1
|
Węgier A, Kaźmierczyk F, Efenberger-Szmechtyk M, Rosiak A, Kałużna-Czaplińska J, Masek A. Influence of Plant Additives on Antimicrobial Properties of Glass-Fabric-Reinforced Epoxy Composites Used in Railway Transport. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4666. [PMID: 39336407 PMCID: PMC11433591 DOI: 10.3390/ma17184666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/09/2024] [Accepted: 09/20/2024] [Indexed: 09/30/2024]
Abstract
The aim of this research was to explore the innovative use of natural additives, containing phytochemicals with proven antimicrobial effects, in the production of epoxy-glass composites. This study was based on information regarding the antimicrobial effects of phytochemicals present in Cistus incanus, Zingiber officinale, and Armoracia rusticana. The additives were subjected to a gas chromatography (GC) analysis to determine their composition, and, subsequently, they were used to prepare resin mixtures and to produce epoxy-glass composites. Samples of the modified materials were tested against E. coli, S. aureus, and C. albicans. In addition, flammability and durability tests were also performed. It was found that the strongest biocidal properties were demonstrated by the material with the addition of cistus, which caused a reduction of microorganisms by 2.13 log units (S. aureus), 1.51 log units (E. coli), and 0.81 log units (C. albicans). The same material also achieved the most favorable results of strength tests, with the values of flexural strength and tensile strength reaching 390 MPa and 280 MPa, respectively. Public transport is a place particularly exposed to various types of pathogens. Currently, there are no solutions on the railway market that involve the use of composites modified in this respect.
Collapse
Affiliation(s)
- Aleksandra Węgier
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland
- TAPS Maciej Kowalski, Borowa 4, 94-247 Lodz, Poland
| | - Filip Kaźmierczyk
- Department of Strength of Materials, Faculty of Mechanical Engineering, Lodz University of Technology, Stefanowskiego 1/15, 90-537 Lodz, Poland
| | - Magdalena Efenberger-Szmechtyk
- Institute of Fermentation Technology and Microbiology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Wólczańska 171/173, 90-530 Lodz, Poland
| | - Angelina Rosiak
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland
| | - Joanna Kałużna-Czaplińska
- Institute of General and Ecological Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924 Lodz, Poland
| | - Anna Masek
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537 Lodz, Poland
| |
Collapse
|
2
|
Cid-Pérez TS, Munguía-Pérez R, Nevárez-Moorillón GV, Ochoa-Velasco CE, Navarro-Cruz AR, Avila-Sosa R. Carvacrol and thymol effect in vapor phase on Escherichia coli and Salmonella serovar Typhimurium growth inoculated in a fresh salad. Heliyon 2024; 10:e29638. [PMID: 38694112 PMCID: PMC11058290 DOI: 10.1016/j.heliyon.2024.e29638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 04/01/2024] [Accepted: 04/11/2024] [Indexed: 05/03/2024] Open
Abstract
This study aimed to evaluate the antimicrobial effect of thymol and carvacrol in inhibiting Escherichia coli and Salmonella serovar Typhimurium inoculated on a fresh green salad through the vapor phase. A film-forming solution was prepared by dissolving starch, sorbitol, and variying concentrations of carvacrol, thymol, and a mixture of both. The film-forming solution containing the respective antimicrobial agent was then added lid, which was sealed rigidly and hermetically to achieve different concentrations (105 mg/L of air of carvacrol, 105 mg/L of air of thymol, and a mixture of 52 mg/L of air of carvacrol and 52 mg/L of air of thymol). Each active package contained fresh green salad inoculated with E. coli or Salmonella serovar Typhimurium. The active packages were then sealed and refrigerated at a temperature of 6 °C for 48 h. Growth/inhibition curves were modelled using the Weibull equation, and consumer acceptance was evaluated. Carvacrol can reduce up to 0.5 log-cycles, while thymol can reach almost 1 log cycle. Blending the components with half the concentration has a synergistic effect, inhibiting up to 2.5 log cycles. Consumer ratings revealed no significant differences between the packages. However, the average score was 5.4 on a 9-point hedonic scale, evaluators' comments did not indicate dislike or a strong taste characteristic of thymol and carvacrol.
Collapse
Affiliation(s)
- Teresa Soledad Cid-Pérez
- Departamento de Bioquímica-Alimentos, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Mexico
| | - Ricardo Munguía-Pérez
- Laboratorio de Micología, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Mexico
| | | | - Carlos Enrique Ochoa-Velasco
- Departamento de Bioquímica-Alimentos, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Mexico
| | - Addí Rhode Navarro-Cruz
- Departamento de Bioquímica-Alimentos, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Mexico
| | - Raúl Avila-Sosa
- Departamento de Bioquímica-Alimentos, Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Mexico
| |
Collapse
|
3
|
Houdkova M, Kokoska L. Volatile Antimicrobial Agents and In Vitro Methods for Evaluating Their Activity in the Vapour Phase: A Review. PLANTA MEDICA 2020; 86:822-857. [PMID: 32450573 DOI: 10.1055/a-1158-4529] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This review summarizes data on the in vitro antimicrobial effectiveness of volatile agents of plant origin and in vitro methods for evaluating their activity in the vapour phase. As a result of literature analysis, the antimicrobial efficacy of vapours from 122 different plant species and 19 pure compounds examined in 61 studies using different in vitro tests against a broad spectrum of microorganisms was identified and summarized. In addition, 11 different techniques found in the literature are described in detail. An original classification of methods based on the solid and liquid matrix volatilization principle is proposed because carrier medium/matrix selection is crucial for the volatilization of any agents tested. This review should be useful for medicinal, pharmaceutical, food, and agricultural experts working in areas related to the management of infectious diseases (especially respiratory and skin infections), food preservation (active packaging), and protection of agriculture products (controlled atmosphere). It may also stimulate the interest of pharmaceutical, cosmetic, food, and agriculture industries in the research and development of new antimicrobial agents of natural origin. Since several original apparatuses previously developed for antimicrobial susceptibility testing in the vapour phase are described in this review, labware manufacturers may also be interested in this topic. The review also provides specific guidelines and recommendations for researchers studying the antimicrobial activity of volatile agents. The article will therefore appeal to communities of industrial stakeholders, pharmacists, physicians, food experts, agriculturists, and researchers in related areas such as pharmacology, medicinal chemistry, microbiology, natural product chemistry, food preservation and plant protection.
Collapse
Affiliation(s)
- Marketa Houdkova
- Department of Crop Sciences and Agroforestry, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Ladislav Kokoska
- Department of Crop Sciences and Agroforestry, Czech University of Life Sciences Prague, Prague, Czech Republic
| |
Collapse
|
4
|
Bahmid NA, Heising J, Fogliano V, Dekker M. Packaging Design Using Mustard Seeds as a Natural Antimicrobial: A Study on Inhibition of Pseudomonas fragi in Liquid Medium. Foods 2020; 9:E789. [PMID: 32560102 PMCID: PMC7353601 DOI: 10.3390/foods9060789] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/03/2020] [Accepted: 06/10/2020] [Indexed: 11/16/2022] Open
Abstract
Pseudomonas fragi is the dominant spoilage organism in various foods, especially in spoiled milk, fish, and meats. Its growth can be inhibited by releasing allyl isothiocyanate (AITC) from ground mustard seeds in food packages. This paper aims to investigate the antimicrobial potential of ground mustard seeds against P. fragi growth and the effectiveness of released AITC concentration from mustard seeds on microbial inhibition of the spoilage bacteria growing in the liquid medium. The AITC concentration in the headspace and the liquid medium was measured and the growth of P. fragi in the liquid medium was monitored. Depending on the concentration of AITC, not only growth was inhibited but a reduction of the total count of P. fragi was even observed. The inactivation rate (k) of P. fragi was estimated using first-order inactivation kinetics and the minimum gaseous-released AITC to inactivate P. fragi was determined. Higher AITC concentration in the headspace and liquid medium was observed when using a higher amount of ground mustard seeds and a lower food to headspace ratio. Increasing the amount of ground mustard seeds (>100 mg per 10 mL liquid medium) led to full inactivation of P. fragi in 48 hours. By using an inhibition sigmoid Emax model, the minimum gaseous-released AITC for inactivation of P. fragi in 48 hours was observed around 15 µg/L headspace. These results indicate that inhibition of the spoilage bacteria and extending the shelf life using ground mustard seeds is only possible by applying a careful design of the packaging system.
Collapse
Affiliation(s)
- Nur Alim Bahmid
- Food Quality and Design Group, Wageningen University and Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands; (N.A.B.); (J.H.); (V.F.)
- Agriculture and Forestry Faculty, Universitas Sulawesi Barat, Majene 91412, Indonesia
| | - Jenneke Heising
- Food Quality and Design Group, Wageningen University and Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands; (N.A.B.); (J.H.); (V.F.)
| | - Vincenzo Fogliano
- Food Quality and Design Group, Wageningen University and Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands; (N.A.B.); (J.H.); (V.F.)
| | - Matthijs Dekker
- Food Quality and Design Group, Wageningen University and Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands; (N.A.B.); (J.H.); (V.F.)
| |
Collapse
|
5
|
Yildirim S, Röcker B, Pettersen MK, Nilsen-Nygaard J, Ayhan Z, Rutkaite R, Radusin T, Suminska P, Marcos B, Coma V. Active Packaging Applications for Food. Compr Rev Food Sci Food Saf 2017; 17:165-199. [PMID: 33350066 DOI: 10.1111/1541-4337.12322] [Citation(s) in RCA: 355] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 10/29/2017] [Indexed: 01/21/2023]
Abstract
The traditional role of food packaging is continuing to evolve in response to changing market needs. Current drivers such as consumer's demand for safer, "healthier," and higher-quality foods, ideally with a long shelf-life; the demand for convenient and transparent packaging, and the preference for more sustainable packaging materials, have led to the development of new packaging technologies, such as active packaging (AP). As defined in the European regulation (EC) No 450/2009, AP systems are designed to "deliberately incorporate components that would release or absorb substances into or from the packaged food or the environment surrounding the food." Active packaging materials are thereby "intended to extend the shelf-life or to maintain or improve the condition of packaged food." Although extensive research on AP technologies is being undertaken, many of these technologies have not yet been implemented successfully in commercial food packaging systems. Broad communication of their benefits in food product applications will facilitate the successful development and market introduction. In this review, an overview of AP technologies, such as antimicrobial, antioxidant or carbon dioxide-releasing systems, and systems absorbing oxygen, moisture or ethylene, is provided, and, in particular, scientific publications illustrating the benefits of such technologies for specific food products are reviewed. Furthermore, the challenges in applying such AP technologies to food systems and the anticipated direction of future developments are discussed. This review will provide food and packaging scientists with a thorough understanding of the benefits of AP technologies when applied to specific foods and hence can assist in accelerating commercial adoption.
Collapse
Affiliation(s)
- Selçuk Yildirim
- Inst. of Food and Beverage Innovation, Dept. of Life Sciences and Facility Management, Zurich Univ. of Applied Sciences, 8820 Wädenswil, Switzerland
| | - Bettina Röcker
- Inst. of Food and Beverage Innovation, Dept. of Life Sciences and Facility Management, Zurich Univ. of Applied Sciences, 8820 Wädenswil, Switzerland
| | | | - Julie Nilsen-Nygaard
- Nofima - Norwegian Inst. of Food, Fisheries and Aquaculture Research, 1430 Aas, Norway
| | - Zehra Ayhan
- Faculty of Engineering, Dept. of Food Engineering, Sakarya Univ., Serdivan, Sakarya, Turkey
| | - Ramune Rutkaite
- Faculty of Chemical Technology, Dept. of Polymer Chemistry and Technology, Kaunas Univ. of Technology, 50254 Kaunas, Lithuania
| | - Tanja Radusin
- Inst. of Food Technology, Univ. of Novi Sad, 21000 Novi Sad, Serbia
| | - Patrycja Suminska
- Faculty of Food Sciences and Fisheries, Center of Bioimmobilization and Innovative Packaging Materials, West Pomeranian Univ. of Technology, 71-270 Szczecin, Poland
| | - Begonya Marcos
- IRTA, Food Technology, Finca Camps i Armet s/n, 17121 Monells, Spain
| | - Véronique Coma
- UMR CNRS 5629, LCPO, Bordeaux Univ., 33607 PESSAC cedex, France
| |
Collapse
|
6
|
Choi KD, Kim HY, Shin IS. Antifungal activity of isothiocyanates extracted from horseradish ( Armoracia rusticana) root against pathogenic dermal fungi. Food Sci Biotechnol 2017; 26:847-852. [PMID: 30263612 DOI: 10.1007/s10068-017-0104-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/28/2017] [Accepted: 03/02/2017] [Indexed: 11/25/2022] Open
Abstract
To develop natural antifungal agents against pathogenic dermal fungi, the antifungal activity of isothiocyanates (ITCs) extracted from horseradish (Armoracia rusticana) root was investigated. A paper disk diffusion assay showed that ITCs inhibited growth of the four pathogenic dermal fungi (Trichophyton rubrum, Trichophyton mentagrophytes, Microsporum canis, and Epidermophyton floccosum) at 5000 μg/mL, as well as perfectly inhibited the growth of the fungi at 10,000 μg/mL in a concentration-dependent manner. The minimum inhibitory concentrations of ITCs against T. rubrum, T. mentagrophytes, M. canis, and E. floccosum were 200, 200, 100, and 100 μg/mL, respectively. The minimum fungicidal concentrations of ITCs against the four pathogenic dermal fungi were 200 μg/mL. These results strongly suggested that ITCs extracted from horseradish root can be a candidate of natural antifungal agents against pathogenic dermal fungi, even though further study is needed to investigate how to use ITCs in clinical therapy.
Collapse
Affiliation(s)
- Kyu-Duck Choi
- Korea Institute Food Safety Management Accreditation, Cheongju, Chungbuk 28160 Korea
| | - Hee-Yeon Kim
- 2Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung, Gangwon 25457 Korea
| | - Il-Shik Shin
- 2Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung, Gangwon 25457 Korea
| |
Collapse
|
7
|
Effect of a polypropylene ((PP) patch containing isothiocyanates (ITCs) extracted from horseradish (Armoracia rusticana) root on the shelf-life of low-salt Myeong-ran Jeotgal. Food Sci Biotechnol 2015. [DOI: 10.1007/s10068-015-0275-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|