1
|
Hussain A, Hussain M, Ashraf W, Karim A, Muhammad Aqeel S, Khan A, Hussain A, Khan S, Lianfu Z. Preparation, characterization and functional evaluation of soy protein isolate-peach gum conjugates prepared by wet heating Maillard reaction. Food Res Int 2024; 192:114681. [PMID: 39147541 DOI: 10.1016/j.foodres.2024.114681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/25/2024] [Accepted: 06/26/2024] [Indexed: 08/17/2024]
Abstract
This study was conducted to formulate a conjugate of soy protein isolate (SPI) and peach gum (PG) with improved functional properties, interacting at mass ratios of 1:1, 1:2, 1:3, 2:1, and 2:3 by Maillard reaction via wet heating method. Conjugation efficiency was confirmed by grafting degree (DG) and browning index (BI). Results indicated that DG increased with increasing concentration of PG, and decreased with increasing pH, whereas no remarkable change was observed with increasing reaction time. The conjugates were optimized at a ratio of 1:3. SDS-PAGE confirmed conjugate formation, Fourier transform infrared spectroscopy (FTIR) and circular dichroism (CD) verified conjugate secondary structural changes, and scanning electron microscopy (SEM) indicated significant overall structural changes. The functional properties, solubility, emulsifying stability, water holding, foaming, and antioxidant activity were significantly improved. This study revealed the wet heating method as an effective approach to improve the functional properties of soy protein.
Collapse
Affiliation(s)
- Arif Hussain
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Muhammad Hussain
- Moganshan Institute ZJUT, Kangqian District, Deqing 313200, China
| | - Waqas Ashraf
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Aiman Karim
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | | | - Adil Khan
- College of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Asif Hussain
- College of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Salman Khan
- College of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Zhang Lianfu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; College of Shihezi University, Shihezi, Xinjiang 832002, China.
| |
Collapse
|
2
|
Nikkhou S, Labbafi M, Mousavi ME, Askari G. Properties of OSA-esterified insoluble fraction of Persian gum and its application in dairy cream. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:892-904. [PMID: 37707173 DOI: 10.1002/jsfa.12981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/05/2023] [Accepted: 09/14/2023] [Indexed: 09/15/2023]
Abstract
BACKGROUND In the present study, the insoluble fraction of Persian gum (IFPG) was modified with octenyl succinic anhydride (OSA) and its various properties were assessed. In addition, the effect of OSA-IFPG on the rheological and textural properties of dairy cream was investigated. RESULTS Suitable conditions for achieving a degree of substitution (DS) of 0.023 were found at pH 9, IFPG concentration 4 wt%, OSA concentration 10 wt% and a temperature of 40 °C, within 120 min. The carbonyl group attachment in OSA-IFPG was also confirmed via Fourier transform infrared and H-nuclear magnetic resonance spectroscopy (1 H-NMR). While the X-ray diffraction test indicated no significant changes in the structure of the IFPG after modification with OSA, esterification increased the negative charge density, decreased thermal decomposition temperature and increased the emulsifying capacity to 100%, which was obtained for the first time. The use of OSA-modified IFPG in creams augmented the complex viscosity, loss and storage modulus, while also demonstrating the creation of a pseudo-gel network. The hardness and adhesiveness of the texture increased, which can be explained by the formation of a compact structure and reduced particle size. CONCLUSION Overall, OSA-IFPG with hydrophilic and hydrophobic sections may function as an emulsifier and be recommended as a safe source of hydrocolloids for emulsion stability. It can also provide a positive physical structure when added to dairy cream, even if the fat concentration is lower than usual. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shima Nikkhou
- Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Mohsen Labbafi
- Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Mohammad E Mousavi
- Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Gholamreza Askari
- Department of Food Science and Technology, Faculty of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| |
Collapse
|
3
|
Aminikhah N, Mirmoghtadaie L, Shojaee-Aliabadi S, Khoobbakht F, Hosseini SM. Investigation of structural and physicochemical properties of microcapsules obtained from protein-polysaccharide conjugate via the Maillard reaction containing Satureja khuzestanica essential oil. Int J Biol Macromol 2023; 252:126468. [PMID: 37625762 DOI: 10.1016/j.ijbiomac.2023.126468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 06/24/2023] [Accepted: 08/21/2023] [Indexed: 08/27/2023]
Abstract
In this study, some common proteins including, whey protein isolate (WPI), soy protein isolate (SPI), and gelatin (G) conjugated with maltodextrin (MD) via Maillard reaction and were then used to encapsulate Satureja khuzestanica essential oil (SKEO). The higher glycation degree was obtained at a pH of 9 and 3 h of heating at 60 °C for SPI and WPI, and 90 °C for G. The results of FTIR and intrinsic fluorescence test showed the possibility of covalent binding formation between proteins and maltodextrin. The encapsulation efficiencies were obtained about 83.84 %, 88.95 %, and 89.27 % for MD-SPI, MD-G, and MD-WPI, respectively. Moreover, the Maillard reaction-based microcapsules had higher antioxidant activity than the physical mixture of protein-polysaccharide. The addition of SKEO to microcapsules improved antimicrobial activity. The results of this study demonstrated that MD-WPI and MD-G, as encapsulating materials, can be used to enhance the physiochemical properties of microcapsules loaded with SKEO.
Collapse
Affiliation(s)
- Nafise Aminikhah
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Mirmoghtadaie
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeedeh Shojaee-Aliabadi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Faezeh Khoobbakht
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyede Marzieh Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Sciences and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Wang Y, Wu C, Jia H, Mráz J, Zhao R, Li S, Dong X, Pan J. Modified Structural and Functional Properties of Fish Gelatin by Glycosylation with Galacto-Oligosaccharides. Foods 2023; 12:2828. [PMID: 37569097 PMCID: PMC10417800 DOI: 10.3390/foods12152828] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/16/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
This study aimed to investigate the effects of galacto-oligogalactose (GOS) glycosylation on the structural and functional properties of fish gelatin (FG). Results showed that with the increase of glycosylation time, grafting degree and browning increased, and new protein bands with increased molecular weight were observed by SDS-PAGE. Structural analysis showed that glycosylation reduced intrinsic fluorescence intensity and increased surface hydrophobicity of FG. FTIR analysis showed α-helix content decreased while random coil content increased in glycosylated FG. Emulsion activity index and emulsion stability index along with foam activity and foam stability were significantly elevated in GOS-4 and GOS-8, but FG glycosylated longer than 12 h exhibited less pronounced improvement. Glycosylated FG showed lower gel strength than control. The results indicate that moderate glycosylation could be applied to improve interfacial properties of FG.
Collapse
Affiliation(s)
- Yong Wang
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center for Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (Y.W.); (C.W.); (R.Z.); (S.L.); (X.D.)
| | - Caiyun Wu
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center for Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (Y.W.); (C.W.); (R.Z.); (S.L.); (X.D.)
| | - Hui Jia
- Institute of Aquaculture and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, 370 05 České Budějovice, Czech Republic; (H.J.); (J.M.)
| | - Jan Mráz
- Institute of Aquaculture and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, 370 05 České Budějovice, Czech Republic; (H.J.); (J.M.)
| | - Ran Zhao
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center for Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (Y.W.); (C.W.); (R.Z.); (S.L.); (X.D.)
| | - Shengjie Li
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center for Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (Y.W.); (C.W.); (R.Z.); (S.L.); (X.D.)
| | - Xiuping Dong
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center for Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (Y.W.); (C.W.); (R.Z.); (S.L.); (X.D.)
| | - Jinfeng Pan
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center for Seafood, Collaborative Innovation Center of Provincial and Ministerial Co-Construction for Seafood Deep Processing, Liaoning Province Collaborative Innovation Center for Marine Food Deep Processing, College of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, China; (Y.W.); (C.W.); (R.Z.); (S.L.); (X.D.)
| |
Collapse
|
5
|
Physical and oxidative stability of emulsions treated with bitter almond gum–soy protein isolate Maillard conjugates. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
6
|
Rahimi P, Hosseini E, Rousta E, Bostar H. Digestibility and stability of ultrasound-treated fish oil emulsions prepared by water-soluble bitter almond gum glycated with caseinate. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111697] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|