1
|
Pesce F, Ponzo V, Mazzitelli D, Varetto P, Bo S, Saguy IS. Strategies to Reduce Acrylamide Formation During Food Processing Focusing on Cereals, Children and Toddler Consumption: A Review. FOOD REVIEWS INTERNATIONAL 2023. [DOI: 10.1080/87559129.2023.2164896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- Francesco Pesce
- Department of Agricultural, Forest and Food Sciences, University of Torino, Torino, Italy
| | - Valentina Ponzo
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - Davide Mazzitelli
- Department of Reseach and Development, Soremartec Italia Srl, Alba, CN, Italy
| | - Paolo Varetto
- Department of Reseach and Development, Soremartec Italia Srl, Alba, CN, Italy
| | - Simona Bo
- Department of Medical Sciences, University of Torino, Torino, Italy
| | - I. Sam Saguy
- Robert H. Smith Faculty of Agriculture, Food & Environment, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
2
|
Abedini AH, Vakili Saatloo N, Salimi M, Sadighara P, Alizadeh Sani M, Garcia-Oliviera P, Prieto MA, Kharazmi MS, Jafari SM. The role of additives on acrylamide formation in food products: a systematic review. Crit Rev Food Sci Nutr 2022; 64:2773-2793. [PMID: 36194060 DOI: 10.1080/10408398.2022.2126428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Acrylamide (AA) is a toxic substance formed in many carbohydrate-rich food products, whose formation can be reduced by adding some additives. Furthermore, the type of food consumed determines the AA intake. According to the compiled information, the first route causing AA formation is the Maillard reaction. Some interventions, such as reducing AA precursors in raw materials, (i.e., asparagine), reducing sugars, or decreasing temperature and processing time can be applied to limit AA formation in food products. The L-asparaginase is more widely used in potato products. Also, coatings loaded with proteins, enzymes, and phenolic compounds are new techniques for reducing AA content. Enzymes have a reducing effect on AA formation by acting on asparagine; proteins by competing with amino acids to participate in Maillard, and phenolic compounds through their radical scavenging activity. On the other hand, some synthetic and natural additives increase the formation of AA. Due to the high exposure to AA and its toxic effects, it is essential to recognize suitable food additives to reduce the health risks for consumers. In this sense, this study focuses on different additives that are proven to be effective in the reduction or formation of AA in food products.
Collapse
Affiliation(s)
- Amir Hossein Abedini
- Students, Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health, Food Safety Division, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Naiema Vakili Saatloo
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Mahla Salimi
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parisa Sadighara
- Department of Environmental Health, Food Safety Division, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Alizadeh Sani
- Department of Environmental Health, Food Safety Division, Faculty of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Paula Garcia-Oliviera
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Ourense, Spain
| | - Miguel A Prieto
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Ourense, Spain
| | | | - Seid Mahdi Jafari
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, Ourense, Spain
- Faculty of Food Science & Technology, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
- College of Food Science and Technology, Hebei Agricultural University, Baoding, China
| |
Collapse
|
3
|
Žilić S, Nikolić V, Mogol BA, Hamzalıoğlu A, Taş NG, Kocadağlı T, Simić M, Gökmen V. Acrylamide in Corn-Based Thermally Processed Foods: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4165-4181. [PMID: 35357820 PMCID: PMC9011392 DOI: 10.1021/acs.jafc.1c07249] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Widely consumed thermally processed corn-based foods can have a great contribution to acrylamide dietary intake, thus bearing a high public health risk and requiring attention and application of strategies for its reduction. This paper reviews the literature on the acrylamide content of corn-based food products present in the market around the world. The potential of corn for acrylamide formation due to its content of free asparagine and reducing sugars is described. Human exposure to acrylamide from corn-based foods is also discussed. The content of acrylamide in corn/tortilla chips, popcorn, and corn flakes, as widely consumed products all over the world, is reported in the literature to be between 5 and 6360 μg/kg, between <LOD and 2220 μg/kg and between <LOD and 1186 μg/kg, respectively. Although these products are important acrylamide sources in the common diet of all age populations, higher intake values occurred among younger generations.
Collapse
Affiliation(s)
- Slađana Žilić
- Maize
Research Institute, Group of Food Technology
and Biochemistry, Slobodana
Bajića 1, 11185 Belgrad- Zemun, Serbia
| | - Valentina Nikolić
- Maize
Research Institute, Group of Food Technology
and Biochemistry, Slobodana
Bajića 1, 11185 Belgrad- Zemun, Serbia
| | - Burçe Ataç Mogol
- Food
Quality and Safety (FoQuS) Research Group, Department of Food Engineering, Hacettepe University, 06800 Beytepe, Ankara, Turkey
| | - Aytül Hamzalıoğlu
- Food
Quality and Safety (FoQuS) Research Group, Department of Food Engineering, Hacettepe University, 06800 Beytepe, Ankara, Turkey
| | - Neslihan Göncüoğlu Taş
- Food
Quality and Safety (FoQuS) Research Group, Department of Food Engineering, Hacettepe University, 06800 Beytepe, Ankara, Turkey
| | - Tolgahan Kocadağlı
- Food
Quality and Safety (FoQuS) Research Group, Department of Food Engineering, Hacettepe University, 06800 Beytepe, Ankara, Turkey
| | - Marijana Simić
- Maize
Research Institute, Group of Food Technology
and Biochemistry, Slobodana
Bajića 1, 11185 Belgrad- Zemun, Serbia
| | - Vural Gökmen
- Food
Quality and Safety (FoQuS) Research Group, Department of Food Engineering, Hacettepe University, 06800 Beytepe, Ankara, Turkey
| |
Collapse
|
4
|
Li X, Kahlon T, Wang SC, Friedman M. Low Acrylamide Flatbreads from Colored Corn and Other Flours. Foods 2021; 10:foods10102495. [PMID: 34681543 PMCID: PMC8535222 DOI: 10.3390/foods10102495] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 12/16/2022] Open
Abstract
Dietary acrylamide formed during baking and frying of plant-based foods such as bread and other cereal products, coffee, fried potatoes, and olives is reported to induce genotoxic, carcinogenic, neurotoxic, and antifertility properties in vivo, suggesting the need to keep the acrylamide content low with respect to widely consumed heat-processed food including flatbreads. Due to the fact that pigmented corn flours contain biologically active and health-promoting phenolic and anthocyanin compounds, the objective of this study was to potentially define beneficial properties of flatbread by evaluating the acrylamide content determined by high-performance liquid chromatography/mass spectrometry (HPLC/MS) with a detection limit of 1.8 µg/kg and proximate composition by standard methods of six experimental flatbreads made from two white, two blue, one red, and one yellow corn flours obtained by milling commercial seeds. Acrylamide content was also determined in experimental flatbreads made from combinations in quinoa flour, wheat flour, and peanut meal with added broccoli or beet vegetables and of commercial flatbreads including tortillas and wraps. Proximate analysis of flatbreads showed significant differences in protein and fat but not in carbohydrate, mineral, and water content. The acrylamide content of 16 evaluated flatbreads ranged from 0 to 49.1 µg/kg, suggesting that these flatbreads have the potential to serve as low-acrylamide functional foods. The dietary significance of the results is discussed.
Collapse
Affiliation(s)
- Xueqi Li
- Olive Center, University of California, Davis, CA 95616, USA;
| | - Talwinder Kahlon
- Healthy Processed Foods Research, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA;
| | - Selina C. Wang
- Olive Center, University of California, Davis, CA 95616, USA;
- Department of Food Science and Technology, University of California, Davis, CA 95616, USA
- Correspondence: (S.C.W.); (M.F.)
| | - Mendel Friedman
- Healthy Processed Foods Research, Western Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Albany, CA 94710, USA;
- Correspondence: (S.C.W.); (M.F.)
| |
Collapse
|