1
|
Kciuk M, Garg N, Dhankhar S, Saini M, Mujwar S, Devi S, Chauhan S, Singh TG, Singh R, Marciniak B, Gielecińska A, Kontek R. Exploring the Comprehensive Neuroprotective and Anticancer Potential of Afzelin. Pharmaceuticals (Basel) 2024; 17:701. [PMID: 38931368 PMCID: PMC11206995 DOI: 10.3390/ph17060701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 06/28/2024] Open
Abstract
Neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, Huntington's disease, and others) and cancer, seemingly disparate in their etiology and manifestation, exhibit intriguing associations in certain cellular and molecular processes. Both cancer and neurodegenerative diseases involve the deregulation of cellular processes such as apoptosis, proliferation, and DNA repair and pose a significant global health challenge. Afzelin (kaempferol 3-O-rhamnoside) is a flavonoid compound abundant in various plant sources. Afzelin exhibits a diverse range of biological activities, offering promising prospects for the treatment of diseases hallmarked by oxidative stress and deregulation of cell death pathways. Its protective potential against oxidative stress is also promising for alleviating the side effects of chemotherapy. This review explores the potential therapeutic implications of afzelin, including its capacity to mitigate oxidative stress, modulate inflammation, and promote cellular regeneration in neurodegenerative and cancer diseases.
Collapse
Affiliation(s)
- Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237 Lodz, Poland; (M.K.); (B.M.); (A.G.); (R.K.)
| | - Nitika Garg
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (N.G.); (S.D.); (S.D.); (T.G.S.)
| | - Sanchit Dhankhar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (N.G.); (S.D.); (S.D.); (T.G.S.)
| | - Monika Saini
- M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be) University, Mullana, Ambala 133207, Haryana, India;
- Swami Vivekanand College of Pharmacy, Ramnagar, Banur 140601, Punjab, India
| | - Somdutt Mujwar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (N.G.); (S.D.); (S.D.); (T.G.S.)
| | - Sushma Devi
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (N.G.); (S.D.); (S.D.); (T.G.S.)
| | - Samrat Chauhan
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (N.G.); (S.D.); (S.D.); (T.G.S.)
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (N.G.); (S.D.); (S.D.); (T.G.S.)
| | - Randhir Singh
- Department of Pharmacology, Central University of Punjab, Bathinda 151401, Punjab, India;
| | - Beata Marciniak
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237 Lodz, Poland; (M.K.); (B.M.); (A.G.); (R.K.)
| | - Adrianna Gielecińska
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237 Lodz, Poland; (M.K.); (B.M.); (A.G.); (R.K.)
- Doctoral School of Exact and Natural Sciences, University of Lodz, 90-237 Lodz, Poland
| | - Renata Kontek
- Department of Molecular Biotechnology and Genetics, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237 Lodz, Poland; (M.K.); (B.M.); (A.G.); (R.K.)
| |
Collapse
|
2
|
Hong SM, Yoon DH, Lee MK, Lee JK, Kim SY. A Mixture of Ginkgo biloba L. Leaf and Hericium erinaceus (Bull.) Pers. Fruit Extract Attenuates Scopolamine-Induced Memory Impairments in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9973678. [PMID: 35126824 PMCID: PMC8813274 DOI: 10.1155/2022/9973678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 12/21/2021] [Accepted: 12/31/2021] [Indexed: 11/17/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that is characterized by loss of memory and cognitive impairment via dysfunction of the cholinergic nervous system. In cholinergic dysfunction, it is well known that impaired cAMP response element-binding protein (CREB) and brain-derived neurotrophic factor (BDNF) signaling are major pathological markers and are some of the strategies for the development of AD therapy. Therefore, this study is aimed at evaluating whether a mixture comprising Ginkgo biloba L. leaf (GL) and Hericium erinaceus (Bull.) Pers. (HE) fruit extract (GH mixture) alleviated cognitive impairment induced in a scopolamine-induced model. It was discovered that GH reduced neuronal apoptosis and promoted neuronal survival by activating BDNF signaling in an in vitro assay. In addition, the GH (p.o. 240 mg/kg) oral administration group significantly restored the cognitive deficits of the scopolamine-induced mouse group (i.p. 1.2 mg/kg) in the behavior tests such as Y-maze and novel object recognition task (NORT) tests. This mixture also considerably enhanced cholinergic system function in the mouse brain. Furthermore, GH markedly upregulated the expressed levels of extracellular signal-regulated kinase (ERK), CREB, and BDNF protein levels. These results demonstrated that GH strongly exerted a neuroprotective effect on the scopolamine-induced mouse model, suggesting that an optimized mixture of GL and HE could be used as a good material for developing functional foods to aid in the prevention of neurodegenerative diseases, including AD.
Collapse
Affiliation(s)
- Seong Min Hong
- College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon University, 191, Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Da Hye Yoon
- College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon University, 191, Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea
| | - Mi Kyeong Lee
- College of Pharmacy, Chungbuk National University, Cheongju 28160, Republic of Korea
| | | | - Sun Yeou Kim
- College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon University, 191, Hambakmoe-ro, Yeonsu-gu, Incheon 21936, Republic of Korea
| |
Collapse
|
3
|
Chen Z, Lu X, Li Q, Li T, Zhu L, Ma Q, Wang J, Lan W, Ren J. Systematic analysis of MYB gene family in Acer rubrum and functional characterization of ArMYB89 in regulating anthocyanin biosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6319-6335. [PMID: 33993245 DOI: 10.1093/jxb/erab213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
The v-myb avian myeloblastosis viral oncogene homolog (MYB) family of transcription factors is extensively distributed across the plant kingdom. However, the functional significance of red maple (Acer rubrum) MYB transcription factors remains unclear. Our research identified 393 MYB transcription factors in the Acer rubrum genome, and these ArMYB members were unevenly distributed across 34 chromosomes. Among them, R2R3 was the primary MYB sub-class, which was further divided into 21 sub-groups with their Arabidopsis homologs. The evolution of the ArMYB family was also investigated, with the results revealing several R2R3-MYB sub-groups with expanded membership in woody species. Here, we report on the isolation and characterization of ArMYB89 in red maple. Quantitative real-time PCR analysis revealed that ArMYB89 expression was significantly up-regulated in red leaves in contrast to green leaves. Sub-cellular localization experiments indicated that ArMYB89 was localized in the nucleus. Further experiments revealed that ArMYB89 could interact with ArSGT1 in vitro and in vivo. Overexpression of ArMYB89 in tobacco enhances the anthocyanin content of transgenic plants. In conclusion, our results contribute to the elucidation of a theoretical basis for the ArMYB gene family, and provide a foundation for further characterization of the biological roles of MYB genes in the regulation of Acer rubrum leaf color.
Collapse
Affiliation(s)
- Zhu Chen
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Xiaoyu Lu
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Qianzhong Li
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Tingchun Li
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Lu Zhu
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Qiuyue Ma
- Institute of Leisure Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jingjing Wang
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Wei Lan
- School of Biology and Food Engineering, Fuyang Normal University, Fuyang Anhui, China
| | - Jie Ren
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, Hefei, China
| |
Collapse
|
4
|
Hsu KC, Chu JC, Tseng HJ, Liu CI, Wang HC, Lin TE, Lee HS, Hsin LW, Wang AHJ, Lin CH, Huang WJ. Synthesis and biological evaluation of phenothiazine derivative-containing hydroxamic acids as potent class II histone deacetylase inhibitors. Eur J Med Chem 2021; 219:113419. [PMID: 33845233 DOI: 10.1016/j.ejmech.2021.113419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/22/2021] [Accepted: 03/26/2021] [Indexed: 12/11/2022]
Abstract
The pathogenesis of Alzheimer's disease (AD) has been associated with dysregulation of histone deacetylases (HDACs). Previously, acridine-based HDAC inhibitors have shown potential in ameliorating HDAC activity and enhancing neurite outgrowth. In this study, the acridine ring was modified using various phenothiazine derivatives. Several resulting compounds exhibited potent enzyme-inhibiting activity towards class II HDACs when compared to the clinically approved HDAC inhibitor SAHA. Compound 4f demonstrated the highest class II HDAC inhibition (IC50 = 4.6-600 nM), as well as promotion of neurite outgrowth. Importantly, compound 4f displayed no cytotoxicity against neuron cells. Compound 4f was further evaluated for cellular effects. Altogether, these findings show a potential strategy in HDAC inhibition for treatment of the neurological disease.
Collapse
Affiliation(s)
- Kai-Cheng Hsu
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Biomedical Commercialization Center, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Cancer Translational Medicine, Taiwan; Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Jung-Chun Chu
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Hui-Ju Tseng
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Chia-I Liu
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Hao-Ching Wang
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Tony Eight Lin
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan; Master Program in Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Hong-Sheng Lee
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ling-Wei Hsin
- School of Pharmacy, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Andrew H-J Wang
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Chien-Huang Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Wei-Jan Huang
- Ph.D. Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Pharmacognosy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
5
|
Brasil FB, Bertolini Gobbo RC, Souza de Almeida FJ, Luckachaki MD, Dall'Oglio EL, de Oliveira MR. The signaling pathway PI3K/Akt/Nrf2/HO-1 plays a role in the mitochondrial protection promoted by astaxanthin in the SH-SY5Y cells exposed to hydrogen peroxide. Neurochem Int 2021; 146:105024. [PMID: 33775716 DOI: 10.1016/j.neuint.2021.105024] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/26/2021] [Accepted: 03/18/2021] [Indexed: 12/19/2022]
Abstract
The mitochondria are the major source of reactive species in the mammalian cells. Hydrogen peroxide (H2O2) is a potent inducer of redox impairment by a mechanism, at least in part, dependent on its ability to impair mitochondrial function. H2O2 plays an important role in several pathological conditions, including neurodegeneration and cardiovascular diseases. Astaxanthin (AST) is a xanthophyll that may be found in microalgae, crustaceans, and salmon and exhibits antioxidant and anti-inflammatory effects in different cell types. Even though there is evidence pointing to a role for AST as mitochondrial protectant agent, it was not clearly demonstrated how this xanthophyll attenuates mitochondrial stress. Therefore, we investigated here whether and how AST would be able to prevent the H2O2-induced mitochondrial dysfunction in the human neuroblastoma SH-SY5Y cells. We found that AST (20 μM) prevented the H2O2-induced loss of mitochondrial membrane potential (MMP) and decrease in the activity of the Complexes I and V. AST pretreatment blocked the mitochondria-related pro-apoptotic effects elicited by H2O2. AST upregulated the enzyme heme oxygenase-1 (HO-1) and the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) by a mechanism dependent on the phosphoinositide 3-kinase/Akt (PI3K/Akt) signaling pathway. Inhibition of the PI3K/Akt or of the HO-1 enzyme abolished the AST-induced mitochondrial protection in cells challenged with H2O2. Silencing of Nrf2 caused similar effects. Thus, we suggest that AST promotes mitochondrial protection by a mechanism dependent on the PI3K/Akt/Nrf2/HO-1 signaling pathway in SH-SY5Y cells exposed to H2O2.
Collapse
Affiliation(s)
- Flávia Bittencourt Brasil
- Departamento de Ciências da Natureza, Campus Universitário de Rio das Ostras - Universidade Federal Fluminense (UFF), Rio de Janeiro, Brazil
| | - Rênata Cristina Bertolini Gobbo
- Grupo de Estudos em Terapia Mitocondrial, Departamento de Bioquímica "Tuiskon Dick", Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600 (Anexo), CEP 90035-000, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica "Tuiskon Dick", Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Fhelipe Jolner Souza de Almeida
- Programa de Pós-Graduação em Ciências da Saúde (PPGCS), Universidade Federal de Mato Grosso (UFMT), Cuiaba, MT, Brazil; Grupo de Estudos em Neuroquímica e Neurobiologia de Moléculas Bioativas, Departamento de Química, Universidade Federal de Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, CEP 78060-900, Cuiaba, MT, Brazil
| | - Matheus Dargesso Luckachaki
- Grupo de Estudos em Neuroquímica e Neurobiologia de Moléculas Bioativas, Departamento de Química, Universidade Federal de Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, CEP 78060-900, Cuiaba, MT, Brazil
| | - Evandro Luiz Dall'Oglio
- Grupo de Estudos em Neuroquímica e Neurobiologia de Moléculas Bioativas, Departamento de Química, Universidade Federal de Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, CEP 78060-900, Cuiaba, MT, Brazil
| | - Marcos Roberto de Oliveira
- Grupo de Estudos em Terapia Mitocondrial, Departamento de Bioquímica "Tuiskon Dick", Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Rua Ramiro Barcelos, 2600 (Anexo), CEP 90035-000, Porto Alegre, RS, Brazil; Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Departamento de Bioquímica "Tuiskon Dick", Instituto de Ciências Básicas da Saúde (ICBS), Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Grupo de Estudos em Neuroquímica e Neurobiologia de Moléculas Bioativas, Departamento de Química, Universidade Federal de Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, CEP 78060-900, Cuiaba, MT, Brazil.
| |
Collapse
|
6
|
Neuroprotective Effect of 3-[(4-Chlorophenyl)selanyl]-1-methyl-1H-indole on Hydrogen Peroxide-Induced Oxidative Stress in SH-SY5Y Cells. Neurochem Res 2021; 46:535-549. [PMID: 33548035 DOI: 10.1007/s11064-020-03190-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/11/2020] [Accepted: 11/27/2020] [Indexed: 10/22/2022]
Abstract
Extensive data have reported the involvement of oxidative stress in the pathogenesis of neuropsychiatric disorders, prompting the pursuit of antioxidant molecules that could become adjuvant pharmacological agents for the management of oxidative stress-associated disorders. The 3-[(4-chlorophenyl)selanyl]-1-methyl-1H-indole (CMI) has been reported as an antioxidant and immunomodulatory compound that improves depression-like behavior and cognitive impairment in mice. However, the exact effect of CMI on specific brain cells is yet to be studied. In this context, the present study aimed to evaluate the antioxidant activity of CMI in H2O2-induced oxidative stress on human dopaminergic neuroblastoma cells (SH-SY5Y) and to shed some light into its possible mechanism of action. Our results demonstrated that the treatment of SH-SY5Y cells with 4 µM CMI protected them against H2O2 (343 μM)-induced oxidative stress. Specifically, CMI prevented the increased number of reactive oxygen species (ROS)-positive cells induced by H2O2 exposure. Furthermore, CMI treatment increased the levels of reduced glutathione in SH-SY5Y cells. Molecular docking studies demonstrated that CMI might interact with enzymes involved in glutathione metabolism (i.e., glutathione peroxidase and glutathione reductase) and H2O2 scavenging (i.e., catalase). In silico pharmacokinetics analysis predicted that CMI might be well absorbed, metabolized, and excreted, and able to cross the blood-brain barrier. Also, CMI was not considered toxic overall. Taken together, our results suggest that CMI protects dopaminergic neurons from H2O2-induced stress by lowering ROS levels and boosting the glutathione system. These results will facilitate the clinical application of CMI to treat nervous system diseases associated with oxidative stress.
Collapse
|
7
|
Kim JH, Lee S, Cho EJ. The Protective Effects of Acer okamotoanum and Isoquercitrin on Obesity and Amyloidosis in a Mouse Model. Nutrients 2020; 12:nu12051353. [PMID: 32397362 PMCID: PMC7284521 DOI: 10.3390/nu12051353] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/01/2020] [Accepted: 05/05/2020] [Indexed: 12/19/2022] Open
Abstract
Obesity increases risk of Alzheimer's Disease (AD). A high fat diet (HFD) can lead to amyloidosis and amyloid beta (Aβ) accumulation, which are hallmarks of AD. In this study, protective effects of the ethyl acetate fraction of Acer okamotoanum (EAO) and isoquercitrin were evaluated on obesity and amyloidosis in the HFD- and Aβ-induced mouse model. To induce obesity and AD by HFD and Aβ, mice were provided with HFD for 10 weeks and were intracerebroventricularly injected with Aβ25-35. For four weeks, 100 and 10 mg/kg/day of EAO and isoquercitrin, respectively, were administered orally. Administration of EAO and isoquercitrin significantly decreased body weight in HFD and Aβ-injected mice. Additionally, EAO- and isoquercitrin-administered groups attenuated abnormal adipokines release via a decrease in leptin and an increase in adiponectin levels compared with the control group. Furthermore, HFD and Aβ-injected mice had damaged liver tissues, but EAO- and isoquercitrin-administered groups attenuated liver damage. Moreover, administration of EAO and isoquercitrin groups down-regulated amyloidosis-related proteins in the brain such as β-secretase, presenilin (PS)-1 and PS-2 compared with HFD and Aβ-injected mice. This study indicated that EAO and isoquercitrin attenuated HFD and Aβ-induced obesity and amyloidosis, suggesting that they could be effective in preventing and treating both obesity and AD.
Collapse
Affiliation(s)
- Ji Hyun Kim
- Department of Food Science and Nutrition & Kimchi Research Institute, Pusan National University, Busan 46241, Korea;
| | - Sanghyun Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong 17546, Korea;
| | - Eun Ju Cho
- Department of Food Science and Nutrition & Kimchi Research Institute, Pusan National University, Busan 46241, Korea;
- Correspondence: ; Tel.: +82-51-510-2837; Fax: +82-51-583-3648
| |
Collapse
|
8
|
Bae WY, Kim HY, Choi KS, Chang KH, Hong YH, Eun J, Lee NK, Paik HD. Investigation of Brassica juncea, Forsythia suspensa, and Inula britannica: phytochemical properties, antiviral effects, and safety. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:253. [PMID: 31510997 PMCID: PMC6737602 DOI: 10.1186/s12906-019-2670-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 09/03/2019] [Indexed: 12/19/2022]
Abstract
BACKGROUND General antiviral agents such as oseltamivir are associated with certain adverse effects and the emergence of resistance. This study investigated the phytochemical properties, antiviral activities, and safety of three herbs used in traditional Korean medicine. METHODS Extracts of three medicinal herbs (Brassica juncea, Forsythia suspensa, and Inula britannica) were prepared using ethanol or water. The total phenolic, flavonoid, and saponin content, condensed tannin content, and reducing sugar content of the herb extracts were determined via phytochemical screening. Tandem mass analysis was performed using an ultra-performance liquid chromatography (UPLC)-electrospray ionization (ESI)-Q/Orbitrap instrument. Virus titrations were determined via tissue culture infective dose (TCID50) and cytotoxicity assays. Hemolysis and hepatotoxicity were measured to determine safety. RESULTS Among the three medicinal herbs, F. suspensa showed the highest concentration of phenolic compounds, flavonoids, and saponins. The number of phytochemical compounds detected via tandem mass analysis of B. juncea, F. suspensa, and I. britannica was 5 (including sinigrin, m/z [M-H] = 358.02), 14 (including forsythoside A, m/z [M-H] = 623.19), and 18 (including chlorogenic acid, m/z [M-H] = 353.20), respectively. The antiviral effects of the B. juncea extracts (ethanol and water) and I. britannica extract (ethanol) were further investigated. The ethanol extract of B. juncea showed a 3 Log TCID50/25 μL virus titration reduction and the water extract showed a selectivity index of 13.668 against infected influenza H1N1 virus A/NWS/33. The B. juncea extracts did not show hemolysis activities and hepatotoxicity (< 20%). The ethanol extract of I. britannica showed the most effective virus titration decrease, whereas its hemolytic and hepatotoxicity values were the most significantly different compared to the control. Despite the high concentration of phytochemicals detected in F. suspensa, the extract showed approximately 1 Log TCID50/25 μL at the highest concentration. CONCLUSION B. juncea may show antiviral effects against H1N1 in a host. In addition, B. juncea may also show decreased disadvantages compared to other antiviral agents.
Collapse
Affiliation(s)
- Won-Young Bae
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, South Korea
| | - Hyeong-Yeop Kim
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, South Korea
| | - Kyoung-Sook Choi
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, South Korea
| | | | - Young-Ho Hong
- CJ CheilJedang Blossom Park, Gyeonggi-do, South Korea
| | - Jongsu Eun
- CJ CheilJedang Blossom Park, Gyeonggi-do, South Korea
| | - Na-Kyoung Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, South Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, South Korea.
| |
Collapse
|
9
|
Chen Z, Lu X, Xuan Y, Tang F, Wang J, Shi D, Fu S, Ren J. Transcriptome analysis based on a combination of sequencing platforms provides insights into leaf pigmentation in Acer rubrum. BMC PLANT BIOLOGY 2019; 19:240. [PMID: 31170934 PMCID: PMC6555730 DOI: 10.1186/s12870-019-1850-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 05/28/2019] [Indexed: 05/05/2023]
Abstract
BACKGROUND Red maple (Acer rubrum L.) is one of the most common and widespread trees with colorful leaves. We found a mutant with red, yellow, and green leaf phenotypes in different branches, which provided ideal materials with the same genetic relationship, and little interference from the environment, for the study of complex metabolic networks that underly variations in the coloration of leaves. We applied a combination of NGS and SMRT sequencing to various red maple tissues. RESULTS A total of 125,448 unigenes were obtained, of which 46 and 69 were thought to be related to the synthesis of anthocyanins and carotenoids, respectively. In addition, 88 unigenes were presumed to be involved in the chlorophyll metabolic pathway. Based on a comprehensive analysis of the pigment gene expression network, the mechanisms of leaf color were investigated. The massive accumulation of Cy led to its higher content and proportion than other pigments, which caused the redness of leaves. Yellow coloration was the result of the complete decomposition of chlorophyll pigments, the unmasking of carotenoid pigments, and a slight accumulation of Cy. CONCLUSIONS This study provides a systematic analysis of color variations in the red maple. Moreover, mass sequence data obtained by deep sequencing will provide references for the controlled breeding of red maple.
Collapse
Affiliation(s)
- Zhu Chen
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, Hefei, 230031 China
| | - Xiaoyu Lu
- College of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036 Anhui China
| | - Yun Xuan
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, Hefei, 230031 China
| | - Fei Tang
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, Hefei, 230031 China
| | - Jingjing Wang
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, Hefei, 230031 China
| | - Dan Shi
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, Hefei, 230031 China
| | - Songling Fu
- College of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036 Anhui China
| | - Jie Ren
- Institute of Agricultural Engineering, Anhui Academy of Agricultural Sciences, Hefei, 230031 China
| |
Collapse
|
10
|
Kim JH, Lee S, Cho EJ. Acer okamotoanumand isoquercitrin improve cognitive functionviaattenuation of oxidative stress in high fat diet- and amyloid beta-induced mice. Food Funct 2019; 10:6803-6814. [DOI: 10.1039/c9fo01694e] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
High fat diet (HFD) and accumulation of amyloid beta (Aβ) are known as a risk factor of Alzheimer's disease.Acer okamotoanumand isoquercitrin improved cognition function against both HFD and Aβ accumulation by inhibiting oxidative stress.
Collapse
Affiliation(s)
- Ji Hyun Kim
- Department of Food Science and Nutrition & Kimchi Research Institute
- Pusan National University
- Busan 46241
- Republic of Korea
| | - Sanghyun Lee
- Department of Plant Science and Technology
- Chung-Ang University
- Anseong 17546
- Republic of Korea
| | - Eun Ju Cho
- Department of Food Science and Nutrition & Kimchi Research Institute
- Pusan National University
- Busan 46241
- Republic of Korea
| |
Collapse
|