1
|
Marasco G, Cremon C, Salvi D, Meacci D, Dajti E, Colecchia L, Barbaro MR, Stanghellini V, Barbara G. Functional Foods and Nutraceuticals in Irritable Bowel Syndrome. J Clin Med 2025; 14:1830. [PMID: 40142637 PMCID: PMC11943262 DOI: 10.3390/jcm14061830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
Irritable bowel syndrome (IBS) is a common disorder of gut-brain interaction, with a multifactorial pathophysiology involving gut-brain axis dysregulation, visceral hypersensitivity, microbiota imbalance, and immune dysfunction. Traditional IBS management emphasizes dietary modifications and pharmacologic therapies. However, increasing attention has been directed toward functional foods, nutraceuticals, and herbal remedies due to their potential to target IBS pathophysiological mechanisms with favorable safety profiles. This clinical review explores the role of these adjunctive therapies, evaluating evidence from preclinical and clinical studies. Functional foods such as kiwifruit, prunes, and rye bread demonstrate benefits in bowel habit regulation through fiber content and microbiota modulation. Nutraceuticals like peppermint oil, palmitoylethanolamide, and herbal mixtures exhibit anti-inflammatory, antispasmodic, and analgesic effects. Prebiotics provide substrate-driven microbiota changes, although dosage is key, as given their fermentative properties, when used at high dosages, they can exacerbate symptoms in some individuals. Probiotics and postbiotics offer microbiota-based interventions with promising symptom relief in IBS subtypes, although factors for personalized treatment still need to be further elucidated. These strategies highlight a paradigm shift in IBS management, integrating diet-based therapies with evolving nutraceutical options to improve patient outcomes. Despite promising findings, challenges in standardizing definitions, mechanisms, and safety profiles still remain. Rigorous, large-scale trials to validate the therapeutic potential of these interventions are needed, to enhance the benefits of these compounds with an individualized treatment approach.
Collapse
Affiliation(s)
- Giovanni Marasco
- IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy; (G.M.); (D.S.); (L.C.); (M.R.B.)
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy;
| | - Cesare Cremon
- IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy; (G.M.); (D.S.); (L.C.); (M.R.B.)
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy;
| | - Daniele Salvi
- IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy; (G.M.); (D.S.); (L.C.); (M.R.B.)
- Department of Gastroenterology and Endoscopy, Fondazione Poliambulanza Istituto Ospedaliero, 25124 Brescia, Italy
| | - David Meacci
- IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy; (G.M.); (D.S.); (L.C.); (M.R.B.)
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy;
| | - Elton Dajti
- IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy; (G.M.); (D.S.); (L.C.); (M.R.B.)
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy;
| | - Luigi Colecchia
- IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy; (G.M.); (D.S.); (L.C.); (M.R.B.)
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy;
| | - Maria Raffaella Barbaro
- IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy; (G.M.); (D.S.); (L.C.); (M.R.B.)
| | - Vincenzo Stanghellini
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy;
| | - Giovanni Barbara
- IRCCS Azienda Ospedaliero Universitaria di Bologna, 40138 Bologna, Italy; (G.M.); (D.S.); (L.C.); (M.R.B.)
- Department of Medical and Surgical Sciences, University of Bologna, 40126 Bologna, Italy;
| |
Collapse
|
2
|
Ecklu-Mensah G, Miller R, Maseng MG, Hawes V, Hinz D, Kim C, Gilbert JA. Modulating the human gut microbiome and health markers through kombucha consumption: a controlled clinical study. Sci Rep 2024; 14:31647. [PMID: 39738315 PMCID: PMC11686376 DOI: 10.1038/s41598-024-80281-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/18/2024] [Indexed: 01/02/2025] Open
Abstract
Fermented foods are becoming more popular due to their purported links to metabolic health and the gut microbiome. However, direct clinical evidence for the health claims is lacking. Here, we describe an eight-week clinical trial that explored the effects of a four-week kombucha supplement in healthy individuals consuming a Western diet, randomized into the kombucha (n = 16) or control (n = 8) group. We collected longitudinal stool and blood samples to profile the human microbiome and inflammation markers. We did not observe significant changes in either biochemical parameters or levels of circulating markers of inflammation across the entire cohort. However, paired analysis between baseline and end of intervention time points within kombucha or control groups revealed increases in fasting insulin and in HOMA-IR in the kombucha group whereas reductions in HDL cholesterol were associated with the control group. Shotgun metagenomic analysis revealed the relative abundance of Weizmannia, a kombucha-enriched probiotic and several SCFA producing taxa to be overrepresented in consumers at the end of the intervention. Collectively, in our healthy cohort consuming a Western diet, a short-term kombucha intervention induced modest impacts on human gut microbiome composition and biochemical parameters, which may be attributed to relatively small number of participants and the extensive inter-participant variability.
Collapse
Affiliation(s)
- Gertrude Ecklu-Mensah
- Department of Pediatrics and Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA.
| | - Rachel Miller
- Department of Pediatrics, University of California San Diego, Rady's Children Hospital, La Jolla, CA, USA
| | - Maria Gjerstad Maseng
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Dep. of Gastroenterology, Oslo University Hospital, Oslo, Norway
- Bio-Me, Oslo, Norway
| | - Vienna Hawes
- Department of Pediatrics and Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Denise Hinz
- La Jolla Institute for Immunology (LJI), La Jolla, CA, USA
| | - Cheryl Kim
- La Jolla Institute for Immunology (LJI), La Jolla, CA, USA
| | - Jack A Gilbert
- Department of Pediatrics and Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| |
Collapse
|
3
|
Costa MADC, da Silva Duarte V, Fraiz GM, Cardoso RR, da Silva A, Martino HSD, Dos Santos D'Almeida CT, Ferreira MSL, Corich V, Hamaker BR, Giacomini A, Bressan J, Barros FARD. Regular Consumption of Black Tea Kombucha Modulates the Gut Microbiota in Individuals with and without Obesity. J Nutr 2024:S0022-3166(24)01239-2. [PMID: 39732435 DOI: 10.1016/j.tjnut.2024.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/22/2024] [Accepted: 12/18/2024] [Indexed: 12/30/2024] Open
Abstract
BACKGROUND Kombucha, a fermented beverage obtained from a Symbiotic Culture of Bacteria and Yeast, has shown potential in modulating gut microbiota, although no clinical trials have been done. OBJECTIVES We aimed to evaluate the effects of regular black tea kombucha consumption on intestinal health in individuals with and without obesity. METHODS A pre-post clinical intervention study was conducted lasting 8 wk. Forty-six participants were allocated into 2 groups: normal weight + black tea kombucha (n = 23); and obese + black tea kombucha (n = 23). Blood, urine, and stool samples were collected at baseline (T0) and after 8 wk of intervention (T8). RESULTS A total of 145 phenolic compounds were identified in the kombucha, primarily flavonoids (81%) and phenolic acids (19%). Kombucha favored commensal bacteria such as Bacteroidota and Akkermanciaceae, especially in the obese group. Subdoligranulum, a butyrate producer, also increased in the obese group after kombucha consumption (P = 0.031). Obesity-associated genera Ruminococcus and Dorea were elevated in the obese group at baseline (P < 0.05) and reduced after kombucha consumption, becoming similar to the normal weight group (Ruminococcus: obese T8 × normal weight T8: P = 0.27; Dorea: obese T8 × normal weight T0: P = 0.57; obese T8 × normal weight T8: P = 0.32). Fungal diversity increased, with a greater abundance of Saccharomyces in both groups and reductions in Exophiala and Rhodotorula, particularly in the obese group. Pichia and Dekkera, key microorganisms in kombucha, were identified as biomarkers after the intervention. CONCLUSIONS Regular kombucha consumption positively influenced gut microbiota in both normal and obese groups, with more pronounced effects in the obese group, suggesting that it may be especially beneficial for those individuals. This trial was registered at Brazilian Clinical Trial Registry - ReBEC as UTN code U1111-1263-9550 (https://ensaiosclinicos.gov.br/rg/RBR-9832wsx).
Collapse
Affiliation(s)
- Mirian Aparecida de Campos Costa
- Bioactive Compounds and Carbohydrates (BIOCARB) Research Group, Department of Food Science and Technology, Universidade Federal de Viçosa, Viçosa, MG, Brazil; Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN, United States
| | - Vinícius da Silva Duarte
- Faculty of Chemistry, Biotechnology, and Food Science, The Norwegian University of Life Sciences, Ås, Norway
| | - Gabriela Macedo Fraiz
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, MG, Brazil; Department of Nutrition, Food Science and Physiology, Center for Nutrition Research, Universidad de Navarra, Pamplona, Spain
| | - Rodrigo Rezende Cardoso
- Bioactive Compounds and Carbohydrates (BIOCARB) Research Group, Department of Food Science and Technology, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Alessandra da Silva
- Public Health Epidemiology Graduate Program, Environmental and Health Education Laboratory, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, RJ, Brazil
| | | | - Carolina Thomaz Dos Santos D'Almeida
- Laboratory of Bioactives, Food and Nutrition Graduate Program, Federal University of State of Rio de Janeiro - UNIRIO, Rio de Janeiro, RJ, Brazil
| | - Mariana Simões Larraz Ferreira
- Laboratory of Bioactives, Food and Nutrition Graduate Program, Federal University of State of Rio de Janeiro - UNIRIO, Rio de Janeiro, RJ, Brazil
| | - Viviana Corich
- Department of Agronomy, Food Natural Resources, Animals, and Environment, Università degli Studi di Padova, Legnaro, Padova, PD, Italy
| | - Bruce R Hamaker
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN, United States
| | - Alessio Giacomini
- Department of Agronomy, Food Natural Resources, Animals, and Environment, Università degli Studi di Padova, Legnaro, Padova, PD, Italy
| | - Josefina Bressan
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Frederico Augusto Ribeiro de Barros
- Bioactive Compounds and Carbohydrates (BIOCARB) Research Group, Department of Food Science and Technology, Universidade Federal de Viçosa, Viçosa, MG, Brazil.
| |
Collapse
|
4
|
Ban SY, Yun DY, Yum SJ, Jeong HG, Park JT. Development of Saccharomyces cerevisiae accumulating excessive amount of glycogen and its effects on gut microbiota in a mouse model. Int J Biol Macromol 2024; 283:137589. [PMID: 39557260 DOI: 10.1016/j.ijbiomac.2024.137589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 11/01/2024] [Accepted: 11/11/2024] [Indexed: 11/20/2024]
Abstract
Saccharomyces cerevisiae accumulates glycogen, a hyperbranched glucose polymer with multiple bio-functionalities. In this study, mutants of S. cerevisiae that accumulate excessive amounts of glycogen were developed through UV mutagenesis. From over 30,000 mutants, the mutant strain CEY1, which exhibited the highest glycogen production, was selected using iodine vapor screening. The glycogen structures of wild type (WT) and CEY1 were analyzed and found to be relatively similar in molecular weight, hydrodynamic diameter, and side-chain distribution. The glycogen from CEY1 contained long branches (DP >12) 23.6 % greater than those in Escherichia coli TBP38. In addition, WT and CEY1 glycogen showed 32 %-34 % digestibility, which is significantly lower than E. coli glycogen. The glycogen content in dried CEY1 cells was increased to 21.7 % during laboratory-scale fed-batch fermentation. Glycogen with a homogeneous structure was accumulated to 17.5 % (w/w dried cell), and the total glucan content was increased by 33.2 % during large-scale fed-batch fermentation. In a mouse model, a diet containing 30 % CEY1 increased the production of butyrate and populations of beneficial bacteria, including Bacteroides and Parabacteroides. Therefore, glycogen from CEY1 exhibits a distinct structure from other polysaccharides, with notably slow and low digestibility, thereby indicating its potential application as a dietary supplement.
Collapse
Affiliation(s)
- So Young Ban
- Department of Food Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea; CARBOEXPERT Inc., Daejeon 34134, Republic of Korea
| | - Da-Young Yun
- Department of Food Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Su-Jin Yum
- Department of Food Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hee-Gon Jeong
- Department of Food Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea.
| | - Jong-Tae Park
- Department of Food Science and Technology, Chungnam National University, Daejeon 34134, Republic of Korea; CARBOEXPERT Inc., Daejeon 34134, Republic of Korea.
| |
Collapse
|
5
|
Yilmaz Y. Postbiotics as Antiinflammatory and Immune-Modulating Bioactive Compounds in Metabolic Dysfunction-Associated Steatotic Liver Disease. Mol Nutr Food Res 2024; 68:e2400754. [PMID: 39499063 DOI: 10.1002/mnfr.202400754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/12/2024] [Indexed: 11/07/2024]
Abstract
Postbiotics, defined as products or metabolic byproducts secreted by live bacteria or released after bacterial lysis, are emerging as promising therapeutic agents for metabolic dysfunction-associated steatotic liver disease (MASLD). This review explores the antiinflammatory and immunomodulatory properties of various postbiotics, including exopolysaccharides, lipoteichoic acid, short-chain fatty acids, hydrogen sulfide, polyamines, tryptophan derivatives, and polyphenol metabolites. These compounds have demonstrated potential in mitigating steatotic liver infiltration, reducing inflammation, and slowing fibrosis progression in preclinical studies. Notably, postbiotics exert their beneficial effects by modulating gut microbiota composition, enhancing intestinal barrier function, optimizing lipid metabolism, reducing hepatic inflammation and steatosis, and exhibiting hepatoprotective properties. However, translating these findings into clinical practice requires well-designed trials to validate efficacy and safety, standardize production and characterization, and explore personalized approaches and synergistic effects with other therapeutic modalities. Despite challenges, the unique biological properties of postbiotics, such as enhanced safety compared to probiotics, make them attractive candidates for developing novel nutritional interventions targeting the multifactorial pathogenesis of MASLD. Further research is needed to establish their clinical utility and potential to improve liver and systemic outcomes in this increasingly prevalent condition.
Collapse
Affiliation(s)
- Yusuf Yilmaz
- Department of Gastroenterology, School of Medicine, Recep Tayyip Erdoğan University, Rize, Türkiye
- The Global NASH Council, Washington, DC, 53020, USA
| |
Collapse
|
6
|
Acevedo-Román A, Pagán-Zayas N, Velázquez-Rivera LI, Torres-Ventura AC, Godoy-Vitorino F. Insights into Gut Dysbiosis: Inflammatory Diseases, Obesity, and Restoration Approaches. Int J Mol Sci 2024; 25:9715. [PMID: 39273662 PMCID: PMC11396321 DOI: 10.3390/ijms25179715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/30/2024] [Accepted: 09/07/2024] [Indexed: 09/15/2024] Open
Abstract
The gut microbiota is one of the most critical factors in human health. It involves numerous physiological processes impacting host health, mainly via immune system modulation. A balanced microbiome contributes to the gut's barrier function, preventing the invasion of pathogens and maintaining the integrity of the gut lining. Dysbiosis, or an imbalance in the gut microbiome's composition and function, disrupts essential processes and contributes to various diseases. This narrative review summarizes key findings related to the gut microbiota in modern multifactorial inflammatory conditions such as ulcerative colitis or Crohn's disease. It addresses the challenges posed by antibiotic-driven dysbiosis, particularly in the context of C. difficile infections, and the development of novel therapies like fecal microbiota transplantation and biotherapeutic drugs to combat these infections. An emphasis is given to restoration of the healthy gut microbiome through dietary interventions, probiotics, prebiotics, and novel approaches for managing gut-related diseases.
Collapse
Affiliation(s)
- Andy Acevedo-Román
- Microbiology Department, University of Puerto Rico Medical Sciences Campus, San Juan 00936, Puerto Rico
| | - Natalia Pagán-Zayas
- Microbiology Department, University of Puerto Rico Medical Sciences Campus, San Juan 00936, Puerto Rico
| | - Liz I Velázquez-Rivera
- Microbiology Department, University of Puerto Rico Medical Sciences Campus, San Juan 00936, Puerto Rico
| | - Aryanne C Torres-Ventura
- Microbiology Department, University of Puerto Rico Medical Sciences Campus, San Juan 00936, Puerto Rico
| | - Filipa Godoy-Vitorino
- Microbiology Department, University of Puerto Rico Medical Sciences Campus, San Juan 00936, Puerto Rico
| |
Collapse
|
7
|
Cheng J, Zhou DD, Xiong RG, Wu SX, Huang SY, Saimaiti A, Xu XY, Tang GY, Li HB, Li S. Effects of Fermentation with Kombucha Symbiotic Culture of Bacteria and Yeasts on Antioxidant Activities, Bioactive Compounds and Sensory Indicators of Rhodiola rosea and Salvia miltiorrhiza Beverages. Molecules 2024; 29:3809. [PMID: 39202889 PMCID: PMC11357408 DOI: 10.3390/molecules29163809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/05/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
Kombucha is a well-known fermented beverage traditionally made from black tea infusion. Recent studies have focused on finding alternative materials to create novel kombucha beverages with various health benefits. In this study, we prepared and evaluated two novel kombucha beverages using Rhodiola rosea and Salvia miltiorrhiza as materials. The effects of fermentation with the residue of these plants on the kombucha were also investigated. The antioxidant activities, total phenolic contents, and concentrations of the bioactive compounds of the kombucha beverages were determined by the Trolox equivalent antioxidant capacity test, ferric-reducing antioxidant power test, Folin-Ciocalteu method, and high-performance liquid chromatography, respectively. The results revealed that the kombucha beverages made with Rhodiola rosea and Salvia miltiorrhiza had strong antioxidant capacities and abundant phenolic contents. Additionally, the kombucha fermented with Rhodiola rosea residue had higher FRAP, TEAC and TPC values than that fermented without residue. On the other hand, the Salvia miltiorrhiza kombucha fermented with residue had similar FRAP and TEAC values but lower TPC values compared to that fermented without residue. The correlation analysis showed that gallic acid, salidroside, and tyrosol were responsible for the antioxidant abilities and total phenolic contents of the Rhodiola rosea kombucha, and salvianolic acid A and salvianolic acid B contributed to the antioxidant abilities of the Salvia miltiorrhiza kombucha. Furthermore, the kombucha fermented with Rhodiola rosea residue had the highest sensory scores among the kombucha beverages studied. These findings suggest that Rhodiola rosea and Salvia miltiorrhiza are suitable for making novel kombucha beverages with strong antioxidant abilities and abundant phenolic contents, which can be used in preventing and managing oxidative stress-related diseases.
Collapse
Affiliation(s)
- Jin Cheng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Dan-Dan Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Ruo-Gu Xiong
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Si-Xia Wu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Si-Yu Huang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Adila Saimaiti
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xiao-Yu Xu
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Guo-Yi Tang
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Sha Li
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
8
|
Esatbeyoglu T, Sarikaya Aydin S, Gültekin Subasi B, Erskine E, Gök R, Ibrahim SA, Yilmaz B, Özogul F, Capanoglu E. Additional advances related to the health benefits associated with kombucha consumption. Crit Rev Food Sci Nutr 2024; 64:6102-6119. [PMID: 36660921 DOI: 10.1080/10408398.2022.2163373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Kombucha is a fermented, acidic beverage that dates back thousands of years as a remedy for various health problems in East Asia. Due to its health benefits, kombucha has gained popularity and attracted the attention of both consumers and researchers. The health benefits of kombucha are predominantly attributed to its bioactive compounds that have antioxidant, antimicrobial, probiotic, and other positive effects owing to fermentation. Many factors such as the type of the substrate used, the symbiotic culture of the bacterial yeast composition, and fermentation conditions influence the extent of these properties. This review focuses on recent developments regarding the bioactive constituents of kombucha and its potential health benefits (antimicrobial, antioxidant, antidiabetic, hepatoprotective effects) as well as its impact on multiple sclerosis, nephrotoxicity, gastric ulceration and gut microbiota. Additionally, the composition of kombucha, alternative uses of its biofilm, and potential toxicity are also discussed. Kombucha is a healthy and safe beverage with multiple health benefits that are primarily related to the presence of bacteria, yeasts, and other bioactive constituents. Moreover, kombucha has been suggested as a potential source of probiotics and eco-friendly materials (kombucha-derived bacterial cellulose) for several industries including food and textile.
Collapse
Affiliation(s)
- Tuba Esatbeyoglu
- Department of Food Development and Food Quality, Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz University Hannover, Hannover, Germany
| | - Secil Sarikaya Aydin
- Department of Food Development and Food Quality, Institute of Food Science and Human Nutrition, Gottfried Wilhelm Leibniz University Hannover, Hannover, Germany
| | - Büsra Gültekin Subasi
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Turkey
- Hafik Kamer Ornek MYO, Cumhuriyet University, Sivas, Turkey
| | - Ezgi Erskine
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Recep Gök
- Institute of Food Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - Salam A Ibrahim
- Food and Nutritional Sciences Program, North Carolina Agricultural and Technical State University, Greensboro, North Carolina, USA
| | - Birsen Yilmaz
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Cukurova University, Adana, Turkey
| | - Fatih Özogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Istanbul, Turkey
| |
Collapse
|
9
|
Massoud R, Jafari R, Khosravi-Darani K. Kombucha as a Health-Beneficial Drink for Human Health. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 79:251-259. [PMID: 38602651 DOI: 10.1007/s11130-024-01169-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/15/2024] [Indexed: 04/12/2024]
Abstract
Kombucha is a unique fermented beverage made from a symbiotic culture of yeast and bacteria. Kombucha is normally based on black tea added to water, then sugar is added as a substrate for fermentation in this beverage. This unique beverage is composed of amino acids, flavonoids, vitamins, and some active enzymes. Several beneficial health effects such as antioxidant, antimicrobial effects have been reported as a result of probiotics and prebiotics presence. These health effects of kombucha are attributed to its bioactive chemical and biological agents of probiotics bacteria e.g., Gluconobacter, Acetobacter and yeasts like Saccharomyces sps., along with glucuronic acid as the main sources of the health protection. This review focuses on the beneficial effects of Kombucha including antimicrobial, antioxidant, anti-cancer antidiabetic properties, as well as liver protection, treat of gastrointestinal problems, AIDS, gastric ulcers, obesity (and energy production), detoxification, and skin health.
Collapse
Affiliation(s)
- Ramona Massoud
- Department of Food Science and Technology, Iran National Standards Organization, Tehran, Iran
| | - Reyhaneh Jafari
- Department of Microbiology, Falavarjan Branch, Islamic Azad University, Falavarjan, Isfahan, Iran
| | - Kianoush Khosravi-Darani
- Department of Food Technology Research, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, P.O. Box: 19395-4741, Shahrake-gharb, Farahzadi Blv., Hafezi ave., NNFTRI, Tehran, Iran.
| |
Collapse
|
10
|
Zhao G, Teng J, Dong R, Ban Q, Yang L, Du K, Wang Y, Pu H, Yang CS, Ren Z. Alleviating effects and mechanisms of action of large-leaf yellow tea drinking on diabetes and diabetic nephropathy in mice. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
11
|
Miao X, Luo P, Liu J, Wang J, Chen Y. Dihydromyricetin ameliorated nonalcoholic steatohepatitis in mice by regulating the composition of serous lipids, bile acids and ileal microflora. Lipids Health Dis 2023; 22:112. [PMID: 37533083 PMCID: PMC10394885 DOI: 10.1186/s12944-023-01871-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/07/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND Dihydromyricetin (DMY) is a natural flavonoid with anti-nonalcoholic steatohepatitis (NASH) activity. However, the effects of DMY on the composition of lipids and bile acids (BAs) in serum, and gut microbiota (GM) in ileum of mice with NASH are not clear. METHODS After male C57BL/6 mice was fed with methionine and choline deficiency (MCD) diet and simultaneously administered with DMY (300 mg/kg/day) by gavage for 8 weeks, the pathological changes of liver tissue were observed by Oil Red O, hematoxylin eosin and Masson staining, the levels of serum alaninea minotransferase, aspartate aminotransferase and liver triglyceride, malonic dialdehyde were detected by the detection kits, the composition and contents of serum lipids and BAs were detected by Liquid Chromatograph-Mass Spectrometry, the mRNA levels of hepatic BAs homeostasis-related genes were detected by RT-qPCR, and microbiological diversity in ileum was analyzed by 16S rDNA sequencing. RESULTS The results showed that the significant changes including 29 lipids, 4 BAs (23-nor-deoxycholic acid, ursodeoxycholic acid, 7-ketodeoxycholic acid and cholic acid), 2 BA transporters (Mrp2 and Oatp1b2) and 8 GMs between MCD and DMY groups. Among them, DMY treatment significantly down-regulated 21 lipids, 4 BAs mentioned above, the ratio of Firmicutes/Bacteroidota and the abundance of Erysipelotrichaceae, Faecalibacuium, significantly up-regulated 8 lipids and 5 GMs (Verrucomicrobiota, Bacteroidota, Actinobacteria, Akkermansiaceae and Akkermansia). CONCLUSIONS The results suggested that DMY may alleviate MCD diet-induced NASH through decreasing the serum levels of toxic BAs which regulated by liver Oatp1b2 and Mrp2, regulating the metabolism of related lipids, and up-regulating intestinal probiotics (Actinobacteria and Verrucomicrobiota at the phylum level; Akkermansiaceae at the family level; Akkermansiaat at the genus level) and inhibiting intestinal harmful bacteria (Firmicutes at the phylum level; Erysipelotrichaceae at the family level; Faecalibaculum at the genus level).
Collapse
Affiliation(s)
- Xiaolei Miao
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China
| | - Ping Luo
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China
| | - Jiao Liu
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China
| | - Junjun Wang
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China.
| | - Yong Chen
- Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
12
|
Kahraman-Ilıkkan Ö. Microbiome composition of kombucha tea from Türkiye using high-throughput sequencing. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:1826-1833. [PMID: 37187981 PMCID: PMC10170013 DOI: 10.1007/s13197-023-05725-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 02/09/2023] [Accepted: 03/09/2023] [Indexed: 03/29/2023]
Abstract
Kombucha is a fermented tea with a combination of yeast and bacteria. Kombucha teas may have a variable microbiota based on geographic origin and cultural conditions. The microbial flora of kombucha has been studied with culture-dependent methods. But, the improvement of the metataxonomic approach has broadened our perspective on fermented foods. In this study, a kombucha mother was procured from an artisanal supplier in Türkiye. High-throughput new-generation sequencing (16S rRNA and Internal Transcribed Spacer (ITS)) was carried out to investigate the microbial communities of kombucha after 7 days of fermentation in both liquid tea (L) and pellicle (P). Microbial counts, pH (4.42 ± 0.01 and 3.50 ± 0.02), and TA% (0.26 ± 0.02 and 0.60 ± 0.04) were also detected on the first and 7th days of fermentation. According to metataxonomic results, the dominant bacteria were Komagataeibacter obediens (%21.13), an acetic acid-producing bacteria, and the dominant fungal genus was Pichia kudriavzevii (64.35%) in L while Romboutsia sp. CE17 was the dominant bacteria (7%) and Pichia kudriavzevii was also the dominant yeast in P. This study also revealed different species which were not common in kombucha including propionic acid and butyric acid-producing bacteria such as Anaerotignum propionicum and Butyrivibrio fibrisolvens, a butyrivibriocin producing bacteria. Accordingly, different yeast species were detected such as Tetrapisispora phaffii and Ogataea polimorpha. Supplementary Information The online version contains supplementary material available at 10.1007/s13197-023-05725-z.
Collapse
|
13
|
Walsh AM, Leech J, Huttenhower C, Delhomme-Nguyen H, Crispie F, Chervaux C, Cotter P. Integrated molecular approaches for fermented food microbiome research. FEMS Microbiol Rev 2023; 47:fuad001. [PMID: 36725208 PMCID: PMC10002906 DOI: 10.1093/femsre/fuad001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 12/28/2022] [Accepted: 01/09/2023] [Indexed: 02/03/2023] Open
Abstract
Molecular technologies, including high-throughput sequencing, have expanded our perception of the microbial world. Unprecedented insights into the composition and function of microbial communities have generated large interest, with numerous landmark studies published in recent years relating the important roles of microbiomes and the environment-especially diet and nutrition-in human, animal, and global health. As such, food microbiomes represent an important cross-over between the environment and host. This is especially true of fermented food microbiomes, which actively introduce microbial metabolites and, to a lesser extent, live microbes into the human gut. Here, we discuss the history of fermented foods, and examine how molecular approaches have advanced research of these fermented foods over the past decade. We highlight how various molecular approaches have helped us to understand the ways in which microbes shape the qualities of these products, and we summarize the impacts of consuming fermented foods on the gut. Finally, we explore how advances in bioinformatics could be leveraged to enhance our understanding of fermented foods. This review highlights how integrated molecular approaches are changing our understanding of the microbial communities associated with food fermentation, the creation of unique food products, and their influences on the human microbiome and health.
Collapse
Affiliation(s)
- Aaron M Walsh
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork and APC Microbiome Ireland, P61 C996, Ireland
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - John Leech
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork and APC Microbiome Ireland, P61 C996, Ireland
| | - Curtis Huttenhower
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | | | - Fiona Crispie
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork and APC Microbiome Ireland, P61 C996, Ireland
| | - Christian Chervaux
- Danone Nutricia Research, Centre Daniel Carasso, Palaiseau 91120, France
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork and APC Microbiome Ireland, P61 C996, Ireland
| |
Collapse
|
14
|
Fructooligosaccharides attenuate non-alcoholic fatty liver disease by remodeling gut microbiota and association with lipid metabolism. Biomed Pharmacother 2023; 159:114300. [PMID: 36696803 DOI: 10.1016/j.biopha.2023.114300] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a common liver disease highly associated with metabolic diseases and gut dysbiosis. Several clinical trials have confirmed that fructooligosaccharides (FOSs) are a viable alternative treatment for NAFLD. However, the mechanisms underlying the activities of FOSs remain unclear. METHODS In this study, the effects of FOSs were investigated with the use of two C57BL/6 J mouse models of NAFLD induced by a high-fat, high-cholesterol (HFHC) diet and a methionine- and choline-deficient (MCD) diet, respectively. The measured metabolic parameters included body, fat, and liver weights; and blood glucose, glucose tolerance, and serum levels of glutamate transaminase, aspartate transaminase, and triglycerides. Liver tissues were collected for histological analysis. In addition, 16 S rRNA sequencing was conducted to investigate the effects of FOSs on the composition of the gut microbiota of mice in the HFHC and MCD groups and treated with FOSs. RESULTS FOS treatment attenuated severe metabolic changes and hepatic steatosis caused by the HFHC and MCD diets. In addition, FOSs remodeled the structure of gut microbiota in mice fed the HFHC and MCD diets, as demonstrated by increased abundances of Bacteroidetes (phylum level), Klebsiella variicola, Lactobacillus gasseri, and Clostridium perfringens (species level); and decreased abundances of Verrucomicrobia (phylum level) and the Fissicatena group (genus level). Moreover, the expression levels of genes associated with lipid metabolism and inflammation (i.e., ACC1, PPARγ, CD36, MTTP, APOC3, IL-6, and IL-1β) were down-regulated after FOS treatment. CONCLUSION FOSs alleviated the pathological phenotype of NAFLD via remodeling of the gut microbiota composition and decreasing hepatic lipid metabolism, suggesting that FOSs as functional dietary supplements can potentially reduce the risk of NAFLD.
Collapse
|
15
|
Xu J, Wei Y, Huang Y, Wei X. Regulatory Effects and Molecular Mechanisms of Tea and Its Active Compounds on Nonalcoholic Fatty Liver Disease. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3103-3124. [PMID: 36773311 DOI: 10.1021/acs.jafc.2c07702] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD), the most common chronic liver disease, is a multifactorial disease resulting from the interaction between environment, genetic background, and metabolic stress. Most treatments for NAFLD include dietary intervention and exercise show limited efficacy due to the complex mechanisms involved in NAFLD. Meanwhile, drug therapy is accompanied by serious side effects. The development of high-efficiency natural supplements is a sustainable strategy for the prevention and treatment of NAFLD. As the second most consumed beverage, tea has health benefits that have been widely recognized. Nevertheless, the intervention of tea active compounds in NAFLD has received limited attention. Tea contains abundant bioactive compounds with potential effects on NAFLD, such as catechins, flavonoids, theanine, tea pigments, and tea polysaccharides. We reviewed the intrinsic and environmental factors and pathogenic mechanisms that affect the occurrence and development of NAFLD, and summarized the influences of exercise, drugs, diet, and tea drinking on NAFLD. On this basis, we further analyzed the potential effects and molecular regulatory mechanisms of tea active compounds on NAFLD and proposed future development directions. This review hopes to provide novel insights into the development and application of tea active compounds in the prevention and treatment of NAFLD.
Collapse
Affiliation(s)
- Jia Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
- School of Environmental and Chemical Engineering, Shanghai University, 333 Nanchen Road, Shanghai 200240, PR China
| | - Yang Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Yi Huang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| | - Xinlin Wei
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, PR China
| |
Collapse
|
16
|
Research progress on the lipid-lowering and weight loss effects of tea and the mechanism of its functional components. J Nutr Biochem 2023; 112:109210. [PMID: 36395969 DOI: 10.1016/j.jnutbio.2022.109210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 07/13/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022]
Abstract
Obesity caused by poor eating habits has become a great challenge faced by public health organizations worldwide. Optimizing dietary intake and ingesting special foods containing biologically active substances (such as polyphenols, alkaloids, and terpenes) is a safe and effective dietary intervention to prevent the occurrence and development of obesity. Tea contains several active dietary factors, and daily tea consumption has been shown to have various health benefits, especially in regulating human metabolic diseases. Here, we reviewed recent advances in research on tea and its functional components in improving obesity-related metabolic dysfunction, and gut microbiota homeostasis and related clinical research. Furthermore, the potential mechanisms by which the functional components of tea could promote lipid-lowering and weight-loss effects by regulating fat synthesis/metabolism, glucose metabolism, gut microbial homeostasis, and liver function were summarized. The research results showing a "positive effect" or "no effect" objectively evaluates the lipid-lowering and weight-loss effects of the functional components of tea. This review provides a new scientific basis for further research on the functional ingredients of tea for lipid lowering and weight loss and the development of lipid-lowering and weight-loss functional foods and beverages derived from tea.
Collapse
|
17
|
Sun Y, Chen S, Ren F, Li Y. Lactobacillus paracaseiN1115 attenuates obesity in high-fat diet-induced obese mice. Food Sci Nutr 2023; 11:418-427. [PMID: 36655072 PMCID: PMC9834814 DOI: 10.1002/fsn3.3073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/31/2022] [Accepted: 09/08/2022] [Indexed: 01/21/2023] Open
Abstract
Disruption of the microbial structure of intestinal bacteria due to a high-fat diet (HFD) is closely associated with metabolic disorders, such as obesity and type 2 diabetes. Probiotics are known to modulate the gut microbiota; therefore, we demonstrated the capability of Lactobacillus paracasei N1115 (LC-N1115) to attenuate obesity. Four-week-old male C57BL/6J mice were fed a HFD for 12 weeks to induce obesity and were then randomized to supplemented placebo or LC-N1115 treatment group for another 12 weeks. LC-N1115 treatment reduced weight gain and liver fat accumulation as well as triglyceride, total cholesterol, and low-density lipoprotein cholesterol levels. The administration of LC-N1115 suppressed the expression of fatty acid synthase, interleukin-1 β, and toll-like receptor 4. Notably, the operational taxonomic units that negatively and positively correlated with the obesity phenotypes were enriched and reduced, respectively, in the LC-N1115 treatment group. These results indicate that LC-N1115 attenuates obesity by modulating the gut microbiota and the expression of lipid synthesis and proinflammatory cytokine genes.
Collapse
Affiliation(s)
- Yanan Sun
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and HealthChina Agricultural UniversityBeijingChina
- Key Laboratory of Functional Dairy, Ministry of Education, Department of Nutrition and HealthChina Agricultural UniversityBeijingChina
| | - Shanbin Chen
- Key Laboratory of Functional Dairy, Ministry of Education, Department of Nutrition and HealthChina Agricultural UniversityBeijingChina
| | - Fazheng Ren
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and HealthChina Agricultural UniversityBeijingChina
- Key Laboratory of Functional Dairy, Ministry of Education, Department of Nutrition and HealthChina Agricultural UniversityBeijingChina
| | - Yixuan Li
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, Department of Nutrition and HealthChina Agricultural UniversityBeijingChina
- Key Laboratory of Functional Dairy, Ministry of Education, Department of Nutrition and HealthChina Agricultural UniversityBeijingChina
| |
Collapse
|
18
|
Costa MADC, Dias Moreira LDP, Duarte VDS, Cardoso RR, de São José VPB, da Silva BP, Grancieri M, Corich V, Giacomini A, Bressan J, Martino HSD, de Barros FAR. Kombuchas from Green and Black Tea Modulate the Gut Microbiota and Improve the Intestinal Health of Wistar Rats Fed a High-Fat High-Fructose Diet. Nutrients 2022; 14:5234. [PMID: 36558393 PMCID: PMC9787585 DOI: 10.3390/nu14245234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/14/2022] Open
Abstract
The Western diet can negatively affect the gut microbiota and is associated with metabolic disorders. Kombucha, a tea fermented by a symbiotic culture of bacteria and yeast (SCOBY), is known for its bioactive properties and has become popular in the last years. In this study, we evaluated the effects of regular kombucha consumption on the gut microbiota and on outcomes related to the intestinal health of Wistar rats fed a high-fat high-fructose diet. After eight weeks receiving a standard diet (AIN-93M) (n = 10) or a high-fat and high-fructose diet (HFHF) (n = 30) to induce metabolic disorders, the animals were subdivided into four groups: AIN-93M (n = 10); HFHF (n = 10); GTK (HFHF + green tea kombucha (n = 10); and BTK (HFHF + black tea kombucha; n = 10) for 10 weeks. Although body composition did not differ among the groups, the HFHF diet was associated with metabolic alterations, and stimulated the growth of gram-negative bacteria such as Proteobacteria and Bacteroides. Kombucha ingestion could somewhat modulate the gut microbiota, attenuating the effects of a Western diet by increasing propionate production and favoring the growth of beneficial bacteria, such as Adlercreutzia in the GTK group. Our results suggest that regular kombucha consumption may be beneficial to intestinal health, which can be mostly attributed to its high content and diversity of phenolic compounds.
Collapse
Affiliation(s)
| | - Luiza de Paula Dias Moreira
- Department of Agronomy, Food Natural Resources, Animals, and Environment (DAFNAE), Università degli Studi di Padova, Via dell’Università 16, 35020 Legnaro, PD, Italy
| | - Vinícius da Silva Duarte
- Faculty of Chemistry, Biotechnology, and Food Science, The Norwegian University of Life Sciences, P.O. Box 5003, 1432 Ås, Norway
| | - Rodrigo Rezende Cardoso
- Department of Food Technology, Universidade Federal de Viçosa, Avenida Peter Henry Rolfs, s/n, Viçosa 36570-900, MG, Brazil
| | | | - Bárbara Pereira da Silva
- Department of Nutrition and Health, Universidade Federal de Viçosa, Avenida Peter Henry Rolfs, s/n, Viçosa 36570-000, MG, Brazil
| | - Mariana Grancieri
- Department of Nutrition and Health, Universidade Federal de Viçosa, Avenida Peter Henry Rolfs, s/n, Viçosa 36570-000, MG, Brazil
| | - Viviana Corich
- Department of Agronomy, Food Natural Resources, Animals, and Environment (DAFNAE), Università degli Studi di Padova, Via dell’Università 16, 35020 Legnaro, PD, Italy
| | - Alessio Giacomini
- Department of Agronomy, Food Natural Resources, Animals, and Environment (DAFNAE), Università degli Studi di Padova, Via dell’Università 16, 35020 Legnaro, PD, Italy
| | - Josefina Bressan
- Department of Nutrition and Health, Universidade Federal de Viçosa, Avenida Peter Henry Rolfs, s/n, Viçosa 36570-000, MG, Brazil
| | - Hércia Stampini Duarte Martino
- Department of Nutrition and Health, Universidade Federal de Viçosa, Avenida Peter Henry Rolfs, s/n, Viçosa 36570-000, MG, Brazil
| | | |
Collapse
|
19
|
Microbiota Dysbiosis and Gut Barrier Dysfunction Associated with Non-Alcoholic Fatty Liver Disease Are Modulated by a Specific Metabolic Cofactors' Combination. Int J Mol Sci 2022; 23:ijms232213675. [PMID: 36430154 PMCID: PMC9692973 DOI: 10.3390/ijms232213675] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/31/2022] [Accepted: 11/04/2022] [Indexed: 11/10/2022] Open
Abstract
The gut is a selective barrier that not only allows the translocation of nutrients from food, but also microbe-derived metabolites to the systemic circulation that flows through the liver. Microbiota dysbiosis occurs when energy imbalances appear due to an unhealthy diet and a sedentary lifestyle. Dysbiosis has a critical impact on increasing intestinal permeability and epithelial barrier deterioration, contributing to bacterial and antigen translocation to the liver, triggering non-alcoholic fatty liver disease (NAFLD) progression. In this study, the potential therapeutic/beneficial effects of a combination of metabolic cofactors (a multi-ingredient; MI) (betaine, N-acetylcysteine, L-carnitine, and nicotinamide riboside) against NAFLD were evaluated. In addition, we investigated the effects of this metabolic cofactors' combination as a modulator of other players of the gut-liver axis during the disease, including gut barrier dysfunction and microbiota dysbiosis. Diet-induced NAFLD mice were distributed into two groups, treated with the vehicle (NAFLD group) or with a combination of metabolic cofactors (NAFLD-MI group), and small intestines were harvested from all animals for histological, molecular, and omics analysis. The MI treatment ameliorated gut morphological changes, decreased gut barrier permeability, and reduced gene expression of some proinflammatory cytokines. Moreover, epithelial cell proliferation and the number of goblet cells were increased after MI supplementation. In addition, supplementation with the MI combination promoted changes in the intestinal microbiota composition and diversity, as well as modulating short-chain fatty acids (SCFAs) concentrations in feces. Taken together, this specific combination of metabolic cofactors can reverse gut barrier disruption and microbiota dysbiosis contributing to the amelioration of NAFLD progression by modulating key players of the gut-liver axis.
Collapse
|
20
|
Fermented Black Tea and Its Relationship with Gut Microbiota and Obesity: A Mini Review. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8110603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Fermentation is one of the world’s oldest techniques for food preservation, nutrient enhancement, and alcohol manufacturing. During fermentation, carbohydrates such as glucose and starch are converted into other molecules, such as alcohol and acid, anaerobically through enzymatic action while generating energy for the microorganism or cells involved. Black tea is among the most popular fermented beverages; it is made from the dried tea leaves of the evergreen shrub plant known as Camellia sinensis. The adequate consumption of black tea is beneficial to health as it contains high levels of flavanols, also known as catechins, which act as effective antioxidants and are responsible for protecting the body against the development of illnesses, such as inflammation, diabetes, hypertension, cancer, and obesity. The prevalence of obesity is a severe public health concern associated with the incidence of various serious diseases and is now increasing, including in Malaysia. Advances in ‘omic’ research have allowed researchers to identify the pivotal role of the gut microbiota in the development of obesity. This review explores fermented black tea and its correlation with the regulation of the gut microbiota and obesity.
Collapse
|
21
|
Li B, Mao Q, Xiong R, Zhou D, Huang S, Saimaiti A, Shang A, Luo M, Li H, Li H, Li S. Preventive Effects of Different Black and Dark Teas on Obesity and Non-Alcoholic Fatty Liver Disease and Modulate Gut Microbiota in High-Fat Diet Fed Mice. Foods 2022; 11:3457. [PMID: 36360069 PMCID: PMC9658379 DOI: 10.3390/foods11213457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/27/2022] [Accepted: 10/27/2022] [Indexed: 08/13/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has emerged as a leading public health challenge and is closely associated with metabolic syndromes, such as obesity. Intestinal microbiota dysbiosis could play a vital role in the pathogenesis and progression of NAFLD. Tea is the second most popular health drink in the world behind water, and exhibits many health-promoting effects. In this study, the protective effects of different black and dark teas on NAFLD induced by long-term high-fat diet (HFD) exposure and their regulation of gut microbiota were evaluated and explored. The results indicated that supplementation with different black and dark tea extracts could significantly suppress the energy intake, alleviate abnormal accumulation of visceral fat, and prevent obesity, hepatic abnormal lipid deposition and liver steatosis in HFD-fed mice at varying degrees. In addition, Dianhong tea and Liupao tea interventions could significantly decrease the ratio of Firmicutes to Bacteroidetes, and selenium-enriched black tea and selenium-enriched dark rea supplementation could remarkably reduce the relative abundance of Actinobacteria compared to the model group. Moreover, these teas could partly shift the relative abundances of Allobaculum, Roseburia and Dubosiella. Taken together, black teas and dark teas could prevent HFD-induced features of obesity and NAFLD, which might partly be due to the modulation of gut microbiota.
Collapse
Affiliation(s)
- Bangyan Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Qianqian Mao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Ruogu Xiong
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Dandan Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Siyu Huang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Adila Saimaiti
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Ao Shang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Min Luo
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Hangyu Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Huabin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China
| | - Sha Li
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
22
|
Moreira GV, Araujo LCC, Murata GM, Matos SL, Carvalho CRO. Kombucha tea improves glucose tolerance and reduces hepatic steatosis in obese mice. Biomed Pharmacother 2022; 155:113660. [PMID: 36095960 DOI: 10.1016/j.biopha.2022.113660] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/30/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), often associated with obesity, is becoming one of the most common liver diseases worldwide. It is estimated to affect one billion individuals and may be present in approximately 25% of the population globally. NAFLD is viewed as a hepatic manifestation of metabolic syndrome, with humans and animal models presenting dyslipidemia, hypertension, and diabetes. The gut-liver axis has been considered the main pathogenesis branch for NAFLD development. Considering that foods or beverages could modulate the gastrointestinal tract, immune system, energy homeostasis regulation, and even the gut-liver axis, we conducted an exploratory study to analyze the effects of kombucha probiotic on hepatic steatosis, glucose tolerance, and hepatic enzymes involved in carbohydrate and fat metabolism using a pre-clinical model. The diet-induced obese mice presented glucose intolerance, hyperinsulinemia, hepatic steatosis, increased collagen fiber deposition in liver vascular spaces, and upregulated TNF-alpha and SREBP-1 gene expression. Mice receiving the kombucha supplement displayed improved glucose tolerance, reduced hyperinsulinemia, decreased citrate synthase and phosphofructokinase-1 enzyme activities, downregulated G-protein-coupled bile acid receptor, also known as TGR5, and farnesol X receptor gene expression, and attenuated steatosis and hepatic collagen fiber deposition. The improvement in glucose tolerance was accompanied by the recovery of acute insulin-induced liver AKT serine phosphorylation. Thus, it is possible to conclude that this probiotic drink has a beneficial effect in reducing the metabolic alterations associated with diet-induced obesity. This probiotic beverage deserves an extension of studies to confirm or refute its potentially beneficial effects.
Collapse
Affiliation(s)
- Gabriela V Moreira
- University of São Paulo, Department of Physiology and Biophysics, Institute of Biological Science, São Paulo 05508-900, Brazil
| | - Layanne C C Araujo
- University of São Paulo, Department of Physiology and Biophysics, Institute of Biological Science, São Paulo 05508-900, Brazil
| | - Gilson M Murata
- University of São Paulo, Department of Medicine, School of Medicine, São Paulo 01246-903, Brazil
| | - Sandro L Matos
- University of São Paulo, Department of Physiology and Biophysics, Institute of Biological Science, São Paulo 05508-900, Brazil
| | - Carla R O Carvalho
- University of São Paulo, Department of Physiology and Biophysics, Institute of Biological Science, São Paulo 05508-900, Brazil.
| |
Collapse
|
23
|
Reynoso-García J, Miranda-Santiago AE, Meléndez-Vázquez NM, Acosta-Pagán K, Sánchez-Rosado M, Díaz-Rivera J, Rosado-Quiñones AM, Acevedo-Márquez L, Cruz-Roldán L, Tosado-Rodríguez EL, Figueroa-Gispert MDM, Godoy-Vitorino F. A complete guide to human microbiomes: Body niches, transmission, development, dysbiosis, and restoration. FRONTIERS IN SYSTEMS BIOLOGY 2022; 2:951403. [PMID: 38993286 PMCID: PMC11238057 DOI: 10.3389/fsysb.2022.951403] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Humans are supra-organisms co-evolved with microbial communities (Prokaryotic and Eukaryotic), named the microbiome. These microbiomes supply essential ecosystem services that play critical roles in human health. A loss of indigenous microbes through modern lifestyles leads to microbial extinctions, associated with many diseases and epidemics. This narrative review conforms a complete guide to the human holobiont-comprising the host and all its symbiont populations- summarizes the latest and most significant research findings in human microbiome. It pretends to be a comprehensive resource in the field, describing all human body niches and their dominant microbial taxa while discussing common perturbations on microbial homeostasis, impacts of urbanization and restoration and humanitarian efforts to preserve good microbes from extinction.
Collapse
Affiliation(s)
| | | | | | - Kimil Acosta-Pagán
- Department of Microbiology and Medical Zoology, UPR School of Medicine, San Juan, PR, United States
| | - Mitchell Sánchez-Rosado
- Department of Microbiology and Medical Zoology, UPR School of Medicine, San Juan, PR, United States
| | - Jennifer Díaz-Rivera
- Department of Microbiology and Medical Zoology, UPR School of Medicine, San Juan, PR, United States
| | - Angélica M. Rosado-Quiñones
- Department of Biology, UPR Rio Piedras Campus, San Juan, PR, United States
- Department of Microbiology and Medical Zoology, UPR School of Medicine, San Juan, PR, United States
| | - Luis Acevedo-Márquez
- Department of Microbiology and Medical Zoology, UPR School of Medicine, San Juan, PR, United States
| | - Lorna Cruz-Roldán
- Department of Microbiology and Medical Zoology, UPR School of Medicine, San Juan, PR, United States
| | | | | | - Filipa Godoy-Vitorino
- Department of Microbiology and Medical Zoology, UPR School of Medicine, San Juan, PR, United States
| |
Collapse
|
24
|
Recent advances in Kombucha tea: Microbial consortium, chemical parameters, health implications and biocellulose production. Int J Food Microbiol 2022; 377:109783. [PMID: 35728418 DOI: 10.1016/j.ijfoodmicro.2022.109783] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 05/17/2022] [Accepted: 06/05/2022] [Indexed: 01/10/2023]
Abstract
In the present review the latest research studies on Kombucha tea are summarized. Special attention has been paid on microbial population, chemical parameters, biocellulose production, and mainly, on the latest evidences of the biological activities of Kombucha tea. Kombucha tea is a fermented sweetened black or green tea which is obtained from a fermentative process driven by a symbiotic culture of yeast, acetic acid bacteria and lactic acid bacteria. In the last years, its consumption has increasingly grown due to its multiple and potential benefits on human health. This fact has motivated a significant increase in the number of research studies that are focused on the biological activities of this beverage. In this context, this review gathers the main studies that have analyzed the different properties of Kombucha tea (as antioxidant, antimicrobial, antidiabetic, antitumoral, anti-inflammatory, antihypertensive, hepatoprotective, hypocholesterolemic, and probiotic activities). It is highlighted that nowadays few human-based evidences are available to prove the beneficial effect of Kombucha tea on humans' health. In conclusion, further work on Kombucha tea is needed since nowadays few information is available on both clinical studies and the characterization of bioactive compounds and their properties.
Collapse
|
25
|
Hu Q, Liao W, Zhang Z, Shi S, Hou S, Ji N, Zhang X, Zhang Q, Liao Y, Li L, Zhu Z, Chen Y, Chen J, Yu F, Yang Q, Xiao H, Fu C, Du H, Wang Q, Cao H, Xiao H, Li R. The hepatoprotective effects of plant-based foods based on the "gut-liver axis": a prospective review. Crit Rev Food Sci Nutr 2022; 63:9136-9162. [PMID: 35466839 DOI: 10.1080/10408398.2022.2064423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The importance of the "gut-liver axis" in the pathogenesis of liver diseases has been revealed recently; which promotes the process of developing preventive and therapeutic strategies. However, considering that there are still many challenges in the medical treatment of liver diseases, potential preventive dietary intervention may be a good alternative choice. Plant-based foods have received much attention due to their reported health-promoting effects in targeting multiple pathways involved in the pathogenesis of liver diseases as well as the relative safety for general use. Based on the PubMed and Web of Science databases, this review emphatically summarizes the plant-based foods and their chemical constituents with reported effects to impact the LPS/TLR4 signaling pathway of gut-liver axis of various liver diseases, reflecting their health benefits in preventing/alleviating liver diseases. Moreover, some plant-based foods with potential gut-liver effects are specifically analyzed from the reported studies and conclusions. This review intends to provide readers an overview of the current progress in the field of this research topic. We expect to see more hepatoprotective measures for alleviating the current prevalence of liver diseases.
Collapse
Affiliation(s)
- Qiongdan Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Wan Liao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Zhen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Sanjun Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Shuguang Hou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Ningping Ji
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Xinjie Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Qian Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Yangyang Liao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Linghui Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Zongping Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Yi Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Jiao Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Fangkun Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Qingsong Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Hongtao Xiao
- Department of Clinical Pharmacy, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China
| | - Chaomei Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Hengjun Du
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Qi Wang
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Heping Cao
- U.S. Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, LA, USA
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Rui Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| |
Collapse
|
26
|
An M, Xu Y, Xiao N, Huang J, Wu S, Zhuo Q, Lai Y, Chen J, Li P, Du B. Douchi ameliorates high‐fat diet‐induced hyperlipidaemia by regulation of intestinal microflora in rats. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Miaoqing An
- College of Food Science South China Agricultural University Wushan Road Tianhe District Guangzhou 510642 China
| | - Ya‐nan Xu
- College of Food Science South China Agricultural University Wushan Road Tianhe District Guangzhou 510642 China
| | - Nan Xiao
- College of Food Science South China Agricultural University Wushan Road Tianhe District Guangzhou 510642 China
| | - Jian‐zhao Huang
- College of Food Science South China Agricultural University Wushan Road Tianhe District Guangzhou 510642 China
| | - Shan‐shan Wu
- College of Food Science South China Agricultural University Wushan Road Tianhe District Guangzhou 510642 China
| | - Qianting Zhuo
- College of Food Science South China Agricultural University Wushan Road Tianhe District Guangzhou 510642 China
| | - Yuping Lai
- College of Food Science South China Agricultural University Wushan Road Tianhe District Guangzhou 510642 China
| | - JianPing Chen
- School of Chinese Medicine, LKS faculty of Medicine The University of Hong Kong Pokfulam Hong Kong 999077 China
| | - Pan Li
- College of Food Science South China Agricultural University Wushan Road Tianhe District Guangzhou 510642 China
- Guangdong Laboratory for Lingnan Modern Agriculture South China Agricultural University Guangzhou 510642 China
| | - Bing Du
- College of Food Science South China Agricultural University Wushan Road Tianhe District Guangzhou 510642 China
- School of Chinese Medicine, LKS faculty of Medicine The University of Hong Kong Pokfulam Hong Kong 999077 China
- Guangdong Laboratory for Lingnan Modern Agriculture South China Agricultural University Guangzhou 510642 China
| |
Collapse
|
27
|
Cavicchia LOA, Almeida MEFD. Health benefits of Kombucha: drink and its biocellulose production. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e20766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
28
|
Xia F, Xiang S, Chen Z, Song L, Li Y, Liao Z, Ge B, Zhou B. The probiotic effects of AB23A on high-fat-diet-induced non-alcoholic fatty liver disease in mice may be associated with suppressing the serum levels of lipopolysaccharides and branched-chain amino acids. Arch Biochem Biophys 2021; 714:109080. [PMID: 34742934 DOI: 10.1016/j.abb.2021.109080] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 02/08/2023]
Abstract
Alisol B 23-acetate (AB23A) is a natural triterpenoid isolated from Rhizoma alisamatis that has been widely used as a traditional Chinese medicine (TCM). Previous studies have documented the beneficial effect of AB23A on non-alcoholic fatty liver disease (NAFLD), but the functional interactions between gut microbiota and the anti-NAFLD effect of AB23A remain unclear. In this study, we investigated the benefits of experimental treatment with AB23A on gut microbiota dysbiosis in NAFLD with an obesity model. C57BL/6J mice were administrated a high-fat diet (HFD) with or without AB23A for 12 weeks. AB23A significantly improved metabolic phenotype in the HFD-fed mice. Moreover, results of 16S rRNA gene-based amplicon sequencing in each group reveled that AB23A not only reduced the abundance of the Firmicutes/Bacteroidaeota ratio and Actinobacteriota/Bacteroidaeota ratio, but regulated the abundance of the top 10 genera, including norank_f__Muribaculaceae, Lactobacillus, Ileibacterium, Turicibacter, Faecalibaculum, the Lachnospiraceae_NK4A136_group, unclassified_f__Lachnospiraceae, and norank_f__Lachnospiraceae. AB23A significantly reduced the serum levels of lipopolysaccharide and branched-chain amino acids, which are positively correlated with the abundances of Ileibacterium and Turicibacter. Moreover, AB23A led to remarkable reductions in the activation of TLR4, NF-κB, and mTOR, and upregulated the expression of tight junction proteins, including ZO-1 and occludin. These results revealed that AB23A displayed a prebiotic capacity in HFD-fed NAFLD mice.
Collapse
Affiliation(s)
- Fan Xia
- Department of Pharmacy, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, Guangdong, China; Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Shijian Xiang
- Department of Pharmacy, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, Guangdong, China; Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Zhijuan Chen
- Department of Pharmacy, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Luyao Song
- Center for Drug Research and Development, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Yuxin Li
- Department of Pharmacology, Guangdong Medical University, Zhanjiang 524023, Guangdong Province, China Center for Drug Research and Development, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, Guangdong, China
| | - Ziqiong Liao
- Department of Pharmacy, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Bingchen Ge
- Department of Pharmacy, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Benjie Zhou
- Department of Pharmacy, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, Guangdong, China.
| |
Collapse
|
29
|
Health effects and probiotic and prebiotic potential of Kombucha: A bibliometric and systematic review. FOOD BIOSCI 2021. [DOI: 10.1016/j.fbio.2021.101332] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
30
|
Kocot AM, Wróblewska B. Fermented products and bioactive food compounds as a tool to activate autophagy and promote the maintenance of the intestinal barrier function. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
31
|
Costa MADC, Vilela DLDS, Fraiz GM, Lopes IL, Coelho AIM, Castro LCV, Martin JGP. Effect of kombucha intake on the gut microbiota and obesity-related comorbidities: A systematic review. Crit Rev Food Sci Nutr 2021:1-16. [PMID: 34698580 DOI: 10.1080/10408398.2021.1995321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Kombucha is a fermented nonalcoholic tea-based beverage produced through a symbiotic culture of bacteria and yeasts. In vitro studies have demonstrated antimicrobial, antioxidant, antiproliferative, and anti-carcinogenic properties of kombucha. However, no systematic reviews have evaluated the effects of kombucha in vivo. Thus, we aimed to evaluate the evidence that exists so far about kombucha consumption on comorbidities associated with obesity as well as on the gut microbiota. The search was conducted in accordance with PRISMA and the protocol was registered in PROSPERO (registration number: CRD42020158917). The MEDLINE/PubMed, Web of Science, LILACS, SciELO, Scopus, and Science Direct databases were used in the search considering the following terms: "kombucha" OR "kombucha tea" OR "kombucha teas" OR "tea, kombucha" OR "teas, kombucha" NOT "review." Fifteen studies were included in this review. The results suggest that kombucha consumption attenuates oxidative stress and inflammation, improves the liver detoxification process, and reduces intestinal dysbiosis. There is evidence that kombucha consumption is beneficial for the control and treatment of obesity and associated comorbidities, as well as for the modulation of the gut microbiota in vivo.
Collapse
Affiliation(s)
| | | | - Gabriela Macedo Fraiz
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Isabelle Lima Lopes
- Microbiology of Fermented Products Laboratory (FERMICRO), Department of Microbiology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Ana Iris Mendes Coelho
- Department of Nutrition and Health, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | | | - José Guilherme Prado Martin
- Microbiology of Fermented Products Laboratory (FERMICRO), Department of Microbiology, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
32
|
Wang P, Feng Z, Sang X, Chen W, Zhang X, Xiao J, Chen Y, Chen Q, Yang M, Su J. Kombucha ameliorates LPS-induced sepsis in a mouse model. Food Funct 2021; 12:10263-10280. [PMID: 34549751 DOI: 10.1039/d1fo01839f] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
As a popular traditional fermented beverage, kombucha has been extensively studied for its health benefits. However, the science behind the anti-inflammatory effect of kombucha has not been well studied, and there is an urgent need to uncover the secrets of the anti-inflammatory properties of kombucha. Here, we investigate kombucha's protective effects against lipopolysaccharide (LPS)-induced sepsis and on the intestinal microecology in mice. The contents of reducing sugars, polyphenols, catechins, and organic acids in the kombucha group were identified using various methods. The results showed that the concentrations of acetic acid, gluconic acid, polyphenol, and glucuronic acid in the kombucha group were 55.70 ± 2.57 g L-1, 50.20 ± 1.92 g L-1, 2.36 ± 0.31, and 1.39 ± 0.22 g L-1, respectively. The result also demonstrated that kombucha effectively improves the survival rate from 0% to 40%, and increases the thermoregulation in LPS-treated mice, which showed decreased mobility and had lost their appetite for food. Furthermore, kombucha reduced the levels of tumor necrosis factor-α and interleukins (IL)-1β and IL-6, restored the levels of T cells and macrophages in LPS-challenged mice, alleviated the histopathological damage, and inhibited NF-κB signaling in mice with LPS-induced sepsis. We demonstrated that kombucha effectively prevents cellular immune function disorder in mice at the initial stage of sepsis and exerts an immunomodulatory effect. In addition, the effect of kombucha on the gut microbiota was investigated during sepsis. Kombucha supplementation altered the diversity of the gut microbiota and promoted the growth of butyrate-producing bacteria, which exert anti-inflammatory effects. Our results illustrate the potential of kombucha as a novel anti-inflammatory agent against the development of systemic inflammatory responses associated with sepsis.
Collapse
Affiliation(s)
- Penghui Wang
- College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China.
| | - Zhihua Feng
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China. .,College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China.
| | - Xiao Sang
- College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China.
| | - Wenzhi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China. .,College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China.
| | - Xiaoni Zhang
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Jianbin Xiao
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Youqiang Chen
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China. .,College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China.
| | - Minhe Yang
- College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China.
| | - Jingqian Su
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China. .,College of Life Science, Fujian Normal University, Fuzhou, Fujian Province 350117, PR China.
| |
Collapse
|
33
|
Zhao J, Miao J, Wei X, Guo L, Li P, Lei J, Wang J, Zhu B, Wang L, Jia J. Traditional Chinese Medicine Ganshuang Granules Attenuate CCl 4 -Induced Hepatic Fibrosis by Modulating Gut Microbiota. Chem Biodivers 2021; 18:e2100520. [PMID: 34585845 DOI: 10.1002/cbdv.202100520] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/30/2021] [Indexed: 12/17/2022]
Abstract
Gut dysbiosis contributes to hepatic fibrosis. Emerging evidence revealed the major role of traditional Chinese medicine (TCM) in gut microbiota homeostasis. Here, we aimed to investigate the anti-fibrotic activity and underlying mechanism of ganshuang granules (GS), particularly regarding gut microbiota homeostasis. CCl4 -induced hepatic fibrosis models were allocated into 4 groups receiving normal saline (model), 1.0, 2.0, or 4.0 g/kg GS for 5 weeks. As result, GS treatment alleviated liver injury in CCl4 -induced hepatic fibrosis, presenting as decreases of the liver index, alanine aminotransferase, and aspartate transaminase. Histological staining and expression revealed that the enhanced oxidative stress, inflammatory and hepatic fibrosis in CCl4 -induced models were attenuated by GS. Immunohistochemical staining showed that tight junction-associated proteins in intestinal mucosa were up-regulated by GS. 16S rRNA sequencing showed that GS rebalanced the gut dysbiosis manifested as improving alpha and beta diversity of gut microbiota, reducing the ratio of Firmicutes to Bacteroidetes, and regulating the relative abundance of various bacteria. In summary, GS decreased the intestinal permeability and rebalanced the gut microbiota to reduce the oxidative stress and inflammation, eventually attenuating CCl4 -induced hepatic fibrosis.
Collapse
Affiliation(s)
- Jie Zhao
- Department of Integrated Traditional Chinese and Western Medicine, Tianjin Second People's Hospital, No.7, Sudi Nan Road, Naikai District, Tianjin, 300192, China
| | - Jing Miao
- Department of Integrated Traditional Chinese and Western Medicine, Tianjin Second People's Hospital, No.7, Sudi Nan Road, Naikai District, Tianjin, 300192, China
| | - Xin Wei
- Graduate School, Tianjin University of Traditional Chinese Medicine, No. 10, Poyanghu Road, Town West Area, Jinghai District, Tianjin, 301617, China
| | - Liying Guo
- Department of Integrated Traditional Chinese and Western Medicine, Tianjin Second People's Hospital, No.7, Sudi Nan Road, Naikai District, Tianjin, 300192, China
| | - Peng Li
- Department of Integrated Traditional Chinese and Western Medicine, Tianjin Second People's Hospital, No.7, Sudi Nan Road, Naikai District, Tianjin, 300192, China
| | - Jinyan Lei
- Department of Integrated Traditional Chinese and Western Medicine, Tianjin Second People's Hospital, No.7, Sudi Nan Road, Naikai District, Tianjin, 300192, China
| | - Jing Wang
- Department of Integrated Traditional Chinese and Western Medicine, Tianjin Second People's Hospital, No.7, Sudi Nan Road, Naikai District, Tianjin, 300192, China
| | - Bo Zhu
- Department of Integrated Traditional Chinese and Western Medicine, Tianjin Second People's Hospital, No.7, Sudi Nan Road, Naikai District, Tianjin, 300192, China
| | - Li Wang
- Department of Pharmacy, Tianjin Second People's Hospital, No. 7, Sudi Nan Road, Naikai District, Tianjin, 300192, China
| | - Jianwei Jia
- Department of Integrated Traditional Chinese and Western Medicine, Tianjin Second People's Hospital, No.7, Sudi Nan Road, Naikai District, Tianjin, 300192, China
| |
Collapse
|
34
|
Liu F, Shan S, Li H, Shi J, Hao R, Yang R, Li Z. Millet shell polyphenols prevent atherosclerosis by protecting the gut barrier and remodeling the gut microbiota in ApoE -/- mice. Food Funct 2021; 12:7298-7309. [PMID: 34169953 DOI: 10.1039/d1fo00991e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Atherosclerosis, the major cause of cardiovascular disease, is a chronic inflammatory disease. The anti-inflammatory effect of certain polyphenols has been recognized. Active polyphenols were extracted from millet shells (MSPs), and their main components including 3-hydroxybenzylhydrazine, luteolin-3',7-diglucoside, N-acetyltyramine, p-coumaric acid, vanillin, sinapic acid, ferulic acid and isophorone exhibited the anti-atherosclerotic potential in vitro. To explore the anti-atherosclerotic activity of MSPs in vivo, a classic atherosclerosis model was constructed in ApoE-/- mice fed with a high-fat diet. The results showed that MSPs effectively inhibited the development of atherosclerotic plaques in the aorta and reduced the levels of lipopolysaccharide (LPS) and inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β). A further study found that the expression of tight junction proteins (occludin, zona occludens-1 and claudin1) was obviously up-regulated in the MSPs-treated group at the mRNA and protein levels. Interestingly, MSPs significantly changed the structure of gut microbiota in ApoE-/- mice with a high-fat diet, which is characterized by the enriched Oscillospira and Ruminococcus, and the abridged Allobaculum at the genus level. Collectively, these results suggest that MSPs regulate the integrity of the gut barrier and the structure of the gut microbiota, ultimately inhibiting the development of atherosclerotic plaques. This study provides new insights into the potential cardiovascular protective effects induced by millet shell polyphenols.
Collapse
Affiliation(s)
- Fengming Liu
- School of Life Science, Shanxi University, Taiyuan, China.
| | | | | | | | | | | | | |
Collapse
|
35
|
Xiong F, Zheng Z, Xiao L, Su C, Chen J, Gu X, Tang J, Zhao Y, Luo H, Zha L. Soyasaponin A 2 Alleviates Steatohepatitis Possibly through Regulating Bile Acids and Gut Microbiota in the Methionine and Choline-Deficient (MCD) Diet-induced Nonalcoholic Steatohepatitis (NASH) Mice. Mol Nutr Food Res 2021; 65:e2100067. [PMID: 34047448 DOI: 10.1002/mnfr.202100067] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/21/2021] [Indexed: 12/21/2022]
Abstract
SCOPE Nonalcoholic steatohepatitis (NASH) is a chronic progressive disease with complex pathogenesis of which the bile acids (BAs) and gut microbiota are involved. Soyasaponins (SS) exhibits many health-promoting effects including hepatoprotection, but its prevention against NASH is unclear. This study aims to investigate the preventive bioactivities of SS monomer (SS-A2 ) against NASH and further clarify its mechanism by targeting the BAs and gut microbiota. METHODS AND RESULTS The methionine and choline deficient (MCD) diet-fed male C57BL/6 mice were intervened with obeticholic acid or SS-A2 for 16 weeks. Hepatic pathology is assessed by hematoxylin-eosin and Masson's trichrome staining. BAs in serum, liver, and colon are measured by ultra-performance liquid chromatography coupled with triple quadrupole mass spectrometry (UPLC-TQMS). Gut microbiota in caecum are determined by 16S rDNA amplicon sequencing. In the MCD diet-induced NASH mice, SS-A2 significantly reduces hepatic steatosis, lobular inflammation, ballooning, nonalcoholic fatty liver disease activity score (NAS) scores, and fibrosis, decreases Erysipelotrichaceae (Faecalibaculum) and Lactobacillaceae (Lactobacillus) and increases Desulfovibrionaceae (Desulfovibrio). Moreover, SS-A2 reduces serum BAs accumulation and promotes fecal BAs excretion. SS-A2 changes the BAs profiles in both liver and serum and specifically increases the taurohyodeoxycholic acid (THDCA) level. Faecalibaculum is negatively correlated with serum THDCA. CONCLUSION SS-A2 alleviates steatohepatitis possibly through regulating BAs and gut microbiota in the MCD diet-induced NASH mice.
Collapse
Affiliation(s)
- Fei Xiong
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Zhongdaixi Zheng
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Lingyu Xiao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Chuhong Su
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Junbin Chen
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Xiangfu Gu
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Jiaqi Tang
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Yue Zhao
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Huiyu Luo
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| | - Longying Zha
- Department of Nutrition and Food Hygiene, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| |
Collapse
|
36
|
Song MW, Kim KT, Paik HD. Probiotics as a Functional Health Supplement in Infant Formulas for the Improvement of Intestinal Microflora and Immunity. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1928178] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Myung Wook Song
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, Republic of Korea
| | - Kee-Tae Kim
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, Republic of Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul, Republic of Korea
| |
Collapse
|
37
|
Gong MJ, Zhu CY, Zou ZJ, Han B, Huang P. Therapeutic potential of puerarin against methionine-choline-deficient diet-induced non-alcoholic steatohepatitis determined by combination of 1H NMR spectroscopy-based metabonomics and 16S rRNA gene sequencing. J Pharm Biomed Anal 2021; 197:113964. [PMID: 33601157 DOI: 10.1016/j.jpba.2021.113964] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 12/12/2022]
Abstract
Previously published studies have revealed the protective effect of puerarin against non-alcoholic steatohepatitis (NASH), but the definite mechanism of this effect still remains unclear. The present work was an attempt to assess the beneficial effects and the underlying mechanisms of puerarin on methionine-choline-deficient (MCD) diet-induced NASH in C57BL/6 mice by using a combination of metabonomics and 16S rRNA gene sequencing technology. Nuclear magnetic resonance (NMR)-based metabonomics showed significant hepatic and urinary metabolic phenotype changes between MCD-diet fed mice and the healthy controls. A total of eight and thirteen metabolites were identified as differential metabolites associated with NASH in liver tissue and urine of mice, respectively. The proposed pathways mainly included pyrimidine metabolism, one-carbon metabolism, amino acid metabolism, glycolysis, tricarboxylic acid (TCA) cycle and synthesis and degradation of ketone bodies. Furthermore, 16S rRNA gene sequencing analysis delineated remarkable variations in gut microbiota profiles in response to MCD diet in mice and forty differential bacterial taxa related to NASH were found between the control and model group. Puerarin could improve hepatic steatosis and inflammation in NASH mice via partially ameliorating metabolic disorders and rebalancing the gut flora. Specifically, puerarin could inhibit lipopolysaccharide (LPS)-producing genus Helicobacter, and promote butyrate-producing genus Roseburia. These findings offered novel insights into the in-depth understanding of the pathogenesis of NASH and provided further evidence for the potential use of puerarin as an anti-NASH agent.
Collapse
Affiliation(s)
- Meng-Juan Gong
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Cai-Yan Zhu
- The Sixth Affilicated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Zhong-Jie Zou
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Bin Han
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Ping Huang
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China.
| |
Collapse
|
38
|
Mousavi SM, Hashemi SA, Zarei M, Gholami A, Lai CW, Chiang WH, Omidifar N, Bahrani S, Mazraedoost S. Recent Progress in Chemical Composition, Production, and Pharmaceutical Effects of Kombucha Beverage: A Complementary and Alternative Medicine. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2020; 2020:4397543. [PMID: 33281911 PMCID: PMC7688354 DOI: 10.1155/2020/4397543] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/03/2020] [Accepted: 10/24/2020] [Indexed: 01/26/2023]
Abstract
Kombucha is a valuable traditional natural tea that contains beneficial compounds like organic acids, minerals, different vitamins, proteins, polyphenols, and several anions. Kombucha possesses anticancer, antioxidant, antimicrobial, and antifungal activity as well as hepatoprotective effects. Considering the unique properties of Kombucha, several investigations have already been conducted on its nutritional properties. In this review, an effort has been devoted to pool recent literature on the biomedical application of Kombucha under the objectives, including the chemical composition of Kombucha and industrial production, and highlight different properties of Kombucha. Finally, we explain its adverse effects and prospect. This review is an active, in-depth, and inclusive report about Kombucha and its health benefits.
Collapse
Affiliation(s)
- Seyyed Mojtaba Mousavi
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Seyyed Alireza Hashemi
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Zarei
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Gholami
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Chin Wei Lai
- Nanotechnology & Catalysis Research Centre, University of Malaya, Kuala Lumpur, Malaysia
| | - Wei Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Navid Omidifar
- Clinical Education Research Center, and Pathology Department, Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sonia Bahrani
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - Sargol Mazraedoost
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Science, Shiraz, Iran
| |
Collapse
|
39
|
|
40
|
|
41
|
Zhang Y, Zuo J, Yan L, Cheng Y, Li Q, Wu S, Chen L, Thring RW, Yang Y, Gao Y, Wu M, Tong H. Sargassum fusiforme Fucoidan Alleviates High-Fat Diet-Induced Obesity and Insulin Resistance Associated with the Improvement of Hepatic Oxidative Stress and Gut Microbiota Profile. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:10626-10638. [PMID: 32866006 DOI: 10.1021/acs.jafc.0c02555] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Sargassum fusiforme fucoidan (SFF) exhibits diverse biological activities. Insulin resistance (IR) implicated in type 2 diabetes (T2D) has become an epidemic health issue worldwide. In this study, we investigated whether SFF can improve insulin sensitivity in high-fat diet (HFD)-fed mice. Our present data showed that SFF significantly reduced fasting blood glucose and IR index along with improved glucose tolerance. Impaired phosphorylation of Akt was also restored by SFF. Furthermore, SFF decreased the levels of MDA and 4-HNE-modified protein and increased GSH/GSSG ratio as well as elevated antioxidant enzymes and activated Nrf2 signaling. SFF also increased the abundance and diversity of gut microbiota in the obese mice, as well as improved intestinal integrity and inflammation. Our findings suggested that SFF ameliorated HFD-induced IR through activating the Nrf2 pathway, remodeling gut microbiota, and reducing intestinal inflammation, thus providing a novel perspective into the treatment strategy on metabolic disease.
Collapse
Affiliation(s)
- Ya Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
- Environmental Science and Environmental Engineering, University of Northern British Columbia, Prince George, British Columbia, Canada V2N 4Z9
| | - Jihui Zuo
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Liping Yan
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yang Cheng
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Qiaojuan Li
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Siya Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Ling Chen
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Ronald W Thring
- Environmental Science and Environmental Engineering, University of Northern British Columbia, Prince George, British Columbia, Canada V2N 4Z9
| | - Yue Yang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yitian Gao
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Mingjiang Wu
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Haibin Tong
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
42
|
Hu S, Yang H, Gao X, Li S, Jiang W, Liu Y. Egg oil from Portunus trituberculatus alleviated obesity and regulated gut microbiota in mice. Sci Rep 2020; 10:8454. [PMID: 32439940 PMCID: PMC7242455 DOI: 10.1038/s41598-020-65199-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 04/26/2020] [Indexed: 12/13/2022] Open
Abstract
Egg oil from Portunus trituberculatus (Pt-egg oil) can overcome insulin resistance resulting from abundant bioactive lipids. However, its effects on obesity and gut microbiota were unclear. Here, we evaluated whether Pt-egg oil could improve obesity and gut microbiota or not in high-fat diet feeding mice. Results exhibited that Pt-egg oil markedly reduced body weight and adipose weight gain, improved lipid accumulation and circulatory cytokines, inhibited epididymal adipose cell size. Moreover, Pt-egg oil modified gut microbiota, involving decreases in the ratio of Firmicutes to Bacteroidetes, Proteobacteria, Actinobacteria, and increase in Verrucomicrobia phylum. Pt-egg oil reduced serum and fecal lipopolysaccharide (LPS) levels and down-regulated Toll-like receptor 4 pathway in both epididymal adipose and liver tissues. Meanwhile, Pt-egg oil increased short chain fatty acids and up-regulated of G-protein-coupled receptors in both epididymal adipose and liver tissues. These suggest that Pt-egg oil could be alternative food supplement for the prophylactic effects on anti-obesity and improvement in human gut health.
Collapse
Affiliation(s)
- Shiwei Hu
- Innovation Application Institute, Zhejiang Ocean University, Zhoushan, Zhoushan, 316022, China.
| | - Huicheng Yang
- Zhejiang Marine Development Research Institute, Zhoushan, 316021, China.
| | - Xiang Gao
- College of Food Science, Qingdao University, Qingdao, 266071, China
| | - Shijie Li
- Innovation Application Institute, Zhejiang Ocean University, Zhoushan, Zhoushan, 316022, China
| | - Wei Jiang
- Innovation Application Institute, Zhejiang Ocean University, Zhoushan, Zhoushan, 316022, China
| | - Yu Liu
- Innovation Application Institute, Zhejiang Ocean University, Zhoushan, Zhoushan, 316022, China
| |
Collapse
|
43
|
Shen Y, Xiao X, Wu K, Wang Y, Yuan Y, Liu J, Sun S, Liu J. Effects and molecular mechanisms of Ninghong black tea extract in nonalcoholic fatty liver disease of rats. J Food Sci 2020; 85:800-807. [PMID: 32090345 DOI: 10.1111/1750-3841.14846] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 09/03/2019] [Accepted: 09/16/2019] [Indexed: 12/24/2022]
Abstract
The aim of this study is to observe the effects of Ninghong black tea extract on fat deposition and high-fat diet-induced nonalcoholic fatty liver disease (NAFLD) and to explore the potential mechanisms of these effect. Under 2% Ninghong black tea extract diet feeding in rat model, the results showed that Ninghong black tea extract decreased the body fat ratio and the number of lipid droplets in the liver and significantly alleviated NAFLD in the rat model. The real-time fluorescence quantitative polymerase chain reaction results showed that Ninghong black tea extract significantly upregulated the expression of peroxisome proliferator-activated receptor α (PPARα), which is important in fatty acid β-oxidation, and microsomal triglyceride transfer protein (MTP), which plays an important role in the synthesis of very low density lipoprotein (VLDL). By promoting the expression of PPARα and MTP in liver tissue and thereby promoting fatty acid β-oxidation and VLDL synthesis, Ninghong black tea extract relieves high-fat diet-induced NAFLD.
Collapse
Affiliation(s)
- Yu Shen
- Molecular Biology Research Center, School of Life Sciences, Central South Univ., Changsha, 410078, China
| | - Xiaojuan Xiao
- Molecular Biology Research Center, School of Life Sciences, Central South Univ., Changsha, 410078, China
| | - Kunlu Wu
- Molecular Biology Research Center, School of Life Sciences, Central South Univ., Changsha, 410078, China
| | - Yanpeng Wang
- Molecular Biology Research Center, School of Life Sciences, Central South Univ., Changsha, 410078, China
| | - Yijun Yuan
- Molecular Biology Research Center, School of Life Sciences, Central South Univ., Changsha, 410078, China
| | - Jianwei Liu
- Molecular Biology Research Center, School of Life Sciences, Central South Univ., Changsha, 410078, China
| | - Shuming Sun
- Molecular Biology Research Center, School of Life Sciences, Central South Univ., Changsha, 410078, China
| | - Jing Liu
- Molecular Biology Research Center, School of Life Sciences, Central South Univ., Changsha, 410078, China
| |
Collapse
|
44
|
Zhang X, Wu Q, Zhao Y, Aimy A, Yang X. Consumption of post-fermented Jing-Wei Fuzhuan brick tea alleviates liver dysfunction and intestinal microbiota dysbiosis in high fructose diet-fed mice. RSC Adv 2019; 9:17501-17513. [PMID: 35519894 PMCID: PMC9064584 DOI: 10.1039/c9ra02473e] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 05/28/2019] [Indexed: 12/14/2022] Open
Abstract
Emerging evidence supports the health-promoting ability of a special microbial-fermented Fuzhuan brick tea. Epigallocatechin gallate was identified as a dominant flavonoid of Fuzhuan tea aqueous extract (FTE). Mice were treated with 30% high fructose (HF) water feeding alone or in combination with administration of FTE at 400 mg per kg bw for 13 weeks. FTE caused strong inhibition against the elevation of liver weight, serum enzymatic (aspartate aminotransferase, aspartate aminotransferase and alkaline phosphatase) activities and hepatic inflammatory cytokines (interleukin-1, interleukin-6, tumor necrosis factor-α and tumor necrosis factor-β) formation, as well as dyslipidemia (total cholesterol, total triglyceride, low-density lipoprotein-cholesterol and high-density lipoprotein-cholesterol) in HF-fed mice (p < 0.05). Hepatic malonaldehyde formation was lowered, while superoxide dismutase and glutathione peroxidase activities were enhanced by FTE treatment, relative to HF-fed mice (p < 0.05), and histopathological evaluation confirmed the protection. As revealed by 16S rDNA gene sequencing, FTE notably increased abundance of Bacteroidetes and Lactobacillus, but reduced population of Firmicutes, Proteobacteria and Tenericutes in HF feeding mice. These findings suggest that FTE exerts a hepatoprotective effect by modifying hepatic oxidative stress, inflammatory response and gut microbiota dysfunction. Fuzhuan brick tea can improve non-alcoholic fatty liver disease (NAFLD) and intestinal microbiota imbalance induced by a high fructose diet (HFD) intake in mice.![]()
Collapse
Affiliation(s)
- Xiangnan Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control
- Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an 710119
| | - Qiu Wu
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control
- Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an 710119
| | - Yan Zhao
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry
- College of Life Sciences
- Shaanxi Normal University
- Xi'an 710119
- China
| | - Alim Aimy
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control
- Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an 710119
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control
- Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an 710119
| |
Collapse
|