1
|
Wang P, Ma T. Production of Bioactive Peptides from Tartary Buckwheat by Solid-State Fermentation with Lactiplantibacillus plantarum ATCC 14917. Foods 2024; 13:3204. [PMID: 39410237 PMCID: PMC11475031 DOI: 10.3390/foods13193204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/21/2024] [Accepted: 09/21/2024] [Indexed: 10/20/2024] Open
Abstract
Buckwheat is a valuable crop that contains various nutrients and functional components. Tartary buckwheat peptide is a protease-hydrolyzed protein with a wide range of physiological functions. Tartary buckwheat peptide produced through microbial fermentation can decrease the enzymatic digestion of buckwheat protein, which contributes to the bitter taste, and improve both the flavor and texture of buckwheat peptide products. In this study, microbial fermentation using probiotics was employed to prepare Tartary buckwheat peptides, and the preparation process was optimized. Based on single-factor experiments, the polypeptide content in the fermentation solution initially increased and then decreased with varying water content, inoculum concentration, glucose addition, fermentation temperature, fermentation time, and potassium dihydrogen phosphate addition. According to the response surface methodology, the maximum peptide content was achieved under fermentation conditions of 60.0% moisture content, 12.87% inoculum ratio, 2.0% glucose, and a fermentation temperature of 30.0 °C, with an actual value of (22.18 ± 1.02) mg/mL. The results show that fermentation with Lactiplantibacillus plantarum produces higher peptide levels and is safer than other microbial fermentation methods.
Collapse
Affiliation(s)
| | - Tingjun Ma
- College of Food Science and Engineering, Beijing University of Agriculture, Beijing 102206, China;
| |
Collapse
|
2
|
de Albuquerque Mendes MK, dos Santos Oliveira CB, da Silva Medeiros CM, Dantas C, Carrilho E, de Araujo Nogueira AR, Lopes Júnior CA, Vieira EC. Application of experimental design as a statistical approach to recover bioactive peptides from different food sources. Food Sci Biotechnol 2024; 33:1559-1583. [PMID: 38623435 PMCID: PMC11016049 DOI: 10.1007/s10068-024-01540-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/12/2024] [Accepted: 02/06/2024] [Indexed: 04/17/2024] Open
Abstract
Bioactive peptides (BAPs) derived from samples of animals and plants have been widely recommended and consumed for their beneficial properties to human health and to control several diseases. This work presents the applications of experimental designs (DoE) used to perform factor screening and/or optimization focused on finding the ideal hydrolysis condition to obtain BAPs with specific biological activities. The collection and discussion of articles revealed that Box Behnken Desing and Central Composite Design were the most used. The main parameters evaluated were pH, time, temperature and enzyme/substrate ratio. Among vegetable protein sources, soy was the most used in the generation of BAPs, and among animal proteins, milk and shrimp stood out as the most explored sources. The degree of hydrolysis and antioxidant activity were the most investigated responses in obtaining BAPs. This review brings new information that helps researchers apply these DoE to obtain high-quality BAPs with the desired biological activities.
Collapse
Affiliation(s)
| | | | | | - Clecio Dantas
- Departamento de Química, Universidade Estadual do Maranhão – UEMA, P.O. Box, 65604-380, Caxias, MA Brazil
| | - Emanuel Carrilho
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP 13566-590 Brazil
| | | | - Cícero Alves Lopes Júnior
- Departamento de Química, Universidade Federal do Piauí – UFPI, P.O. Box 64049-550, Teresina, PI Brazil
| | - Edivan Carvalho Vieira
- Departamento de Química, Universidade Federal do Piauí – UFPI, P.O. Box 64049-550, Teresina, PI Brazil
| |
Collapse
|
3
|
Hu Y, Ni C, Wang Y, Yu X, Wu H, Tu J, Li C, Xiao Z, Wen L. Research Progress on the Preparation and Function of Antioxidant Peptides from Walnuts. Int J Mol Sci 2023; 24:14853. [PMID: 37834300 PMCID: PMC10573205 DOI: 10.3390/ijms241914853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/28/2023] [Accepted: 10/01/2023] [Indexed: 10/15/2023] Open
Abstract
Food-derived peptides have good antioxidant activity and are highly safe for humans; consequently, there has been continuous growth in research on antioxidants, with potential applications in food, medicine, cosmetics, and other fields. Among food-derived peptides, walnut-derived peptides have attracted increasing attention as food-derived peptides rich in eight essential amino acids. This review summarizes the progress made in the development and identification of antioxidant peptides in walnut proteins. This article mainly describes the interaction between reactive oxygen species and cellular antioxidant products, modulation of enzyme content and activity, and regulation of the redox signaling pathways and analyzes the mechanisms of reduction in oxidative stress. Finally, the complex structure-activity relationships of walnut-derived peptides are analyzed based on their amino acid composition and secondary structure of the polypeptides. This review provides a theoretical basis for the production of walnut-derived antioxidant peptides and could help promote the development of the walnut industry.
Collapse
Affiliation(s)
- Yuxi Hu
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China (H.W.)
| | - Ce Ni
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China (H.W.)
| | - Yingying Wang
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China (H.W.)
| | - Xun Yu
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China (H.W.)
| | - Hao Wu
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China (H.W.)
| | - Jia Tu
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Changzhu Li
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, China
| | - Zhihong Xiao
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, China
| | - Li Wen
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China (H.W.)
| |
Collapse
|
4
|
Wang Y, Tan B, Chen C, Zhang X, Sun X. The phenolic profile of walnut meal protein isolate and interaction of phenolics with walnut protein. Food Res Int 2023; 170:113042. [PMID: 37316028 DOI: 10.1016/j.foodres.2023.113042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 06/16/2023]
Abstract
The aim of this study was to interpret the interaction of phenolics with walnut protein and determine their effects on protein functional properties. The phenolic profiles of walnut meal (WM) and walnut meal protein isolate (WMPI) were established using UPLC-Q-TOF-MS. A total of 132 phenolic compounds were detected, including 104 phenolic acids and 28 flavonoids. Phenolic compounds bound to protein via hydrophobic interactions, hydrogen bonds, and ionic bonds were identified in WMPI. They were also present as free forms, but the hydrophobic interactions and hydrogen bonds were the main non-covalent binding forces between phenolics and walnut proteins. The interaction mechanisms were further supported by the fluorescence spectra of WMPI with ellagic acid and quercitrin. In addition, changes in the functional properties of WMPI after removal of phenolic compounds were evaluated. Dephenolization significantly increased water holding capacity, oil absorptive capacity, foaming capacity, foaming stability, emulsifying stability index, and the in vitro gastric digestibility. However, in vitro gastric-intestinal digestibility was not significantly affected. These results provide insights into the interactions between walnut protein and phenolics, which indicates potential strategies for removing phenolics from walnut protein.
Collapse
Affiliation(s)
- Yuxi Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Bing Tan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Chi Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China
| | - Xudong Zhang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, PR China; Yunnan Morre Garden Biotechnology Development CO., LTD., Chuxiong 675000, PR China
| | - Xiangjun Sun
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, PR China.
| |
Collapse
|
5
|
Production of value-added peptides from agro-industrial residues by solid-state fermentation with a new thermophilic protease-producing strain. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
6
|
Sari TP, Sirohi R, Krishania M, Bhoj S, Samtiya M, Duggal M, Kumar D, Badgujar PC. Critical overview of biorefinery approaches for valorization of protein rich tree nut oil industry by-product. BIORESOURCE TECHNOLOGY 2022; 362:127775. [PMID: 35964919 DOI: 10.1016/j.biortech.2022.127775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
This review explores reutilization opportunities of protein-rich bio-waste derived from the major tree nuts (almonds, walnuts, and cashew nuts) oil processing industries through biorefinery strategies. The mechanically pressed out oil cakes of these nuts have high protein (45-55%), carbohydrate (30-35%), and fiber that could be utilized to produce bioactive peptides, biofuels, and dietary fiber, respectively; all of which can fetch substantially greater value than its current utilization as a cattle feed. Specific attention has been given to the production, characterization, and application of nut-based de-oiled cake hydrolysates for therapeutic benefits including antioxidant, antihypertensive and neuroprotective properties. The often-neglected safety/toxicological evaluation of the hydrolysates/peptide sequences has also been described. Based on the available data, it is concluded that enzymatic hydrolysis is a preferred method than microbial fermentation for the value addition of de-oiled tree nut cakes. Further, critical insights on the existing literature as well as potential research ideas have also been proposed.
Collapse
Affiliation(s)
- T P Sari
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat 131 028, Haryana, India
| | - Ranjna Sirohi
- Department of Food Technology, School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun 248 007, Uttarakhand, India
| | - Meena Krishania
- Center of Innovative and Applied Bioprocessing (CIAB), Sector-81, Mohali 140 306, India
| | - Suvarna Bhoj
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, Uttar Pradesh, India
| | - Mrinal Samtiya
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat 131 028, Haryana, India
| | - Muskaan Duggal
- Center of Innovative and Applied Bioprocessing (CIAB), Sector-81, Mohali 140 306, India
| | - Deepak Kumar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat 131 028, Haryana, India; Division of Food Science and Technology, Department of Nutrition and Dietetics, Manav Rachna International Institute of Research and Studies, Faridabad 121 004, Haryana, India
| | - Prarabdh C Badgujar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat 131 028, Haryana, India.
| |
Collapse
|
7
|
Wang M, Wu W, Xiao J, Li C, Chen B, Shen Y. Recent Development in Antioxidant Peptides of Woody Oil Plant By-Products. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2022.2073367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Min Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi’an, Shaanxi, China
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan, Hubei, China
| | - Wenrui Wu
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi’an, Shaanxi, China
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo - Ourense Campus, Ourense, Spain
| | - Cong Li
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi’an, Shaanxi, China
| | - Bang Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi’an, Shaanxi, China
| | - Yehua Shen
- Key Laboratory of Synthetic and Natural Functional Molecule of Ministry of Education, College of Chemistry and Materials Science, National Demonstration Center for Experimental Chemistry Education, Northwest University, Xi’an, Shaanxi, China
| |
Collapse
|
8
|
Liu D, Guo Y, Ma H. Production, bioactivities and bioavailability of bioactive peptides derived from walnut origin by-products: a review. Crit Rev Food Sci Nutr 2022; 63:8032-8047. [PMID: 35361034 DOI: 10.1080/10408398.2022.2054933] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Walnut-origin by-products obtained from walnut oil extraction industry are high in proteins with various physiological functions and pharmacological properties and an extensive potential for usage in producing bioactive peptides. This review presents the current research status of bioactive peptides derived from walnut by-products, including preparation, separation, purification, identification, bioactivities, and bioavailability. A plethora of walnut peptides with multiple biological activities, including antioxidative, antihypertensive, neuroprotective, antidiabetic, anticancer, and antihyperuricemia activities, were obtained from walnut-origin by-products by enzymatic hydrolysis, fermentation, and synthesis. Different bioactive peptides show various structural characteristics and amino acid composition due to their diverse mechanism of action. Furthermore, walnut protein and its hydrolysate present a high bioavailability in human gastrointestinal digestive system. Improving the bioavailability of walnut peptides is needful in the development of walnut industry. However, future research still needs to exploit energy conservation, high efficiency, environmentally friendly and low-cost production method of walnut bioactive peptide. The molecular mechanisms of different bioactive walnut peptides still need to be explored at the cell and gene levels. Additionally, the digestion, absorption, and metabolism processes of walnut peptides are also the focus of future research.
Collapse
Affiliation(s)
- Dandan Liu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yiting Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
- Institute of Food Physical Processing, Jiangsu University, Zhenjiang, China
| |
Collapse
|
9
|
Bisly AA, Hettiarachchy NS, Kumar TKS, Lay JO. Antioxidant activities of solid‐state fermentation derived proteins and peptides from heat‐stabilized defatted rice bran. J AM OIL CHEM SOC 2022. [DOI: 10.1002/aocs.12558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ali A. Bisly
- Department of Food Science University of Arkansas Fayetteville Arkansas USA
- Faculty of Agriculture University of Kufa Kufa Iraq
| | | | - T. K. S. Kumar
- Department of Chemistry and Biochemistry University of Arkansas Fayetteville Arkansas USA
| | - Jackson O. Lay
- Department of Chemistry and Biochemistry University of Arkansas Fayetteville Arkansas USA
| |
Collapse
|
10
|
XU X, REN S, WANG D, MA J, YAN X, GUO Y, LIU X, PAN Y. Optimization of extraction of defatted walnut powder by ultrasonic assisted and artificical neural network. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.53320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Xiajing XU
- Shenyang Pharmaceutical University, China
| | | | | | - Jing MA
- Shenyang Pharmaceutical University, China
| | | | - Yongli GUO
- Shenyang Pharmaceutical University, China
| | | | - Yingni PAN
- Shenyang Pharmaceutical University, China
| |
Collapse
|
11
|
Sun X, Ruan S, Zhuang Y, Sun L. Anti-osteoporosis effect and purification of peptides with high calcium-binding capacity from walnut protein hydrolysates. Food Funct 2021; 12:8454-8466. [PMID: 34190289 DOI: 10.1039/d1fo01094h] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The walnut protein hydrolysate (WPH) was prepared via simulated gastrointestinal digestion. The degree of hydrolysis (DH), amino acid composition, and relative molecular weight distribution of WPH were analyzed. The results showed that the DH of WPH was 11.6%, WPH was rich in Glu and Pro, and the relative average molecular weight of 572 Da accounted for 59.78%. The effects of WPH on osteoporosis were evaluated using a model of retinoic acid-induced osteoporosis rat. Treatment with WPH effectively increased the serum calcium and phosphorus contents, alleviated calcium loss, and reduced tartrate-resistant acid phosphate and alkaline phosphatase activities and bone gla protein content. WPH treatment significantly improved the biomechanical properties of the bone and increased the value of bone mineral density. In addition, WPH treatment improved the bone microstructure. WPH was isolated and purified by Sephadex G-25 gel filtration chromatography and semi-preparative reversed-phase high-performance liquid chromatography. A fraction with high calcium-binding activity was obtained and 15 peptides were identified.
Collapse
Affiliation(s)
- Xiaodong Sun
- Faculty of Agriculture and Food, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming, Yunnan 650500, China.
| | - Shiyan Ruan
- Faculty of Agriculture and Food, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming, Yunnan 650500, China.
| | - Yongliang Zhuang
- Faculty of Agriculture and Food, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming, Yunnan 650500, China.
| | - Liping Sun
- Faculty of Agriculture and Food, Kunming University of Science and Technology, No. 727 South Jingming Road, Kunming, Yunnan 650500, China.
| |
Collapse
|
12
|
Dash P, Ananthanarayan L. Development of Kesari dal (Lathyrus sativus) protein hydrolysates, with reduced β-ODAP content exhibiting anti-oxidative and anti-diabetic properties. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00458-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
13
|
Golly MK, Ma H, Yuqing D, Dandan L, Quaisie J, Tuli JA, Mintah BK, Dzah CS, Agordoh PD. Effect of multi-frequency countercurrent ultrasound treatment on extraction optimization, functional and structural properties of protein isolates from Walnut (Juglans regia L.) meal. J Food Biochem 2020; 44:e13210. [PMID: 32236979 DOI: 10.1111/jfbc.13210] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 01/28/2020] [Accepted: 01/29/2020] [Indexed: 12/14/2022]
Abstract
This study evaluated the effects of ultrasound treatment on walnut meal protein (WMP) extraction and techno-functional properties. The Box-Behnken Design (BBD) was adopted for the optimization of the traditional and ultrasound-assisted extraction (UAE) processes. Standard protocols were used to assay the techno-functional characteristics. The extraction models' statistical results exhibited adequacy with the least desirability index of 95.8%. The UAE enhanced the WMP extraction yield, purity, and chemical score by 30.15%, 16.27%, and 9.74%, respectively, while reducing the extraction time by 25% over the control. The emulsion and foam stabilities and bulk density increased by 34.5%, 39.8%, and 6.1%, respectively, over the control. The α-helix decreased while β-sheet, β-turns and random coil secondary structure components increased significantly (p < .05) by 95.76%, 101.3%, 105.1%, and 85.7% correspondingly. The dual-frequency combination (20/40 kHz/kHz) was the best frequency mode. WMP could serve as a functional additive in manufactured foods as texture and flavor enhancer. PRACTICAL APPLICATIONS: Walnut meal protein (WMP) has a well-balanced amino acid profile and its economic use could be practically increased as a food ingredient by ultrasound-assisted extraction. By this technique, WMP could be employed for the development of enhanced food ingredients rather than being discarded as animal feed. This study showed a positive effect of ultrasonic-assisted alkaline pretreatment on WMP extraction, functionality and structure characteristics. In addition to process improvement, ultrasound is energy efficient and environmentally friendly. Therefore, the applicability of this technique to improve the functionality of plant proteins from industrial by-products to be included in food products is promising.
Collapse
Affiliation(s)
- Moses Kwaku Golly
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, People's Republic of China.,Faculty of Applied Sciences and Technology, Sunyani Technical University, Sunyani, Ghana
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, People's Republic of China.,Key Laboratory for Physical Processing of Agricultural Products, Jiangsu University, Zhenjiang, China
| | - Duan Yuqing
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | - Liu Dandan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | - Janet Quaisie
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | - Jamila Akter Tuli
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | - Benjamin Kumah Mintah
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | - Courage Sedem Dzah
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | - Percival Delali Agordoh
- Department of Nutrition and Dietetics, School of Allied Health Sciences, University of Health and Allied Sciences, Ho, Ghana
| |
Collapse
|
14
|
Li X, Guo M, Chi J, Ma J. Bioactive Peptides from Walnut Residue Protein. Molecules 2020; 25:E1285. [PMID: 32178315 PMCID: PMC7143977 DOI: 10.3390/molecules25061285] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/17/2020] [Accepted: 03/03/2020] [Indexed: 12/12/2022] Open
Abstract
Walnut residue is a kind of high-quality plant protein resource. The bioactive peptide prepared from walnut residue has excellent health care functions such as antioxidation and antihypertensive activity, but at present, walnut residue is often regarded as waste or low value feed, fertilizer and other materials. The uneconomical use of walnut residue has hindered the development of the walnut industry to some extent. Effective utilization of walnut residue protein to develop bioactive peptides and other products is of great significance to realize the comprehensive utilization of walnut residue, improve the added value of by-products, and change the current low utilization rate of walnut residue. In this paper, the preparation, purification and structure identification of walnut protein bioactive peptides are reviewed, and different functional walnut active peptides (WBPs) are introduced. The potential effects of these bioactivities on human health and their different uses in food, medicine and other industries are discussed. The purpose is to provide reference information for the effective utilization of walnut residue resources and the development of walnut industry.
Collapse
Affiliation(s)
- Xiangyang Li
- Science and Technology Department, Hebei Lvlei Agroforestry Technology Co., Ltd. Shijiazhuang 050050, China
- College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Manli Guo
- College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Jingtian Chi
- College of Food Science and Engineering, Shandong Agricultural University, Taian 271018, China
| | - Jiangang Ma
- Science and Technology Department, Hebei Lvlei Agroforestry Technology Co., Ltd. Shijiazhuang 050050, China
| |
Collapse
|
15
|
Zheng X, Li DS, Ding K. Purification and identification of angiotensin I-converting enzyme inhibitory peptides from fermented walnut residues. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2018. [DOI: 10.1080/10942912.2016.1258574] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Xiao Zheng
- College of Physical Education and Health, Chongqing Three Gorges University, Chongqing, People’s Republic of China
| | - Dong Sheng Li
- Chengdu Jin Kai Biological Technology Co., Ltd, Chengdu, People’s Republic of China
| | - Ke Ding
- College of Bioengineering, Chongqing University, Chongqing, People’s Republic of China
| |
Collapse
|
16
|
Mohamed L, Kettani YE, Ali A, Mohamed E, Mohamed J. Application of Response Surface Methodology for Optimization of Extracellular Glucoamylase Production by Candida guilliermondii. Pak J Biol Sci 2017; 20:100-107. [PMID: 29023000 DOI: 10.3923/pjbs.2017.100.107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Glucoamylase is among the most important enzymes in biotechnology. The present study aims to determine better conditions for growth and glucoamylase production by Candida guilliermondii and to reduce the overall cost of the medium using Box-Behnken design with one central point and response surface methodology. METHODOLOGY Box-Behnken factorial design based on three levels was carried out to obtain optimal medium combination of five independent variables such as initial pH, soluble starch, CH4N2O, yeast extract and MgSO4. Forty one randomized mediums were incubated in flask on a rotary shaker at 105 rpm for 72 h at 30°C. RESULTS The production of biomass was found to be pH and starch dependent, maximum production when the starch concentration was 8 g L-1 and the initial pH was 6, while maximum glucoamylase production was found at 6.5 of initial pH, 4 g L-1 yeast extract and 6 g L-1 starch, whereas yeast extract and urea were highly significant, but interacted negatively. Box-Behnken factorial design used for the analysis of treatment combinations gave a second-order polynomial regression model with R2 = 0.976 for Biomass and R2 = 0.981 for glucoamylase. CONCLUSION The final biomass and glucoamylase activity obtained was very close to the calculated parameters according to the p-values (p<0.001), the predicted optimal parameters were confirmed and provides a basis for further studies in baking additives and in the valuation of starch waste products.
Collapse
Affiliation(s)
- Lagzouli Mohamed
- Laboratory of Agro-physiology, Biotechnologies and Quality, Sciences College, University IBN Tofail, BP 133, 14000 Kenitra, Morocco
| | - Youssfi El Kettani
- C.I.R.O.S Laboratory, Department of Mathematics, Sciences College, University IBN Tofail, BP 133, 14000 Kenitra, Morocco
| | - Aitounejjar Ali
- National Institute of Agronomic Research, P.O. Box 589, Settat 26000, Morocco
| | - Elyachioui Mohamed
- Laboratory of Agro-physiology, Biotechnologies and Quality, Sciences College, University IBN Tofail, BP 133, 14000 Kenitra, Morocco
| | - Jadal Mohamed
- Laboratory of Agro-physiology, Biotechnologies and Quality, Sciences College, University IBN Tofail, BP 133, 14000 Kenitra, Morocco
| |
Collapse
|
17
|
Luo Y, Wu W, Chen D, Lin Y, Ma Y, Chen C, Zhao S. Optimization of simultaneous microwave/ultrasonic-assisted extraction of phenolic compounds from walnut flour using response surface methodology. PHARMACEUTICAL BIOLOGY 2017; 55:1999-2004. [PMID: 28738717 PMCID: PMC7011999 DOI: 10.1080/13880209.2017.1347189] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 04/10/2017] [Accepted: 06/22/2017] [Indexed: 06/07/2023]
Abstract
CONTEXT Walnut is a traditional food as well as a traditional medicine recorded in the Chinese Pharmacopoeia; however, the large amounts of walnut flour (WF) generated in walnut oil production have not been well utilized. OBJECTIVE This study maximized the total polyphenolic yield (TPY) from the walnut flour (WF) by optimizing simultaneous ultrasound/microwave-assisted hydroalcoholic extraction (SUMAE). MATERIALS AND METHODS Response surface methodology was used to optimize the processing parameters for the TPY, including microwave power (20-140 W), ultrasonic power (75-525 W), extraction temperature (25-55 °C), and time (0.5-9.5 min). The polyphenol components were analysed by LC-MS. RESULTS A second-order polynomial model satisfactorily fit the experimental TPY data (R2 = 0.9932, P < 0.0001 and Radj2 = 0.9868). The optimized quick extraction conditions were microwave power 294.38 W, ultrasonic power 93.5 W, temperature 43.38 °C and time 4.33 min, with a maximum TPY of 34.91 mg GAE/g, which was a rapid extraction. The major phenolic components in the WF extracts were glansreginin A, ellagic acid, and gallic acid with peak areas of 22.15%, 14.99% and 10.96%, respectively, which might be used as functional components for health food, cosmetics and medicines. DISCUSSION AND CONCLUSION The results indicated that walnut flour, a waste product from the oil industry, was a rich source of polyphenolic compounds and thus could be used as a high-value functional food ingredient.
Collapse
Affiliation(s)
- Yan Luo
- Faculty of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Wanxing Wu
- Faculty of Life Science, Kunming University of Science and Technology, Kunming, China
| | - Dan Chen
- The Chemical Analysis Division, Yunnan Institute of Tobacco Quality Inspection and Supervision, Kunming, China
| | - Yuping Lin
- Faculty of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Yage Ma
- Faculty of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, China
| | - Chaoyin Chen
- Faculty of Life Science, Kunming University of Science and Technology, Kunming, China
| | - Shenglan Zhao
- Faculty of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, China
| |
Collapse
|
18
|
Effects of pressed degreased walnut meal extracts on lipid metabolism in postnatally monosodium glutamate-induced mice and 3T3-L1 preadipocytes. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.01.026] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
19
|
Gan RY, Li HB, Gunaratne A, Sui ZQ, Corke H. Effects of Fermented Edible Seeds and Their Products on Human Health: Bioactive Components and Bioactivities. Compr Rev Food Sci Food Saf 2017; 16:489-531. [DOI: 10.1111/1541-4337.12257] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 01/25/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Ren-You Gan
- Dept. of Food Science and Engineering, School of Agriculture and Biology; Shanghai Jiao Tong Univ.; Shanghai 200240 China
- School of Biological Sciences; The Univ. of Hong Kong; Pokfulam Road Hong Kong
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health; Sun Yat-sen Univ.; Guangzhou 510080 China
| | - Anil Gunaratne
- Faculty of Agricultural Sciences; Sabaragamuwa Univ. of Sri Lanka; P.O. Box 02 Belihuloya Sri Lanka
| | - Zhong-Quan Sui
- Dept. of Food Science and Engineering, School of Agriculture and Biology; Shanghai Jiao Tong Univ.; Shanghai 200240 China
| | - Harold Corke
- Dept. of Food Science and Engineering, School of Agriculture and Biology; Shanghai Jiao Tong Univ.; Shanghai 200240 China
| |
Collapse
|
20
|
Cations Optimization for Protein Enrichment in Rice Straw by Mixed Cultures of Neurospora crassa 14-8 and Candida utilis Using Response Surface Methodology. Appl Biochem Biotechnol 2016; 182:804-817. [DOI: 10.1007/s12010-016-2363-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 12/06/2016] [Indexed: 12/26/2022]
|
21
|
Moayedi A, Hashemi M, Safari M. Valorization of tomato waste proteins through production of antioxidant and antibacterial hydrolysates by proteolytic Bacillus subtilis: optimization of fermentation conditions. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2016; 53:391-400. [PMID: 26787958 PMCID: PMC4711411 DOI: 10.1007/s13197-015-1965-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 07/08/2015] [Accepted: 07/14/2015] [Indexed: 10/23/2022]
Abstract
In this study, protein-rich waste of tomato processing industries was fermented by Bacillus subtilis A14h to produce hydrolysates with antioxidant and antibacterial activities. The effects of different levels of initial pH, incubation temperature, fermentation time, protein concentration and inoculum size on proteolytic activity, release of amino acids and peptides, antioxidant and antibacterial activities of hydrolysates were evaluated and optimized by using response surface methodology (RSM). Results showed that all the evaluated variables significantly influenced the hydrolysis and bioactivities of hydrolysates in polynomial models. Hydrolysates showed remarkable 2, 2'-diphenyl-1-picrylhydrazyl (DPPH) scavenging activity (up to 70 %), ferric ion reducing power, and inhibitory activity against B. cereus (up to 69.8 %) and E. coli (up to 29.8 %). Overall, good correlation between the concentration of amino acids and peptides, and antioxidant as well as antibacterial activities (in particular for B. cereus inhibition activity) was observed. Finally, optimum conditions for fermentative conversion of tomato waste proteins to antioxidant and antibacterial hydrolysates were established. Results of this study showed that tomato waste protein can be valorized to produce antioxidant and antibacterial hydrolysates in a fermentative system using B. subtilis A14h.
Collapse
Affiliation(s)
- Ali Moayedi
- />Department of Food Science, Engineering and Technology, University of Tehran, Karaj, Iran
| | - Maryam Hashemi
- />Department of Microbial Biotechnology and Biosafety, Agricultural Biotechnology Research Institute of Iran (ABRII), AREEO, P.O. Box 3135933151, Karaj, Iran
| | - Mohammad Safari
- />Department of Food Science, Engineering and Technology, University of Tehran, Karaj, Iran
- />Center of Excellence for Application of Modern Technology for Producing Functional Foods and Drinks, University of Tehran, Karaj, Iran P.O. Box 4111, 31587-77871
| |
Collapse
|
22
|
Hu Y, Qin H, Zhan Z, Dun Y, Zhou Y, Peng N, Ling H, Liang Y, Zhao S. Optimization ofSaccharomyces boulardiiproduction in solid-state fermentation with response surface methodology. BIOTECHNOL BIOTEC EQ 2015. [DOI: 10.1080/13102818.2015.1086689] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|