1
|
Revelou PK, Konteles SJ, Batrinou A, Xagoraris M, Tarantilis PA, Strati IF. Origanum majorana L. as Flavoring Agent: Impact on Quality Indices, Stability, and Volatile and Phenolic Profiles of Extra Virgin Olive Oil (EVOO). Foods 2024; 13:3164. [PMID: 39410198 PMCID: PMC11475822 DOI: 10.3390/foods13193164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 09/30/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
The flavoring of olive oils with aromatic plants is commonly used to enrich the oils with aromatic and antioxidant compounds. Origanum majorana L. was applied as a flavoring agent for extra virgin olive oil (EVOO), at concentrations of 20 g L-1 and 40 g L-1, via ultrasound-assisted maceration. The aim of this study was to evaluate the impact of flavoring on the EVOOs' quality indices, oxidative stability, and antioxidant, antiradical and antifungal activities, as well as on the oils' volatile and phenolic profile. The flavored EVOO maintained the quality indices (free fatty acids, peroxide value, extinction coefficients) below the maximum permitted levels, whereas the addition of marjoram enhanced the oxidative stability, the levels of chlorophyll and b-carotene and the total phenolic content. The incorporation of marjoram into the EVOO did not have a significant impact on the antioxidant and antiradical activities. Concerning the antifungal activity, no Zygosaccharomyces bailli cell growth was observed for two weeks in a mayonnaise prepared with the flavored EVOO at a 40 g L-1 concentration. SPME-GC-MS analysis revealed the presence of 11 terpene compounds (hydrocarbon and oxygenated monoterpenes) that had migrated from marjoram in the flavored EVOO. Twenty-one phenolic compounds were tentatively characterized by LC-QToF-MS in the EVOO samples; however, hesperetin and p-coumaric acid, originating from marjoram, were only detected in the flavored EVOO.
Collapse
Affiliation(s)
- Panagiota Kyriaki Revelou
- Laboratory of Chemistry, Analysis & Design of Food Processes, Department of Food Science and Technology, University of West Attica, Agiou Spyridonos, 12243 Egaleo, Greece; (P.K.R.); (S.J.K.); (A.B.)
- Laboratory of Chemistry, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (M.X.); (P.A.T.)
| | - Spyridon J. Konteles
- Laboratory of Chemistry, Analysis & Design of Food Processes, Department of Food Science and Technology, University of West Attica, Agiou Spyridonos, 12243 Egaleo, Greece; (P.K.R.); (S.J.K.); (A.B.)
| | - Anthimia Batrinou
- Laboratory of Chemistry, Analysis & Design of Food Processes, Department of Food Science and Technology, University of West Attica, Agiou Spyridonos, 12243 Egaleo, Greece; (P.K.R.); (S.J.K.); (A.B.)
| | - Marinos Xagoraris
- Laboratory of Chemistry, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (M.X.); (P.A.T.)
| | - Petros A. Tarantilis
- Laboratory of Chemistry, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece; (M.X.); (P.A.T.)
| | - Irini F. Strati
- Laboratory of Chemistry, Analysis & Design of Food Processes, Department of Food Science and Technology, University of West Attica, Agiou Spyridonos, 12243 Egaleo, Greece; (P.K.R.); (S.J.K.); (A.B.)
| |
Collapse
|
2
|
Gomez-Molina M, Albaladejo-Marico L, Yepes-Molina L, Nicolas-Espinosa J, Navarro-León E, Garcia-Ibañez P, Carvajal M. Exploring Phenolic Compounds in Crop By-Products for Cosmetic Efficacy. Int J Mol Sci 2024; 25:5884. [PMID: 38892070 PMCID: PMC11172794 DOI: 10.3390/ijms25115884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/14/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Phenolic compounds represent a group of secondary metabolites that serve essential functions in plants. Beyond their positive impact on plants, these phenolic metabolites, often referred to as polyphenols, possess a range of biological properties that can promote skin health. Scientific research indicates that topically using phenolics derived from plants can be advantageous, but their activity and stability highly depend on storage of the source material and the extraction method. These compounds have the ability to relieve symptoms and hinder the progression of different skin diseases. Because they come from natural sources and have minimal toxicity, phenolic compounds show potential in addressing the causes and effects of skin aging, skin diseases, and various types of skin damage, such as wounds and burns. Hence, this review provides extensive information on the particular crops from which by-product phenolic compounds can be sourced, also emphasizing the need to conduct research according to proper plant material storage practices and the choice of the best extracting method, along with an examination of their specific functions and the mechanisms by which they act to protect skin.
Collapse
Affiliation(s)
- Maria Gomez-Molina
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo—25, E-30100 Murcia, Spain; (M.G.-M.); (L.A.-M.); (L.Y.-M.); (J.N.-E.); (P.G.-I.)
| | - Lorena Albaladejo-Marico
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo—25, E-30100 Murcia, Spain; (M.G.-M.); (L.A.-M.); (L.Y.-M.); (J.N.-E.); (P.G.-I.)
| | - Lucia Yepes-Molina
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo—25, E-30100 Murcia, Spain; (M.G.-M.); (L.A.-M.); (L.Y.-M.); (J.N.-E.); (P.G.-I.)
| | - Juan Nicolas-Espinosa
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo—25, E-30100 Murcia, Spain; (M.G.-M.); (L.A.-M.); (L.Y.-M.); (J.N.-E.); (P.G.-I.)
| | - Eloy Navarro-León
- Department of Plant Physiology, Faculty of Sciences, University of Granada, E-18071 Granada, Spain;
| | - Paula Garcia-Ibañez
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo—25, E-30100 Murcia, Spain; (M.G.-M.); (L.A.-M.); (L.Y.-M.); (J.N.-E.); (P.G.-I.)
| | - Micaela Carvajal
- Aquaporins Group, Centro de Edafologia y Biologia Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo—25, E-30100 Murcia, Spain; (M.G.-M.); (L.A.-M.); (L.Y.-M.); (J.N.-E.); (P.G.-I.)
| |
Collapse
|
3
|
Obuebite AA, Okwonna OO, Eke WI, Akaranta O. Orange Mesocarp Extract as a Natural Surfactant: Impact on Fluid-Fluid and Fluid-Rock Interactions during Chemical Flooding. ACS OMEGA 2024; 9:4263-4276. [PMID: 38313507 PMCID: PMC10831974 DOI: 10.1021/acsomega.3c04651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 12/05/2023] [Accepted: 12/20/2023] [Indexed: 02/06/2024]
Abstract
Surfactant flooding has suffered a huge setback owing to its cost and the ecotoxic nature of synthetic surfactants. The potential of natural surfactants for enhanced oil recovery has attracted a great deal of research interest in recent times. In this research, orange mesocarp extract (OME) was studied as a potential green surface-active agent in recovering heavy oil. The extract obtained from the orange (Citrus sinensis) mesocarp using alkaline water as solvent was characterized by Fourier transform infrared spectrophotometry . Phase behavior was studied to ascertain its stability at 100 °C and compatibility with divalent ions. Microemulsion system, interfacial tension, optimal salinity, and critical micelle concentration were analyzed to evaluate the surfactant. Oil displacement analysis using an oil-wet sandstone medium under reservoir conditions was performed. Surfactant adsorption mechanism on the core was investigated at atmospheric conditions (28 °C) using the Langmuir, Freundlich, Temkin, and linear isotherm models, while the kinetics pattern was modeled with the pseudo-first-order, pseudo-second-order, intraparticle diffusion, and Elovich models. Results showed fluid compatibility and bicontinuous microemulsion at varied temperatures. Surfactant flooding produced an additional oil recovery of 44 and 29.1%, which confirms the capability of this natural surfactant in recovering heavy oil. Langmuir isotherm gave the highest correlation coefficient (R2) value of 0.982, indicating that the adsorption of the surfactant (OME) on the core occurred at specific homogeneous sites, which when occupied by a higher surfactant concentration will disallow further adsorption on these sites. From the R2 values, almost all of the kinetic models corroborated good adsorption capacity of the core and an affinity for the surfactant at low concentration. This indicates that low concentration of the surfactant may not favor the enhanced oil recovery operation due to adsorption in the reservoirs, hence the need to flood at a higher surfactant concentration.
Collapse
Affiliation(s)
- Amalate Ann Obuebite
- Department
of Petroleum Engineering, Niger Delta University, Wilberforce Island PMB
071, Bayelsa State, Nigeria
| | - Obumneme Onyeka Okwonna
- Department
of Chemical Engineering, University of Port
Harcourt, Port Harcourt PMB 5323, Rivers State, Nigeria
| | - William Iheanyi Eke
- Department
of Pure & Industrial Chemistry, University
of Port Harcourt, Port Harcourt PMB 5323, Rivers State, Nigeria
| | - Onyewuchi Akaranta
- Department
of Pure & Industrial Chemistry, University
of Port Harcourt, Port Harcourt PMB 5323, Rivers State, Nigeria
| |
Collapse
|
4
|
Review on the Antioxidant Activity of Phenolics in o/w Emulsions along with the Impact of a Few Important Factors on Their Interfacial Behaviour. COLLOIDS AND INTERFACES 2022. [DOI: 10.3390/colloids6040079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This review paper focuses on the antioxidant properties of phenolic compounds in oil in water (o/w) emulsion systems. The authors first provide an overview of the most recent studies on the activity of common, naturally occurring phenolic compounds against the oxidative deterioration of o/w emulsions. A screening of the latest literature was subsequently performed with the aim to elucidate how specific parameters (polarity, pH, emulsifiers, and synergistic action) affect the phenolic interfacial distribution, which in turn determines their antioxidant potential in food emulsion systems. An understanding of the interfacial activity of phenolic antioxidants could be of interest to food scientists working on the development of novel food products enriched with functional ingredients. It would also provide further insight to health scientists exploring the potentially beneficial properties of phenolic antioxidants against the oxidative damage of amphiphilic biological membranes (which link to serious pathologic conditions).
Collapse
|
5
|
Sabaghi M, Tavasoli S, Jamali SN, Katouzian I, Faridi Esfanjani A. The Pros and Cons of Incorporating Bioactive Compounds Within Food Networks and Food Contact Materials: a Review. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02837-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
6
|
Zhang H, Chen H, Jiang S, Kang X. A Novel Functional Emulsifier Prepared with Modified Cassava Amylose with Octenyl Succinic Anhydride and Quercetin: Preparation and Application in the Pickering Emulsion. Molecules 2021; 26:molecules26226884. [PMID: 34833973 PMCID: PMC8620962 DOI: 10.3390/molecules26226884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 11/16/2022] Open
Abstract
An emulsifier with a targeted antioxidant effect was prepared using the inclusion complexes of octenyl succinic anhydride (OSA)-modified cassava amylose (CA) and quercetin (Q). The designed emulsifier, a carbohydrate polymer-flavonoid complex, exhibited both amphiphilic and antioxidant properties. To investigate the physical and oxidation stabilities of the prepared emulsion, three types of emulsions were prepared: primary emulsions stabilized by enzyme-modified starch, secondary emulsions stabilized by OSA-CA, and tertiary emulsions stabilized by Q-encapsulated complexes (OSA-CA/Q). The structural characteristics of CA, OSA-CA, and OSA-CA/Q were investigated by scanning electron microscopy, Fourier transform infrared spectrometry, and small-angle X-ray scattering analysis. The stabilities of the emulsions were evaluated based on their particle size distribution, zeta potential, creaming stability, and peroxide value. The results showed that the secondary and tertiary emulsions exhibited a relatively narrower particle size distribution than the primary emulsions, but the particle size distribution of the tertiary emulsions was the narrowest (10.42 μm). Moreover, the secondary and tertiary emulsions had lower delamination indices than the primary emulsions after 7 days of storage. The results obtained from the antioxidant experiments indicated that OSA-CA/Q exhibited good oxidation stability for application in emulsion systems.
Collapse
Affiliation(s)
- Hailing Zhang
- College of Life Sciences, Yantai University, 30 Qingquan Road, Yantai 264005, China;
| | - Haiming Chen
- Maritime Academy, Hainan Vocational University of Science and Technology, 18 Qingshan Road, Haikou 571126, China
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province of China, Hainan University, 58 People Road, Haikou 570228, China;
- Correspondence: or (H.C.); (X.K.); Tel./Fax: +86-0898-6625-6495 (H.C. & X.K.)
| | - Shan Jiang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province of China, Hainan University, 58 People Road, Haikou 570228, China;
| | - Xiaoning Kang
- Haikou Key Laboratory of Areca Processing and Research, Hainan Academy of Agricultural Sciences, 14 Xingdan Road, Haikou 571100, China
- Correspondence: or (H.C.); (X.K.); Tel./Fax: +86-0898-6625-6495 (H.C. & X.K.)
| |
Collapse
|
7
|
Farooq S, Abdullah, Zhang H, Weiss J. A comprehensive review on polarity, partitioning, and interactions of phenolic antioxidants at oil-water interface of food emulsions. Compr Rev Food Sci Food Saf 2021; 20:4250-4277. [PMID: 34190411 DOI: 10.1111/1541-4337.12792] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 05/07/2021] [Accepted: 05/23/2021] [Indexed: 11/27/2022]
Abstract
There has been a growing interest in developing effective strategies to inhibit lipid oxidation in emulsified food products by utilization of natural phenolic antioxidants owing to their growing popularity over the past decades. However, due to the complexity of emulsified systems, the inhibition mechanism of phenolic antioxidants against lipid oxidation is rather complicated and not yet fully understood. In order to highlight the importance of polarity of phenolic antioxidants in emulsified systems according to the polar paradox, this review covers the recent progress on chemical, enzymatic, and chemoenzymatic lipophilization techniques used to modify the polarity of antioxidants. The partitioning behavior of phenolic antioxidants at the oil-water interface, which can be influenced by the presence of synthetic surfactants and/or antioxidant emulsifiers (e.g., polysaccharides, proteins, and phospholipids), is discussed. In addition, the emerging phenolic antioxidants among phenolic acids, flavonoids, tocopherols, and stilbenes applied in food emulsions are elaborated. As well, the interactions of polar-nonpolar antioxidants are stressed as a promising strategy to induce synergistic interactions at oil-water interface for improved oxidative stability of emulsions.
Collapse
Affiliation(s)
- Shahzad Farooq
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China
| | - Abdullah
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China
| | - Hui Zhang
- College of Biosystems Engineering and Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang University, Hangzhou, China.,Ningbo Research Institute, Zhejiang University, Ningbo, China
| | - Jochen Weiss
- Department of Food Physics and Meat Science, Institute of Food Science and Biotechnology, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
8
|
Golovinskaia O, Wang CK. Review of Functional and Pharmacological Activities of Berries. Molecules 2021; 26:3904. [PMID: 34202412 PMCID: PMC8271923 DOI: 10.3390/molecules26133904] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/23/2021] [Accepted: 06/23/2021] [Indexed: 02/06/2023] Open
Abstract
Functional plant-based foods (such as fruits, vegetables, and berries) can improve health, have a preventive effect, and diminish the risk of different chronic diseases during in vivo and in vitro studies. Berries contain many phytochemicals, fibers, vitamins, and minerals. The primary phytochemicals in berry fruits are phenolic compounds including flavonoids (anthocyanins, flavonols, flavones, flavanols, flavanones, and isoflavonoids), tannins, and phenolic acids. Since berries have a high concentration of polyphenols, it is possible to use them for treating various diseases pharmacologically by acting on oxidative stress and inflammation, which are often the leading causes of diabetes, neurological, cardiovascular diseases, and cancer. This review examines commonly consumed berries: blackberries, blackcurrants, blueberries, cranberries, raspberries, black raspberries, and strawberries and their polyphenols as potential medicinal foods (due to the presence of pharmacologically active compounds) in the treatment of diabetes, cardiovascular problems, and other diseases. Moreover, much attention is paid to the bioavailability of active berry components. Hence, this comprehensive review shows that berries and their bioactive compounds possess medicinal properties and have therapeutic potential. Nevertheless, future clinical trials are required to study and improve the bioavailability of berries' phenolic compounds and extend the evidence that the active compounds of berries can be used as medicinal foods against various diseases.
Collapse
Affiliation(s)
| | - Chin-Kun Wang
- School of Nutrition, Chung Shan Medical University, 110, Section 1, Jianguo North Road, Taichung 40201, Taiwan;
| |
Collapse
|
9
|
Interfacial activity of phenolic-rich extracts from avocado fruit waste: Influence on the colloidal and oxidative stability of emulsions and nanoemulsions. INNOV FOOD SCI EMERG 2021. [DOI: 10.1016/j.ifset.2021.102665] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Noon J, Mills TB, Norton IT. The use of natural antioxidants to combat lipid oxidation in O/W emulsions. J FOOD ENG 2020. [DOI: 10.1016/j.jfoodeng.2020.110006] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Synergetic effects of whey protein isolate and naringin on physical and oxidative stability of oil-in-water emulsions. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2019.105517] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
12
|
Chang HJ, Lee JH. Emulsification and oxidation stabilities of DAG-rich algae oil-in-water emulsions prepared with the selected emulsifiers. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:287-294. [PMID: 31525263 DOI: 10.1002/jsfa.10037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Diacylglycerol (DAG) reduces body weight, suppresses body fat accumulation, and lowers the blood lipid concentration, and docosahexaenoic acid (DHA) can reduce the risk of occurrence of coronary artery diseases. RESULTS DAG-rich algae oil with a high DHA content (55.9%) was synthesized via the lipase-catalyzed glycerolysis of algae oil, which consisted of triacylglycerol (43.9 mol%), DAG (40.9 mol%), and monoacylglycerol (15.2 mol%). The DAG-rich algae oil-in-water emulsions were prepared using three emulsifiers [whey protein concentrate (WPC), Tween80, and Tween80 + Span80]. The WPC-emulsion formed a thicker serum layer (6.67% at day 51) and larger oil droplets (d32 , 0.37 μm at day 28) than the Tween80- and Tween80 + Span80-emulsions (3.33-4.17%; 0.26 μm), and an upper cream layer with excess oil droplets was observed in only the WPC-emulsion, indicating that WPC-emulsion possesses the lowest emulsification stability. The hydroperoxide value and reduction rate of the DHA content were higher in the WPC-emulsions than in the Tween80- and Tween80 + Span80-emulsions during storage, which suggested that the WPC-emulsion had the lowest oxidation stability. CONCLUSION The DAG-rich algae oil-in-water emulsion prepared with suitable emulsifiers, such as non-ionic emulsifiers, would have excellent emulsification and oxidative stabilities and provides a health benefit for special purposes in the food processing industry. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hyeon-Jun Chang
- Department of Food and Nutrition, Daegu University, Gyeonsan-si, Gyeongsangbukdo, Republic of Korea
| | - Jeung-Hee Lee
- Department of Food and Nutrition, Daegu University, Gyeonsan-si, Gyeongsangbukdo, Republic of Korea
| |
Collapse
|
13
|
An HJ, Lee Y, Liu L, Lee S, Lee JD, Yi Y. Physical and Chemical Stability of Formulations Loaded with Taxifolin Tetra-octanoate. Chem Pharm Bull (Tokyo) 2019; 67:985-991. [PMID: 31270295 DOI: 10.1248/cpb.c19-00283] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Chemically stable ester derivatives of taxifolin have become a focus of interest for their role in the satisfactory effects on human health. Accordingly, the aim of this study was to evaluate the physical and chemical stability of different formulations containing 0.02% taxifolin tetra-octanoate, which was proved to possess higher inhibitory effect on tyrosinase activity compared with taxifolin in a cell-free system. In the studies of physical stability, a Brookfield viscometer was used to determine rheological behavior of formulations containing taxifolin tetra-octanoate, and a portable pH meter was used to determine pH change. Moreover, chemical stability was determined by HPLC with UV detection. Formulations were evaluated for 12 weeks stored at 25 and 40°C. Results showed that storage time had no significant influence on viscosity of the formulations containing taxifolin tetra-octanoate, and pH value was relatively stable, which was within the limits of normal skin pH range. In the chemical stability studies, taxifolin tetra-octanoate in the essence formulation was most unstable at 40°C with about 81% degradation in 12 weeks of storage, however, the percentage of remaining taxifolin tetra-octanoate in cream formulation stored for 12 weeks at 25°C was the highest, about 93%. The results in this study may contribute to the development of more stable formulations containing taxifolin tetra-octanoate.
Collapse
Affiliation(s)
| | - Yonghwa Lee
- Department of Cosmetic Science, Hoseo University
| | - Lichao Liu
- Department of Cosmetic Science, Hoseo University.,College of Chemistry and Chemical Engineering, Hunan Institute of Science and Technology
| | - Seulbi Lee
- Department of Cosmetic Science, Hoseo University
| | | | - Yongsub Yi
- Department of Cosmetic Science, Hoseo University
| |
Collapse
|
14
|
Dammak I, Sobral PJDA. Effect of different biopolymers on the stability of hesperidin-encapsulating O/W emulsions. J FOOD ENG 2018. [DOI: 10.1016/j.jfoodeng.2018.05.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
15
|
Gonçalves ECBA, Lozano-Sanchez J, Gomes S, Ferreira MSL, Cameron LC, Segura-Carretero A. Byproduct Generated During the Elaboration Process of Isotonic Beverage as a Natural Source of Bioactive Compounds. J Food Sci 2018; 83:2478-2488. [PMID: 30239001 DOI: 10.1111/1750-3841.14336] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 06/27/2018] [Accepted: 06/29/2018] [Indexed: 12/01/2022]
Abstract
Agro-industrial byproducts are considered good sources of macronutrients and phytochemicals. Fruit and vegetable residues (FVR), obtained after the production of an isotonic beverage, have previously been characterized containing 80% insoluble dietary fibers from total fibers (48.4%), 26% available carbohydrates, 9.5% proteins and 5% lipids. Nevertheless, fruit and vegetables provide phytochemicals which have been related to human health such as phenolic compounds. The loss of specific compounds over the production process is related to their partitioning between fruit and vegetables and byproducts. However, phenolic profile of FVR remains unknown. This work is focused on the evaluation of FVR as a natural source of these bioactive compounds. For this purpose, pressurized liquid extraction (PLE) has been proposed as extraction technique for recovering phenolic compounds from FVR. The experimental variables were temperature and percentage of solvent (ethanol and water). Phenolic compounds extracts were characterized by UPLC-ESI-Q-TOF-MS and a discussion about phenolic and macronutrient interactions was established. Globally, 88 compounds were tentatively identified: phenolic acids (28), flavonoids (32), and other polyphenols (28). The PLE conditions applied yielded different breaking matrix-analyte interactions leading to an increase in the number of compounds. The highest phenolic acids content was achieved with high temperature while lower temperatures were more efficient in extracting flavonoid. By establishing the phenolics profile in food byproducts such as FVR, it is possible to more effectively apply these byproducts as nutraceutical, food or pharmaceutical ingredients. PRACTICAL APPLICATION Flow diagram of bioactive compounds recovering from isotonic beverage byproduct is proposed using pressurized liquid extraction. The plant-bioactives mechanism relies on fruit and vegetable byproducts changes under different extraction conditions. The obtained extracts can most effectively be applied as nutraceuticals or as ingredients in food or pharmaceutical inputs.
Collapse
Affiliation(s)
- E C B A Gonçalves
- Authors Gonçalves, Gomes, and Ferreira are with the Food and Nutrition Graduate Program (PPGAN), Nutrition School, Federal Univ. of State of Rio de Janeiro, UNIRIO, Av. Pasteur, 296, Urca, 22290-240 Rio de Janeiro, Brazil
| | - J Lozano-Sanchez
- Authors Lozano-Sanchez and Carretero are with the Dept. of Analytical Chemistry, Facul. of Sciences, Univ. of Granada, Fuentenueva s/n, E- 18071 Granada, Spain
| | - S Gomes
- Authors Gonçalves, Gomes, and Ferreira are with the Food and Nutrition Graduate Program (PPGAN), Nutrition School, Federal Univ. of State of Rio de Janeiro, UNIRIO, Av. Pasteur, 296, Urca, 22290-240 Rio de Janeiro, Brazil
| | - M S L Ferreira
- Authors Gonçalves, Gomes, and Ferreira are with the Food and Nutrition Graduate Program (PPGAN), Nutrition School, Federal Univ. of State of Rio de Janeiro, UNIRIO, Av. Pasteur, 296, Urca, 22290-240 Rio de Janeiro, Brazil.,Authors Ferreira and Cameron are with the Center of Innovation in Mass Spectrometry, Laboratory of Protein Biochemistry, Federal Univ. of State of Rio de Janeiro, UNIRIO, Brazil
| | - L C Cameron
- Authors Ferreira and Cameron are with the Center of Innovation in Mass Spectrometry, Laboratory of Protein Biochemistry, Federal Univ. of State of Rio de Janeiro, UNIRIO, Brazil
| | - A Segura-Carretero
- Authors Lozano-Sanchez and Carretero are with the Dept. of Analytical Chemistry, Facul. of Sciences, Univ. of Granada, Fuentenueva s/n, E- 18071 Granada, Spain
| |
Collapse
|
16
|
Dammak I, do Amaral Sobral PJ. Investigation into the physicochemical stability and rheological properties of rutin emulsions stabilized by chitosan and lecithin. J FOOD ENG 2018. [DOI: 10.1016/j.jfoodeng.2017.09.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
17
|
Lopez de Arbina A, Rezende MC, Aliaga C. Cut-off effect of radical TEMPO derivatives in olive oil-in-water emulsions. Food Chem 2017; 224:342-346. [DOI: 10.1016/j.foodchem.2016.12.058] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/16/2016] [Accepted: 12/20/2016] [Indexed: 01/29/2023]
|
18
|
Dammak I, do Amaral Sobral PJ. Formulation and Stability Characterization of Rutin-Loaded Oil-in-Water Emulsions. FOOD BIOPROCESS TECH 2017. [DOI: 10.1007/s11947-017-1876-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
19
|
Kowalska M, Żbikowska A. Study of Stability of Sesame Oil-In-Water Emulsions Determined using an Optical Analyzer and Measurement of Particle Size and Distribution. J DISPER SCI TECHNOL 2015. [DOI: 10.1080/01932691.2015.1111143] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|