1
|
Hu L, Chen W, Qian A, Li YP. Wnt/β-catenin signaling components and mechanisms in bone formation, homeostasis, and disease. Bone Res 2024; 12:39. [PMID: 38987555 PMCID: PMC11237130 DOI: 10.1038/s41413-024-00342-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 04/27/2024] [Accepted: 05/12/2024] [Indexed: 07/12/2024] Open
Abstract
Wnts are secreted, lipid-modified proteins that bind to different receptors on the cell surface to activate canonical or non-canonical Wnt signaling pathways, which control various biological processes throughout embryonic development and adult life. Aberrant Wnt signaling pathway underlies a wide range of human disease pathogeneses. In this review, we provide an update of Wnt/β-catenin signaling components and mechanisms in bone formation, homeostasis, and diseases. The Wnt proteins, receptors, activators, inhibitors, and the crosstalk of Wnt signaling pathways with other signaling pathways are summarized and discussed. We mainly review Wnt signaling functions in bone formation, homeostasis, and related diseases, and summarize mouse models carrying genetic modifications of Wnt signaling components. Moreover, the therapeutic strategies for treating bone diseases by targeting Wnt signaling, including the extracellular molecules, cytosol components, and nuclear components of Wnt signaling are reviewed. In summary, this paper reviews our current understanding of the mechanisms by which Wnt signaling regulates bone formation, homeostasis, and the efforts targeting Wnt signaling for treating bone diseases. Finally, the paper evaluates the important questions in Wnt signaling to be further explored based on the progress of new biological analytical technologies.
Collapse
Affiliation(s)
- Lifang Hu
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Wei Chen
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Airong Qian
- Laboratory for Bone Metabolism, Xi'an Key Laboratory of Special Medicine and Health Engineering, Key Laboratory for Space Biosciences and Biotechnology, Research Center for Special Medicine and Health Systems Engineering, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China.
| | - Yi-Ping Li
- Division in Cellular and Molecular Medicine, Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
2
|
Chwastek J, Kędziora M, Borczyk M, Korostyński M, Starowicz K. Inflammation-Driven Secretion Potential Is Upregulated in Osteoarthritic Fibroblast-Like Synoviocytes. Int J Mol Sci 2022; 23:ijms231911817. [PMID: 36233118 PMCID: PMC9570304 DOI: 10.3390/ijms231911817] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/24/2022] [Accepted: 09/30/2022] [Indexed: 11/25/2022] Open
Abstract
Osteoarthritis (OA) is one of the most common joint pathologies and a major cause of disability among the population of developed countries. It manifests as a gradual degeneration of the cartilage and subchondral part of the bone, leading to joint damage. Recent studies indicate that not only the cells that make up the articular cartilage but also the synoviocytes, which build the membrane surrounding the joint, contribute to the development of OA. Therefore, the aim of the study was to determine the response to inflammatory factors of osteoarthritic synoviocytes and to identify proteins secreted by them that may influence the progression of OA. This study demonstrated that fibroblast-like synoviocytes of OA patients (FLS-OA) respond more strongly to pro-inflammatory stimulation than cells obtained from control patients (FLS). These changes were observed at the transcriptome level and subsequently confirmed by protein analysis. FLS-OA stimulated by pro-inflammatory factors [such as lipopolysaccharide (LPS) and tumor necrosis factor alpha (TNFα) were shown to secrete significantly more chemokines (CXCL6, CXCL10, and CXCL16) and growth factors [angiopoietin-like protein 1 (ANGPTL1), fibroblast growth factor 5 (FGF5), and insulin-like growth factor 2 (IGF2)] than control cells. Moreover, the translation of proteolytic enzymes [matrix metalloprotease 3 (MMP3), cathepsin K (CTSK), and cathepsin S (CTSS)] by FLS-OA is increased under inflammatory conditions. Our data indicate that the FLS of OA patients are functionally altered, resulting in an enhanced response to the presence of pro-inflammatory factors in the environment, manifested by the increased production of the previously mentioned proteins, which may promote further disease progression.
Collapse
Affiliation(s)
- Jakub Chwastek
- Department of Neurochemistry, Maj Institute of Pharmacology Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Marta Kędziora
- Department of Neurochemistry, Maj Institute of Pharmacology Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Małgorzata Borczyk
- Laboratory of Pharmacogenomics, Department of Molecular Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Michał Korostyński
- Laboratory of Pharmacogenomics, Department of Molecular Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 31-343 Krakow, Poland
| | - Katarzyna Starowicz
- Department of Neurochemistry, Maj Institute of Pharmacology Polish Academy of Sciences, 31-343 Krakow, Poland
- Correspondence:
| |
Collapse
|
3
|
Boffa A, Merli G, Andriolo L, Lattermann C, Salzmann GM, Filardo G. Synovial Fluid Biomarkers in Knee Osteoarthritis: A Systematic Review and Quantitative Evaluation Using BIPEDs Criteria. Cartilage 2021; 13:82S-103S. [PMID: 32713185 PMCID: PMC8808867 DOI: 10.1177/1947603520942941] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE The aim of this systematic review was to analyze the evidence about the efficacy of the several synovial fluid (SF) biomarkers proposed for knee osteoarthritis (OA), categorizing them by both molecular characteristics and clinical use according to the BIPEDs criteria, to provide a comprehensive and structured overview of the current literature. DESIGN A systematic review was performed in May 2020 on PubMed, Cochrane Library, and Embase databases about SF biomarkers in patients with knee OA. The search was limited to articles in the last 20 years on human studies, involving patients with knee OA, reporting SF biomarkers. The evidence for each selected SF biomarker was quantified according to the 6 categories of BIPEDs classification. RESULTS A total of 159 articles were included in the qualitative data synthesis and 201 different SF biomarkers were identified. Among these, several were investigated multiple times in different articles, for a total of 373 analyses. The studies included 13,557 patients with knee OA. The most promising SF biomarkers were C4S, IL-6, IL-8, Leptin, MMP-1/3, TIMP-1, TNF-α, and VEGF. The "burden of disease" and "diagnostic" categories were the most represented with 132 and 106 different biomarkers, respectively. CONCLUSIONS The systematic review identified numerous SF biomarkers. However, despite the high number of studies on the plethora of identified molecules, the evidence about the efficacy of each biomarker is supported by limited and often conflicting findings. Further research efforts are needed to improve the understanding of SF biomarkers for a better management of patients with knee OA.
Collapse
Affiliation(s)
- Angelo Boffa
- Clinica Ortopedica e Traumatologica 2,
IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Giulia Merli
- Applied and Translational Research (ATR)
Center, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Luca Andriolo
- Clinica Ortopedica e Traumatologica 2,
IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Christian Lattermann
- Department of Orthopaedic Surgery,
Center for Cartilage Repair and Sports Medicine, Brigham and Women’s Hospital,
Harvard Medical School, Chestnut Hill, MA, USA
| | - Gian M. Salzmann
- Department of Orthopaedic Surgery, Hip
and Knee Department, Schulthess Clinic, Zürich, Switzerland
| | - Giuseppe Filardo
- Applied and Translational Research (ATR)
Center, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
4
|
Convill JG, Tawy GF, Freemont AJ, Biant LC. Clinically Relevant Molecular Biomarkers for Use in Human Knee Osteoarthritis: A Systematic Review. Cartilage 2021; 13:1511S-1531S. [PMID: 32680434 PMCID: PMC8808945 DOI: 10.1177/1947603520941239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVE Biomarkers in osteoarthritis (OA) could serve as objective clinical indicators for various disease parameters, and act as surrogate endpoints in clinical trials for disease-modifying drugs. The aim of this systematic review was to produce a comprehensive list of candidate molecular biomarkers for knee OA after the 2013 ESCEO review and discern whether any have been studied in sufficient detail for use in clinical settings. DESIGN MEDLINE and Embase databases were searched between August 2013 and May 2018 using the keywords "knee osteoarthritis," "osteoarthritis," and "biomarker." Studies were screened by title, abstract, and full text. Human studies on knee OA that were published in the English language were included. Excluded were studies on genetic/imaging/cellular markers, studies on participants with secondary OA, and publications that were review/abstract-only. Study quality and bias were assessed. Statistically significant data regarding the relationship between a biomarker and a disease parameter were extracted. RESULTS A total of 80 studies were included in the final review and 89 statistically significant individual molecular biomarkers were identified. C-telopeptide of type II collagen (CTXII) was shown to predict progression of knee OA in urine and serum in multiple studies. Synovial fluid vascular endothelial growth factor concentration was reported by 2 studies to be predictive of knee OA progression. CONCLUSION Despite the clear need for biomarkers of OA, the lack of coordination in current research has led to incompatible results. As such, there is yet to be a suitable biomarker to be used in a clinical setting.
Collapse
Affiliation(s)
- James G Convill
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Gwenllian F Tawy
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Anthony J Freemont
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Leela C Biant
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
5
|
Hartley A, Gregson CL, Paternoster L, Tobias JH. Osteoarthritis: Insights Offered by the Study of Bone Mass Genetics. Curr Osteoporos Rep 2021; 19:115-122. [PMID: 33538965 PMCID: PMC8016765 DOI: 10.1007/s11914-021-00655-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/19/2021] [Indexed: 11/21/2022]
Abstract
PURPOSE OF REVIEW This paper reviews how bone genetics has contributed to our understanding of the pathogenesis of osteoarthritis. As well as identifying specific genetic mechanisms involved in osteoporosis which also contribute to osteoarthritis, we review whether bone mineral density (BMD) plays a causal role in OA development. RECENT FINDINGS We examined whether those genetically predisposed to elevated BMD are at increased risk of developing OA, using our high bone mass (HBM) cohort. HBM individuals were found to have a greater prevalence of OA compared with family controls and greater development of radiographic features of OA over 8 years, with predominantly osteophytic OA. Initial Mendelian randomisation analysis provided additional support for a causal effect of increased BMD on increased OA risk. In contrast, more recent investigation estimates this relationship to be bi-directional. However, both these findings could be explained instead by shared biological pathways. Pathways which contribute to BMD appear to play an important role in OA development, likely reflecting shared common mechanisms as opposed to a causal effect of raised BMD on OA. Studies in HBM individuals suggest this reflects an important role of mechanisms involved in bone formation in OA development; however further work is required to establish whether the same applies to more common forms of OA within the general population.
Collapse
Affiliation(s)
- A Hartley
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- MRC Integrated Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK
| | - C L Gregson
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- MRC Integrated Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK
| | - L Paternoster
- MRC Integrated Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK
| | - J H Tobias
- Musculoskeletal Research Unit, Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK.
- MRC Integrated Epidemiology Unit, Bristol Medical School, University of Bristol, Bristol, UK.
| |
Collapse
|
6
|
Ibrahim NH, Abdel-Monem SM, Elbarashy AWSE, Elhussieny HAW, Elsayed RAH. Study of serum and synovial fluid Dickkopf-1 levels in patients with primary osteoarthritis of the knee joint in correlation with disease activity and severity. EGYPTIAN RHEUMATOLOGY AND REHABILITATION 2020. [DOI: 10.1186/s43166-020-00019-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Osteoarthritis (OA) is a typical complex degenerative articular ailment that shows focal cartilage loss, new bone formation with involvement of entire joint tissues. Dkk-1 assumes a job in controlling the pattern of bone repair and regeneration in both OA and RA. This study aimed to determine serum and synovial fluid levels of Dickkopf-1 (Dkk-1) in patients with primary OA of the knee joint and study their correlations with disease activity and severity. This study included 45 patients, 30 of them were diagnosed as primary knee OA. Fifteen rheumatoid arthritis patients as well as 15 healthy subjects were enrolled in the study as control groups, serum and synovial levels of Dkk-1 were estimated utilizing the ELISA technique.
Results
Serum levels of Dkk-1 were significantly higher in OA patients than healthy subjects (p < 0.001), although it was even significantly higher in RA patients than OA patients (p < 0.001). There was a highly significant decrease in the median synovial level of Dkk-1 in OA patients compared to the RA control group (p < 0.001). There was a highly statistically significant inverse correlation between circulating as well as synovial fluid Dkk-1 levels and radiological disease grading in knee OA (p < 0.001). There was a statistically significant decrease in serum levels of Dkk-1 in patients with severe OA (grade 3, 4) compared to those with mild OA (Grade 2) (p < 0.001).
Conclusion
Dkk-1 is an interesting marker that is related to articular disease .It could play an important role in decelerating the degenerative process of OA and can reflects radiographic severity of the disease as well.
Collapse
|
7
|
Investigating correlation between self-reported clinical manifestation and synovial fluid and blood levels of Dickkopf-1 and sclerostin in patients with primary knee osteoarthritis. Clin Rheumatol 2020; 39:3889-3891. [DOI: 10.1007/s10067-020-05303-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 06/22/2020] [Accepted: 07/20/2020] [Indexed: 11/25/2022]
|
8
|
Tian J, Gao SG, Li YS, Cheng C, Deng ZH, Luo W, Zhang FJ. The β-catenin/TCF-4 pathway regulates the expression of OPN in human osteoarthritic chondrocytes. J Orthop Surg Res 2020; 15:344. [PMID: 32819387 PMCID: PMC7441722 DOI: 10.1186/s13018-020-01881-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 08/11/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Cartilage destruction is the main characteristic of osteoarthritis (OA), and osteopontin (OPN) is elevated in OA articular cartilage; however, the reason for the increased OPN level is not determined. In addition, Wnt/β-catenin signaling participates in the progression of OA. The aim of the present study was to evaluate whether canonical Wnt signaling could regulate the expression of OPN in human chondrocytes in vitro. METHODS Human chondrocytes were cultured in vitro, and we first assayed the mRNA levels of OPN and β-catenin in chondrocytes. Next, we performed transient transfection of TCF 4 shRNA into chondrocytes to inhibit TCF 4 expression and explore changes in the OPN level. Then, the Wnt/β-catenin signaling inhibitor Dickkopf-1 (Dkk-1) was incubated with chondrocytes, and we assayed the changes in β-catenin and OPN. RESULTS Our results showed that the expression of both β-catenin and OPN was increased in OA chondrocytes, but there were no correlations between β-catenin and OPN expression. TCF4 shRNA downregulated the expression of TCF 4 and OPN in chondrocytes, while after treatment with rDKK-1 at a concentration of 400 ng/ml for 24 h, the mRNA and protein expression of both β-catenin and OPN was significantly decreased in chondrocytes. CONCLUSIONS Elevated OPN expression might be regulated by the β-catenin/TCF-4 pathway, and the Wnt/β-catenin inhibitor DKK1 could inhibit the expression of β-catenin and OPN in OA chondrocytes.
Collapse
Affiliation(s)
- Jian Tian
- Department of Orthopaedics, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Shu-Guang Gao
- Department of Orthopaedics, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China.
| | - Yu-Sheng Li
- Department of Orthopaedics, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Chao Cheng
- Department of Orthopaedics, Yiyang Central Hospital, Clinical Medical Technology Demonstration Base for Minimally Invasive and Digital Orthopaedics in Hunan Province, No.118 North KangFu Road, Yiyang, 413000, Hunan, China
| | - Zhen-Han Deng
- Department of Sports Medicine, The First Hospital Affiliated to Shenzhen University, Shenzhen Second People's Hospital, Shenzhen, 518035, Guangdong, China
| | - Wei Luo
- Department of Orthopaedics, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China
| | - Fang-Jie Zhang
- Department of Emergency Medicine, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, Hunan, China.
| |
Collapse
|
9
|
Pathogenesis of Osteoarthritis: Risk Factors, Regulatory Pathways in Chondrocytes, and Experimental Models. BIOLOGY 2020; 9:biology9080194. [PMID: 32751156 PMCID: PMC7464998 DOI: 10.3390/biology9080194] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/24/2020] [Accepted: 07/24/2020] [Indexed: 12/28/2022]
Abstract
As the most common chronic degenerative joint disease, osteoarthritis (OA) is the leading cause of pain and physical disability, affecting millions of people worldwide. Mainly characterized by articular cartilage degradation, osteophyte formation, subchondral bone remodeling, and synovial inflammation, OA is a heterogeneous disease that impacts all component tissues of the articular joint organ. Pathological changes, and thus symptoms, vary from person to person, underscoring the critical need of personalized therapies. However, there has only been limited progress towards the prevention and treatment of OA, and there are no approved effective disease-modifying osteoarthritis drugs (DMOADs). Conventional treatments, including non-steroidal anti-inflammatory drugs (NSAIDs) and physical therapy, are still the major remedies to manage the symptoms until the need for total joint replacement. In this review, we provide an update of the known OA risk factors and relevant mechanisms of action. In addition, given that the lack of biologically relevant models to recapitulate human OA pathogenesis represents one of the major roadblocks in developing DMOADs, we discuss current in vivo and in vitro experimental OA models, with special emphasis on recent development and application potential of human cell-derived microphysiological tissue chip platforms.
Collapse
|
10
|
Expression of Dickkopf-related Protein 1 in Patients with Temporomandibular Osteoarthritis after Treatment with Hyaluronic Acid. Curr Med Sci 2020; 40:574-579. [DOI: 10.1007/s11596-020-2215-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 12/10/2019] [Indexed: 10/23/2022]
|
11
|
Nagy EE, Nagy-Finna C, Popoviciu H, Kovács B. Soluble Biomarkers of Osteoporosis and Osteoarthritis, from Pathway Mapping to Clinical Trials: An Update. Clin Interv Aging 2020; 15:501-518. [PMID: 32308378 PMCID: PMC7152733 DOI: 10.2147/cia.s242288] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/02/2020] [Indexed: 12/20/2022] Open
Abstract
Serum biomarkers of osteoarticular diseases have been in the limelight of current clinical research trends. Laboratory validation of defined and candidate biomarkers for both osteoarthritis and osteoporosis is of key importance for future decisional algorithms in the diagnosis, monitoring, and prognosis of these diseases. The current guidelines recommend the use of collagen degradation remnants, eg, CTX-I and CTX-II, in the complementary diagnosis of both osteoporosis and osteoarthritis. Besides the collagen degradation markers, enzymes that regulate bone and articular metabolism are useful in the clinical evaluation of osteoarticular pathologies. Along these, several other recommended and new nominee molecules have been recently studied. Wnts and Wnt-related molecules have a cardinal role in the bone-joint homeostasis, making them a promising target not only for pharmaceutical modulation, but also to be considered as soluble biomarkers. Sclerostin and dickkopf, two inhibitor molecules of the Wnt/β-catenin signaling, might have a dual role in the assessment of the clinical manifestations of the osteoarticular unit. In osteoarthritis, besides fragments of collagen type II many pathway-related molecules have been studied and proposed for biomarker validation. The most serious limitation is that a significant proportion of studies lack statistical power due to the reduced number of cases enrolled. Serum biomarkers of bone and joint turnover markers represent an encouraging possibility for the diagnosis and prognosis of osteoarticular diseases, although further studies and laboratory validations should be carried out as to solely rely on them.
Collapse
Affiliation(s)
- Előd Ernő Nagy
- Department of Biochemistry and Environmental Chemistry, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, Târgu Mureș, Romania
| | - Csilla Nagy-Finna
- Department of Biochemistry and Environmental Chemistry, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, Târgu Mureș, Romania
- Department M4, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, Târgu Mureș, Romania; Rheumatology Clinic, Clinical Emergency Hospital, Târgu Mureș, Romania
| | - Horațiu Popoviciu
- Department M4, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, Târgu Mureș, Romania; Rheumatology Clinic, Clinical Emergency Hospital, Târgu Mureș, Romania
| | - Béla Kovács
- Department of Biochemistry and Environmental Chemistry, George Emil Palade University of Medicine, Pharmacy, Science and Technology of Târgu Mureș, Târgu Mureș, Romania
| |
Collapse
|
12
|
Huang J, Chen C, Liang C, Luo P, Xia G, Zhang L, Wang X, Wen Z, Cao X, Wu S. Dysregulation of the Wnt Signaling Pathway and Synovial Stem Cell Dysfunction in Osteoarthritis Development. Stem Cells Dev 2020; 29:401-413. [PMID: 31964233 DOI: 10.1089/scd.2019.0260] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Stem cell dysfunction and failure have been found in joints afflicted by osteoarthritis (OA). However, the exact factors in the OA microenvironment that impair stem cell functions and the role of stem cell dysfunction in OA development have not been fully clarified. In this study, we evaluated the functional status of synovial mesenchymal stem cells (SMSCs) from OA patients and explored the influence of OA-SMSCs on cartilage degradation in a rat model. We then screened 138 Wnt signaling-related genes in the synovium of OA patients, focusing on the effects of five WNT ligands on SMSC functions. The OA synovium showed mild hyperplasia, and we found a large number of CD90+/CD105+ stem cells in synovial hyperplasia. The OA-SMSCs revealed a cellular senescence phenotype, with decreased proliferation and chondrogenic capacity, accompanied by enhanced migration, proinflammatory and matrix degradation activities. The intra-articular transplantation of these OA-SMSCs significantly aggravated the degradation and destruction of the articular cartilage. Of 138 Wnt signaling genes, the expression of 86 genes was consistently altered in the OA synovium, among which the increased expression of DVL2, WNT10A, and DKK3 was the most marked. In general, we found that canonical Wnt/β-catenin pathways were inhibited in the OA synovium, whereas noncanonical PCP and Wnt/Ca2+ pathways were activated. In vitro, WNT10A had an obvious antisenescence effect on SMSCs. WNT5B significantly inhibited the chondrogenic differentiation of SMSCs, and WNT10A and WNT5A increased the expression of inflammatory cytokines in SMSCs. In a rat model, WNT5A significantly aggravated joint degeneration, whereas WNT10A had a mild protective effect on cartilage integrity. In conclusion, stem cells in the OA synovium were functionally abnormal and promoted the development of OA, whereas dysregulation of the Wnt signaling pathway revealed a comprehensive influence on SMSC functions and cartilage degradation.
Collapse
Affiliation(s)
- Junjie Huang
- Department of Orthopaedics, The 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Chuanshun Chen
- Department of Orthopaedics, The 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Chi Liang
- Department of Orthopaedics, The 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Pan Luo
- Department of Orthopaedics, The 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Guang Xia
- Department of Orthopaedics, The 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Lina Zhang
- Department of Orthopaedics, The 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Xinxing Wang
- Department of Orthopaedics, The 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Zi Wen
- Department of Orthopaedics, The 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Xu Cao
- Department of Orthopaedics, The 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Song Wu
- Department of Orthopaedics, The 3rd Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
13
|
Mesenchymal stem cell senescence alleviates their intrinsic and seno-suppressive paracrine properties contributing to osteoarthritis development. Aging (Albany NY) 2019; 11:9128-9146. [PMID: 31644429 PMCID: PMC6834426 DOI: 10.18632/aging.102379] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/14/2019] [Indexed: 12/21/2022]
Abstract
Tissue accumulation of p16INK4a-positive senescent cells is associated with age-related disorders, such as osteoarthritis (OA). These cell-cycle arrested cells affect tissue function through a specific secretory phenotype. The links between OA onset and senescence remain poorly described. Using experimental OA protocol and transgenic Cdkn2a+/luc and Cdkn2aluc/luc mice, we found that the senescence-driving p16INK4a is a marker of the disease, expressed by the synovial tissue, but is also an actor: its somatic deletion partially protects against cartilage degeneration. We test whether by becoming senescent, the mesenchymal stromal/stem cells (MSCs), found in the synovial tissue and sub-chondral bone marrow, can contribute to OA development. We established an in vitro p16INK4a-positive senescence model on human MSCs. Upon senescence induction, their intrinsic stem cell properties are altered. When co-cultured with OA chondrocytes, senescent MSC show also a seno-suppressive properties impairment favoring tissue degeneration. To evaluate in vivo the effects of p16INK4a-senescent MSC on healthy cartilage, we rely on the SAMP8 mouse model of accelerated senescence that develops spontaneous OA. MSCs isolated from these mice expressed p16INK4a. Intra-articular injection in 2-month-old C57BL/6JRj male mice of SAMP8-derived MSCs was sufficient to induce articular cartilage breakdown. Our findings reveal that senescent p16INK4a-positive MSCs contribute to joint alteration.
Collapse
|