States.
| |
Collapse
|
4
|
Sun X, Li Q. Prostaglandin EP2 receptor: Novel therapeutic target for human cancers (Review). Int J Mol Med 2018; 42:1203-1214. [PMID: 29956743 DOI: 10.3892/ijmm.2018.3744] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 06/21/2018] [Indexed: 11/06/2022] Open
Abstract
Prostaglandin E2 (PGE2) receptor 2 subtype (EP2), which is a metabolite of arachidonic acid that binds with and regulates cellular responses to PGE2, is associated with numerous physiological and pathological events in a wide range of tissues. As a stimulatory G protein‑coupled receptor, PGE2‑induced EP2 activation can activate adenylate cyclase, leading to increased cytoplasmic cAMP levels and activation of protein kinase A. The EP2 receptor can also activate the glycogen synthase kinase 3β and β‑catenin pathways. The present study aimed to review the roles of the EP2 receptor in tumor development, including immunity, chronic inflammation, angiogenesis, metastasis and multidrug resistance. Furthermore, the involvement of the EP2 receptor signaling pathway in cancer was discussed. Understanding the role and mechanisms of action of the EP2 receptor, and its importance in targeted therapy, may help identify novel methods to improve management of numerous types of cancer.
Collapse
Affiliation(s)
- Xiaoting Sun
- Department of Medical Oncology and Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Qi Li
- Department of Medical Oncology and Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| |
Collapse
|
5
|
Shehzad A, Islam SU, Ahn EM, Lee YM, Lee YS. Decursinol angelate inhibits PGE2-induced survival of the human leukemia HL-60 cell line via regulation of the EP2 receptor and NFκB pathway. Cancer Biol Ther 2016; 17:985-93. [PMID: 27414656 DOI: 10.1080/15384047.2016.1210740] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Decursinol angelate (DA), an active pyranocoumarin compound from the roots of Angelica gigas, has been reported to possess anti-inflammatory and anti-cancer activities. In a previous study, we demonstrated that prostaglandin E2 (PGE2) plays a survival role in HL-60 cells by protecting them from the induction of apoptosis via oxidative stress. Flow cytometry and Hoechst staining revealed that PGE2 suppresses menadione-induced apoptosis, cell shrinkage, and chromatin condensation, by blocking the generation of reactive oxygen species. Treatment of DA was found to reverse the survival effect of PGE2 as well as restoring the menadione-mediated cleavage of caspase-3, lamin B, and PARP. DA blocked PGE2-induced activation of the EP2 receptor signaling pathway, including the activation of PKA and the phosphorylation of CREB. DA also inhibited PGE2-induced expression of cyclooxygenase-2 and the activation of the Ras/Raf/ Erk pathway, which activates downstream targets for cell survival. Finally, DA greatly reduced the PGE2-induced activation of NF-κB p50 and p65 subunits. These results elucidate a novel mechanism for the regulation of cell survival and apoptosis, and open a gateway for further development and combinatory treatments that can inhibit PGE2 in cancer cells.
Collapse
Affiliation(s)
- Adeeb Shehzad
- a School of Life Sciences , BK21 Plus KNU Creative BioResearch Group, Kyungpook National University , Daegu , Korea.,b Department of Biomedical Engineering and Sciences , SMME, National University of Sciences and Technology , Islamabad , Pakistan
| | - Salman Ul Islam
- a School of Life Sciences , BK21 Plus KNU Creative BioResearch Group, Kyungpook National University , Daegu , Korea
| | - Eun-Mi Ahn
- c Department of Herbal Foodceutical Science , Daegu Haany University , Daegu , Korea
| | - You Mie Lee
- d College of Pharmacy , National Basic Research Laboratory of Vascular Homeostasis Regulation, Kyungpook National University , Daegu , Korea
| | - Young Sup Lee
- a School of Life Sciences , BK21 Plus KNU Creative BioResearch Group, Kyungpook National University , Daegu , Korea
| |
Collapse
|
6
|
Shehzad A, Lee J, Lee YS. Autocrine prostaglandin E₂ signaling promotes promonocytic leukemia cell survival via COX-2 expression and MAPK pathway. BMB Rep 2015; 48:109-14. [PMID: 24965577 PMCID: PMC4352612 DOI: 10.5483/bmbrep.2015.48.2.081] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Indexed: 01/06/2023] Open
Abstract
The COX-2/PGE2 pathway has been implicated in the occurrence and progression of cancer. The underlying mechanisms facilitating the production of COX-2 and its mediator, PGE2, in cancer survival remain unknown. Herein, we investigated PGE2-induced COX-2 expression and signaling in HL-60 cells following menadione treatment. Treatment with PGE2 activated anti-apoptotic proteins such as Bcl-2 and Bcl-xL while reducing pro-apoptotic proteins, thereby enhancing cell survival. PGE2 not only induced COX-2 expression, but also prevented casapse-3, PARP, and lamin B cleavage. Silencing and inhibition of COX-2 with siRNA transfection or treatment with indomethacin led to a pronounced reduction of the extracellular levels of PGE2, and restored the menadione-induced cell death. In addition, pretreatment of cells with the MEK inhibitor PD98059 and the PKA inhibitor H89 abrogated the PGE2-induced expression of COX-2, suggesting involvement of the MAPK and PKA pathways. These results demonstrate that PGE2 signaling acts in an autocrine manner, and specific inhibition of PGE2 will provide a novel approach for the treatment of leukemia. [BMB Reports 2015; 48(2): 109-114]
Collapse
Affiliation(s)
- Adeeb Shehzad
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 702-701, Korea; Department of Biomedical Engineering and Sciences, School of Mechanical & Manufacturing Engineering, National University of Sciences & Technology, Islamabad, Pakistan
| | - Jaetae Lee
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu 700-721, Korea
| | - Young Sup Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu 702-701, Korea
| |
Collapse
|
7
|
Glucotoxic and diabetic conditions induce caspase 6-mediated degradation of nuclear lamin A in human islets, rodent islets and INS-1 832/13 cells. Apoptosis 2015; 19:1691-701. [PMID: 25292013 DOI: 10.1007/s10495-014-1038-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Nuclear lamins form the lamina on the interior surface of the nuclear envelope, and regulate nuclear metabolic events, including DNA replication and organization of chromatin. The current study is aimed at understanding the role of executioner caspase 6 on lamin A integrity in islet β-cells under duress of glucotoxic (20 mM glucose; 24 h) and diabetic conditions. Under glucotoxic conditions, glucose-stimulated insulin secretion and metabolic cell viability were significantly attenuated in INS-1 832/13 cells. Further, exposure of normal human islets, rat islets and INS-1 832/13 cells to glucotoxic conditions leads to caspase 6 activation and lamin A degradation, which is also observed in islets from the Zucker diabetic fatty rat, a model for type 2 diabetes (T2D), and in islets from a human donor with T2D. Z-Val-Glu-Ile-Asp-fluoromethylketone, a specific inhibitor of caspase 6, markedly attenuated high glucose-induced caspase 6 activation and lamin A degradation, confirming that caspase 6 mediates lamin A degradation under high glucose exposure conditions. Moreover, Z-Asp-Glu-Val-Asp-fluoromethylketone, a known caspase 3 inhibitor, significantly inhibited high glucose-induced caspase 6 activation and lamin A degradation, suggesting that activation of caspase 3 might be upstream to caspase 6 activation in the islet β-cell under glucotoxic conditions. Lastly, we report expression of ZMPSTE24, a zinc metallopeptidase involved in the processing of prelamin A to mature lamin A, in INS-1 832/13 cells and human islets; was unaffected by high glucose. We conclude that caspases 3 and 6 could contribute to alterations in the integrity of nuclear lamins leading to metabolic dysregulation and failure of the islet β-cell.
Collapse
|
8
|
Dharmapuri G, Doneti R, Philip GH, Kalle AM. Celecoxib sensitizes imatinib-resistant K562 cells to imatinib by inhibiting MRP1-5, ABCA2 and ABCG2 transporters via Wnt and Ras signaling pathways. Leuk Res 2015; 39:696-701. [PMID: 25916699 DOI: 10.1016/j.leukres.2015.02.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 02/20/2015] [Accepted: 02/24/2015] [Indexed: 12/16/2022]
Abstract
Imatinib mesylate, a tyrosine kinase inhibitor, is very effective in the treatment of chronic myeloid leukemia (CML). However, development of resistance to imatinib therapy is also a very common mechanism observed with long-term administration of the drug. Our previous studies have highlighted the role of cyclooxygenase-2 (COX-2) in regulating the expression of multidrug resistant protein-1 (MDR1), P-gp, in imatinib-resistant K562 cells (IR-K562) via PGE2-cAMP-PKC-NF-κB pathway and inhibition of COX-2 by celecoxib, a COX-2 specific inhibitor, inhibits this pathway and reverses the drug resistance. Studies have identified that not only MDR1 but other ATP-binding cassette transport proteins (ABC transporters) are involved in the development of imatinib resistance. Here, we tried to study the role of COX-2 in the regulation of other ABC transporters such as MRP1, MRP2, MRP3, ABCA2 and ABCG2 that have been already implicated in imatinib resistance development. The results of the study clearly indicated that overexpression of COX-2 lead to upregulation of MRP family proteins in IR-K562 cells and celecoxib down-regulated the ABC transporters through Wnt and MEK signaling pathways. The study signifies that celecoxib in combination with the imatinib can be a good alternate treatment strategy for the reversal of imatinib resistance.
Collapse
Affiliation(s)
- Gangappa Dharmapuri
- Department of Biotechnology, Sri Krishnadevaraya University, Anantapuramu 515003, A.P., India
| | - Ravinder Doneti
- Department of Animal Biology, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Gundala Harold Philip
- Department of Biotechnology, Sri Krishnadevaraya University, Anantapuramu 515003, A.P., India
| | - Arunasree M Kalle
- Department of Animal Biology, University of Hyderabad, Hyderabad 500046, Telangana, India.
| |
Collapse
|
9
|
Liu R, Wang M, Ding L. A novel liquid chromatography-tandem mass spectrometry method for determination of menadione in human plasma after derivatization with 3-mercaptopropionic acid. Talanta 2014; 128:51-7. [PMID: 25059129 DOI: 10.1016/j.talanta.2014.04.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/08/2014] [Accepted: 04/09/2014] [Indexed: 12/13/2022]
Abstract
Menadione (VK3), an essential fat-soluble naphthoquinone, takes very important physiological and pathological roles, but its detection and quantification is challenging. Herein, a new method was developed for quantification of VK3 in human plasma by liquid chromatography-tandem mass spectrometry (LC-MS/MS) after derivatization with 3-mercaptopropionic acid via Michael addition reaction. The derivative had been identified by the mass spectra and the derivatization conditions were optimized by considering different parameters. The method was demonstrated with high sensitivity and a low limit of quantification of 0.03 ng mL(-1) for VK3, which is about 33-fold better than that for the direct analysis of the underivatized compound. The method also had good precision and reproducibility. It was applied in the determination of basal VK3 in human plasma and a clinical pharmacokinetic study of menadiol sodium diphosphate. Furthermore, the method for the quantification of VK3 using LC-MS/MS was reported in this paper for the first time, and it will provide an important strategy for the further research on VK3 and menadione analogs.
Collapse
Affiliation(s)
- Ruijuan Liu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Mengmeng Wang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Li Ding
- Department of Pharmaceutical Analysis, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China.
| |
Collapse
|
10
|
Al-Suhaimi E. Molecular mechanisms of leptin and pro-apoptotic signals induced by menadione in HepG2 cells. Saudi J Biol Sci 2014; 21:582-8. [PMID: 25473367 DOI: 10.1016/j.sjbs.2014.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 03/19/2014] [Accepted: 03/20/2014] [Indexed: 12/18/2022] Open
Abstract
Apoptosis is a significant physiological function in the cell. P(53) is known as tumor suppressor cellular factor, executive caspases are also the most involved pathway for apoptosis. Menadione (VK3) has apoptotic action on many harmful cells, but the molecular role of adipokines is not studied enough in this regard, so the ability of menadione to modify the adipokine (leptin hormone), caspase-3 and P(53) signals to induce its apoptotic action on HepG2 cells was studied. The study revealed that menadione has anti-viability and apoptotic effect at sub-G1 phase of HepG2 cell cycle. Its cytotoxic effect is mediated by molecular mechanisms included: inhibiting leptin expression and level, activating caspase-3 pathway and up-regulating the expression of P(53). Menadione exerts its apoptotic mechanisms in a concentration and time dependent way through ROS generation. In addition to the known apoptotic pathways, the results indicate that suppressing leptin pathway is a significant mechanism for menadione apoptotic effect which made it as a potential therapeutic vitamin in preventing hepatocyte survival and proliferation.
Collapse
Affiliation(s)
- Ebtesam Al-Suhaimi
- Biology Department, College of Sciences, University of Dammam, Dammam, Saudi Arabia
| |
Collapse
|
11
|
Abstract
Curcumin (diferuloylmethane) is the biphenolic active compound of turmeric. Curcumin has been used for hundreds of years to treat various ailments. Curcumin has been reported to exert numerous pharmacological effects by modulating multiple molecular targets including those involved in the pathogenesis of cancer. Cancer has been characterized as the dysregulation of cell signaling pathways through gradual alteration of regulatory proteins and through gene mutation. Curcumin is a highly pleiotropic molecule that modulates several intracellular signaling pathways in cancer. The pleiotropic activities of curcumin have been attributed to its novel molecular structure. Based on its β-diketone moiety, curcumin exists in keto-enol tautomers, and this tautomerism favors interaction and binding with a wide range of enzymes. Several studies have shown modulation of numerous signaling enzymes by curcumin including, LOX, COX-2, XO, proteasomes, Ca(2+)-ATPase of sarcoplasmic reticulum, MMPs, HAT, HDAC, DNMT1, DNA polymerase λ, ribonucleases, GloI, protein kinases (PKA, PKB, PKC, v-Src, GSK-3β, ErbB2), protein reductases (TrxR1, AR), GSH, ICDHs, peroxidases (Prx1, Prx2, Prx6) by treatment with curcumin. Various biophysical analyses have been reported, which shows the underlying molecular interaction of curcumin with multiple targets in terms of binding affinities. The current chapter describes how curcumin binds and modulates multiple enzymes involved cancer. Published clinical trial studies with curcumin in cancer management will also be discussed.
Collapse
Affiliation(s)
- Adeeb Shehzad
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - Raheem Shahzad
- School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, Republic of Korea
| | - Young Sup Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea.
| |
Collapse
|
12
|
Watmuff B, Hartley BJ, Hunt CP, Pouton CW, Haynes JM. Pluripotent stem cell-derived dopaminergic neurons as models of neurodegeneration. FUTURE NEUROLOGY 2013. [DOI: 10.2217/fnl.13.50] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Researchers utilize a number of models of Parkinson’s disease ranging in complexity from immortalized cell lines to nonhuman primates. These models are used to investigate everything from the mechanisms underlying neurodegeneration, to drugs that may improve patient outcomes. Each model system has advantages and disadvantages, depending on their application. In this review, the authors assess the potential value of embryonic stem and induced-pluripotent stem cells as additions to the crowded Parkinson’s disease in vitro model landscape.
Collapse
Affiliation(s)
- Bradley Watmuff
- Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Brigham Jay Hartley
- Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Cameron Philip Hunt
- Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Colin William Pouton
- Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - John Michael Haynes
- Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, Victoria 3052, Australia
| |
Collapse
|
13
|
Curcumin induces radiosensitivity of in vitro and in vivo cancer models by modulating pre-mRNA processing factor 4 (Prp4). Chem Biol Interact 2013; 206:394-402. [PMID: 24144778 DOI: 10.1016/j.cbi.2013.10.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 09/20/2013] [Accepted: 10/08/2013] [Indexed: 12/21/2022]
Abstract
Radiation therapy plays a central role in adjuvant strategies for the treatment of both pre- and post-operative human cancers. However, radiation therapy has low efficacy against cancer cells displaying radio-resistant phenotypes. Ionizing radiation has been shown to enhance ROS generation, which mediates apoptotic cell death. Further, concomitant use of sensitizers with radiation improves the efficiency of radiotherapy against a variety of human cancers. Here, the radio-sensitizing effect of curcumin (a derivative of turmeric) was investigated against growth of HCT-15 cells and tumor induction in C57BL/6J mice. Ionizing radiation induced apoptosis through ROS generation and down-regulation of Prp4K, which was further potentiated by curcumin treatment. Flow cytometry revealed a dose-dependent response for radiation-induced cell death, which was remarkably reversed by transfection of cells with Prp4K clone. Over-expression of Prp4K resulted in a significant decrease in ROS production possibly through activation of an anti-oxidant enzyme system. To elucidate an integrated mechanism, Prp4K knockdown by siRNA ultimately restored radiation-induced ROS generation. Furthermore, B16F10 xenografts in C57BL/6J mice were established in order to investigate the radio-sensitizing effect of curcumin in vivo. Curcumin significantly enhanced the efficacy of radiation therapy and reduced tumor growth as compared to control or radiation alone. Collectively, these results suggest a novel mechanism for curcumin-mediated radio-sensitization of cancer based on ROS generation and down-regulation of Prp4K.
Collapse
|