1
|
Mika M, Wikiera A. Enzymatic Hydrolysis as an Effective Method for Obtaining Wheat Gluten Hydrolysates Combining Beneficial Functional Properties with Health-Promoting Potential. Molecules 2024; 29:4407. [PMID: 39339401 PMCID: PMC11434277 DOI: 10.3390/molecules29184407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/12/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
The byproduct from wheat starch production contains approximately 70% gluten (WG) and is an inexpensive but demanding protein raw material for the food industry. This study attempted to determine the optimal hydrolysis conditions for such raw material to obtain peptides combining beneficial functional characteristics with health-promoting activity. The proteases Bromelain, Alcalase, Flavourzyme, and a protease from A. saitoi were used for hydrolysis. It was shown that the tested proteases differ both in terms of the effective hydrolysis conditions of gluten and the profile of the released hydrolysates. Bromelain was particularly effective in converting gluten into peptides, combining beneficial health and functional properties. It achieved maximum activity (189 U/g) against WG at pH 6 and 60 °C, and the best-balanced peptides in terms of desired properties were released at a dose of 2.5 U/g. These peptides were free from most allergenic epitopes, effectively inhibited ACE, and, at 0.34 g, were equivalent to the approved dose of BHT. Their emulsifying activity was higher than that of gluten, and the foaming formation and stabilization potential exceeded that of ovalbumin by 10% and 19%, respectively. It seems that Bromelain-released WG hydrolysates are a promising candidate for a safe fat stabilizer and egg white substitute.
Collapse
Affiliation(s)
- Magdalena Mika
- Department of Biotechnology and General Food Technology, Faculty of Food Technology, Agricultural University of Krakow, 31-120 Krakow, Poland
| | - Agnieszka Wikiera
- Department of Medical Physiology, Faculty of Health Sciences, Jagiellonian University Medical College, 31-008 Krakow, Poland
| |
Collapse
|
2
|
Ding Y, Ban Q, Wu Y, Sun Y, Zhou Z, Wang Q, Cheng J, Xiao H. Effect of high hydrostatic pressure on the edible quality, health and safety attributes of plant-based foods represented by cereals and legumes: a review. Crit Rev Food Sci Nutr 2021:1-19. [PMID: 34839776 DOI: 10.1080/10408398.2021.2005531] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Consumers today are increasingly willing to reduce their meat consumption and adopt plant-based alternatives in their diet. As a main source of plant-based foods, cereals and legumes (CLs) together could make up for all the essential nutrients that humans consume daily. However, the consumption of CLs and their derivatives is facing many challenges, such as the poor palatability of coarse grains and vegetarian meat, the presence of anti-nutritional factors, and allergenic proteins in CLs, and the vulnerability of plant-based foods to microbial contamination. Recently, high hydrostatic pressure (HHP) technology has been used to tailor the techno-functionality of plant proteins and induce cold gelatinization of starch in CLs to improve the edible quality of plant-based products. The nutritional value (e.g., the bioavailability of vitamins and minerals, reduction of anti-nutritional factors of legume proteins) and bio-functional properties (e.g., production of bioactive peptides, increasing the content of γ-aminobutyric acid) of CLs were significantly improved as affected by HHP. Moreover, the food safety of plant-based products could be significantly improved as well. HHP lowered the risk of microbial contamination through the inactivation of numerous microorganisms, spores, and enzymes in CLs and alleviated the allergy symptoms from consumption of plant-based foods.
Collapse
Affiliation(s)
- Yangyue Ding
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Qingfeng Ban
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China.,Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Yue Wu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yuxue Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Zhihao Zhou
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Qi Wang
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Jianjun Cheng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
3
|
Gao H, Jorgensen R, Raghunath R, Nagisetty S, Ng PKW, Gangur V. Creating hypo-/nonallergenic wheat products using processing methods: Fact or fiction? Compr Rev Food Sci Food Saf 2021; 20:6089-6115. [PMID: 34455695 DOI: 10.1111/1541-4337.12830] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 07/14/2021] [Accepted: 07/29/2021] [Indexed: 12/29/2022]
Abstract
Wheat allergy is a potentiallylife-threatening disease that affects millions of people around the world. Food processing has been shown to influence the allergenicity of wheat and other major foods. However, a comprehensive review evaluating whether or not food processing can be used to develop hypo-/nonallergenic wheat products is unavailable. There were three objectives for this study: (1) to critically evaluate the evidence on the effect of fermentation, thermal processing, and enzyme or acid hydrolysis on wheat allergenicity so as to identify the potential for and challenges of using these methods to produce hypo-/nonallergenic wheat products; (2) to identify the molecular effects of food processing needed to create such products; and (3) to map the concept questions for future research and development to produce hypo-/nonallergenic wheat products. We performed literature research using PubMed and Google Scholar databases with various combinations of keywords to generate the data to accomplish these objectives. We found that: (1) food processing significantly modulates wheat allergenicity; while some methods can reduce or even abolish the allergenicity, others can create mega allergens; and (2) fermentation and enzymatic hydrolysis hold the most potential to create novel hypo-/nonallergenic wheat products; however, preclinical validation and human clinical trials are currently lacking. We also identify five specific research concepts to advance the research to enable the creation of hypo-/nonallergenic wheat products for application in food, medical, and cosmetic industries.
Collapse
Affiliation(s)
- Haoran Gao
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan, USA
| | - Rick Jorgensen
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan, USA
| | - Rajsri Raghunath
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan, USA
| | - Siddharth Nagisetty
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan, USA
| | - Perry K W Ng
- Cereal Science Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan, USA
| | - Venu Gangur
- Food Allergy and Immunology Laboratory, Department of Food Science and Human Nutrition, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
4
|
A comparative study on properties of fish meat hydrolysates produced by an enzymatic process at high pressure. Food Sci Biotechnol 2019; 29:75-83. [PMID: 31976129 DOI: 10.1007/s10068-019-00648-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 06/17/2019] [Accepted: 07/12/2019] [Indexed: 01/27/2023] Open
Abstract
Fish meat hydrolysates (FMHs) were produced from nine fishes at a high pressure of 300 MPa using Flavourzyme 500MG and a protease mixture including Flavourzyme 500MG, Alcalase 2.4L, Protamex, and Marugoto E. The electropherograms of the FMHs showed major far-migrating peptide bands in the vicinity of 5 kDa. The total soluble solids (TSS) and soluble nitrogen content in the FMHs were species-specific and were mostly higher in the case of four-enzyme hydrolysis. Most of the HPLC peptide peaks of the rockfish meat hydrolysates appeared within 10 min of elution, and total free amino acids in the hydrolysate increased abruptly as a result of four-enzyme hydrolysis. The FMHs, which were high in TSS and soluble nitrogen, may be applicable for use in food as seasoning, and could be produced efficiently via the enzymatic process used in this study.
Collapse
|
5
|
Fuciños C, Estévez N, Míguez M, Fajardo P, Chapela MJ, Gondar D, Rúa ML. Effectiveness of proteolytic enzymes to remove gluten residues and feasibility of incorporating them into cleaning products for industrial purposes. Food Res Int 2019; 120:167-177. [PMID: 31000227 DOI: 10.1016/j.foodres.2019.02.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 02/17/2019] [Accepted: 02/19/2019] [Indexed: 10/27/2022]
Abstract
The development of protocols for efficient gluten elimination is one of the most critical aspects of any allergen management strategy in the industry. The suitability of different proteolytic enzymes to be included in a cleaning formulation that allows the effective elimination of gluten residues was studied. Alcalase (ALC), neutrase (NEUT) and flavourzyme (FLAV) were selected from in silico analysis. The presence of 1% (v/v) of linear alkylbenzene sulphonate (LAS), a common anionic detergent, improved the gluten solubility, which may favour its elimination. Chromatographic analysis showed that the three enzymes studied were able to hydrolyse gluten in the presence of LAS. The highest percentage of short peptides (< 5 kDa) was achieved with ALC, what increases the probability of reducing the gluten antigenicity. Besides, in the presence of ALC and detergent LAS have detected the lowest levels of gluten with ELISA kits. So, effective amounts of ALC and LAS were added to a cleaning formulation, where its proteolytic activity was maintained above 90% after 37 days at 4 °C and 25 °C (under dark). Preliminary validation of the effectiveness enzymatic cleaning formulation to hydrolyse gluten was performed in a ready-to-eat/frozen food company, in which previous episodes of cross-contamination with gluten have been detected. The gluten content decreased to values below 0.125 μg/100 cm2 when the cleaning formulation was tested on different surfaces with different cleaning protocols, demonstrating the high suitability of the enzymatic cleaning formulation developed.
Collapse
Affiliation(s)
- Clara Fuciños
- Analytical and Food Chemistry Department, Faculty of Sciences, University of Vigo, As Lagoas, 32004 Ourense, Spain.
| | - Natalia Estévez
- Analytical and Food Chemistry Department, Faculty of Sciences, University of Vigo, As Lagoas, 32004 Ourense, Spain
| | - Martín Míguez
- Analytical and Food Chemistry Department, Faculty of Sciences, University of Vigo, As Lagoas, 32004 Ourense, Spain
| | - Paula Fajardo
- Health, Nutrition and Pharma Unit, R&D Area, ANFACO-CECOPESCA, Colegio Universitario 16, Vigo, 36310 Pontevedra, Spain
| | - María José Chapela
- Health, Nutrition and Pharma Unit, R&D Area, ANFACO-CECOPESCA, Colegio Universitario 16, Vigo, 36310 Pontevedra, Spain
| | - Dora Gondar
- KEMEGAL, Pol. Ind. Pousadoiro, Parcela 11, Vilagarcía de Arousa 36600, Spain
| | - M Luisa Rúa
- Analytical and Food Chemistry Department, Faculty of Sciences, University of Vigo, As Lagoas, 32004 Ourense, Spain
| |
Collapse
|
6
|
Wheat Gluten Amino Acid Analysis by High-Performance Anion-Exchange Chromatography with Integrated Pulsed Amperometric Detection. Methods Mol Biol 2019; 2030:381-394. [PMID: 31347132 DOI: 10.1007/978-1-4939-9639-1_28] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The present chapter describes an accurate and user-friendly method for determining amino acid composition of wheat gluten proteins and their gliadin and glutenin fractions. The method consists of hydrolysis of the peptide bonds in 6.0 M hydrochloric acid (HCl) solution at 110 °C for 24 h, followed by evaporation of the acid and separation of the free amino acids by high-performance anion-exchange chromatography with integrated pulsed amperometric detection (HPAEC-IPAD). In contrast to conventional methods, the analysis requires neither pre- or post-column derivatization nor a time-consuming oxidation or derivatization step prior to hydrolysis. Correction factors account for incomplete release of Val and Ile even after hydrolysis for 24 h and for losses of Ser during evaporation. Gradient conditions including an extra eluent allow multiple sequential sample analyses without risk of Glu accumulation on the anion-exchange column which otherwise would result from high Gln levels in gluten proteins.
Collapse
|