1
|
Yaneva Z, Grozeva N, Todorova M, Kamenova-Nacheva M, Staleva P, Memdueva N, Tzanova MT. Comparison of the Potential of "Green" Classical and Natural Deep Eutectic Solvents in the Production of Natural Food Colorant Extracts from the Roots of Alkanna tinctoria (L.). Foods 2025; 14:584. [PMID: 40002028 PMCID: PMC11854224 DOI: 10.3390/foods14040584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 02/07/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025] Open
Abstract
Alkanna tinctoria L. Tausch ("alkanet" or "alkanna") is a medicinal plant. Extracts from alkanet roots have applications as natural food coloring agents. In addition, they have proven antioxidant effects. Three classical solvents (ethanol and acidified ethanol/water) and four natural eutectic solvents (NADES)-choline chloride/urea; choline chloride/citric acid; choline chloride/lactic acid; and sodium acetate/formic acid-were compared for their effectiveness as "green" solvents for the extraction of the alkanet pigment. Notably, this study is the first to apply choline chloride-based NADESs for alkanet extraction, providing a comprehensive profile of key bioactive compounds and their contributions to antioxidant activity using UV/Vis and FT-IR spectrometry, GC-MS, and HPLC-PDA-MS. Among the classical solvents, 50% acidified ethanol showed the highest extraction capacity, as indicated by its total flavonoid (708 ± 32 mgCE/L) and total phenolic (1318 ± 63 mgGAE/L) content. However, this extract exhibited the highest total alkaloid content (256 ± 15 µg/L) compared to the other classical extraction solvents. Consequently, absolute ethanol was identified as a more suitable alternative. Among the NADES, the sodium acetate/formic acid (1:2 mol/mol, NADES4) extract was the only one to show the presence of alkannins. This extract also contained high levels of phenols (355 ± 21 mg GAE/L) and tannins (163 ± 10 mg CE/L), exhibited strong antioxidant potential (DPPH: 131 µmol TE/g dw, FRAP: 7.49 mg Fe(II)/mg dw), and contained significantly lower alkaloid levels (7.0 ± 0.5 µg/L). Comparative analyses indicated that the sodium acetate/formic acid extract outperformed those prepared with ethanolic solvents and other NADES.
Collapse
Affiliation(s)
- Zvezdelina Yaneva
- Department of Pharmacology, Animal Physiology, Biochemistry and Chemistry, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria;
| | - Neli Grozeva
- Department of Biological Sciences, Faculty of Agriculture, Trakia University, 6000 Stara Zagora, Bulgaria; (N.G.); (N.M.)
| | - Mima Todorova
- Department of Plant Sciences, Faculty of Agriculture, Trakia University, 6000 Stara Zagora, Bulgaria;
| | - Mariana Kamenova-Nacheva
- Laboratory for Extraction of Natural Products and Synthesis of Bioactive Compounds, Research and Development and Innovation Consortium, Sofia Tech Park JSC, 111 Tsarigradsko Shose blvd., 1784 Sofia, Bulgaria; (M.K.-N.); (P.S.)
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 9, 1113 Sofia, Bulgaria
| | - Plamena Staleva
- Laboratory for Extraction of Natural Products and Synthesis of Bioactive Compounds, Research and Development and Innovation Consortium, Sofia Tech Park JSC, 111 Tsarigradsko Shose blvd., 1784 Sofia, Bulgaria; (M.K.-N.); (P.S.)
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 9, 1113 Sofia, Bulgaria
| | - Neli Memdueva
- Department of Biological Sciences, Faculty of Agriculture, Trakia University, 6000 Stara Zagora, Bulgaria; (N.G.); (N.M.)
| | - Milena Tankova Tzanova
- Department of Biological Sciences, Faculty of Agriculture, Trakia University, 6000 Stara Zagora, Bulgaria; (N.G.); (N.M.)
| |
Collapse
|
2
|
Rietjens IMCM, Pascale M, Pellegrino G, Ribera D, Venâncio A, Wang D, Korzeniowski K. The definition of chemical contaminants in food: Ambiguity and consequences. Regul Toxicol Pharmacol 2025; 155:105739. [PMID: 39547502 DOI: 10.1016/j.yrtph.2024.105739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/04/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Consumers may be exposed via foods to a diverse range of substances that could be considered as contaminants. However, it is not always straightforward to understand the definition of a 'contaminant'. The present review evaluates how various categories of food-relevant substances are considered in terms of being 'contaminants'. To this end these categories of food borne constituents are evaluated against the various criteria encountered in the available definitions of a food contaminant, including unintentional presence, harmful, existence of regulatory limits, and stakeholder perception. The categories of chemicals considered include: phytotoxins, mycotoxins, (heavy) metals, persistent organic pollutants (POPs), processing aids, process related contaminants, food contact materials (FCMs), pesticides and veterinary drugs. The evaluation revealed that usage of the term appears complex, and may differ between stakeholders. A common proposed definition of the term 'contaminant' could be 'a substance considered to require control measures due to the unacceptability of its context within a food'. Use of a dimension of harm results in equivocal outcomes because risk depends on the level of exposure. As the term 'contaminant' has influence on risk management including public policy, the motivations for applying the term should be subject to more detailed analysis and understanding.
Collapse
Affiliation(s)
- Ivonne M C M Rietjens
- Division of Toxicology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - Michelangelo Pascale
- Institute of Food Sciences, National Research Council of Italy, via Roma 64, 83100, Avellino, Italy
| | - Gloria Pellegrino
- Scientific Affairs and Research, Lavazza Group, Strada Settimo, 410, 10156, Turin, Italy
| | - Daniel Ribera
- Regulatory and Scientific Affairs EMEA, Cargill R&D Center Europe BVBA, Havenstraat 84, 1800, Vilvoorde, Belgium
| | - Armando Venâncio
- CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Danlei Wang
- Division of Toxicology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | | |
Collapse
|
3
|
Honorato L, Artunduaga Bonilla JJ, Ribeiro da Silva L, Kornetz J, Zamith-Miranda D, Valdez AF, Nosanchuk JD, Gonçalves Paterson Fox E, Nimrichter L. Alkaloids solenopsins from fire ants display in vitro and in vivo activity against the yeast Candida auris. Virulence 2024; 15:2413329. [PMID: 39370781 PMCID: PMC11469440 DOI: 10.1080/21505594.2024.2413329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 09/01/2024] [Accepted: 09/07/2024] [Indexed: 10/08/2024] Open
Abstract
The urgency surrounding Candida auris as a public health threat is highlighted by both the Center for Disease Control (CDC) and World Health Organization (WHO) that categorized this species as a priority fungal pathogen. Given the current limitations of antifungal therapy for C. auris, particularly due to its multiple resistance to the current antifungals, the identification of new drugs is of paramount importance. Some alkaloids abundant in the venom of the red invasive fire ant (Solenopsis invicta), known as solenopsins, have garnered attention as potent inhibitors of bacterial biofilms, and there are no studies demonstrating such effects against fungal pathogens. Thus, we herein investigated the antibiotic efficacy of solenopsin alkaloids against C. auris biofilms and planktonic cells. Both natural and synthetic solenopsins inhibited the growth of C. auris strains from different clades, including fluconazole and amphotericin B-resistant isolates. Such alkaloids also inhibited matrix deposition and altered cellular metabolic activity of C. auris in biofilm conditions. Mechanistically, the alkaloids compromised membrane integrity as measured by propidium iodide uptake in exposed planktonic cells. Additionally, combining the alkaloids with AMB yielded an additive antifungal effect, even against AMB-resistant strains. Finally, both extracted solenopsins and the synthetic analogues demonstrated protective effect in vivo against C. auris infection in the invertebrate model Galleria mellonella. These findings underscore the potent antifungal activities of solenopsins against C. auris and suggest their inclusion in future drug development. Furthermore, exploring derivatives of solenopsins could reveal novel compounds with therapeutic promise.
Collapse
Affiliation(s)
- Leandro Honorato
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Geral, Rio de Janeiro, Brazil
| | - Jhon Jhamilton Artunduaga Bonilla
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Geral, Rio de Janeiro, Brazil
| | - Larissa Ribeiro da Silva
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Geral, Rio de Janeiro, Brazil
| | - Julio Kornetz
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Geral, Rio de Janeiro, Brazil
| | - Daniel Zamith-Miranda
- Departments of Medicine (Division of Infectious Diseases) and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Alessandro F. Valdez
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Geral, Rio de Janeiro, Brazil
| | - Joshua D. Nosanchuk
- Departments of Medicine (Division of Infectious Diseases) and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | - Leonardo Nimrichter
- Universidade Federal do Rio de Janeiro, Instituto de Microbiologia Paulo de Góes, Departamento de Microbiologia Geral, Rio de Janeiro, Brazil
- Rede Micologia, RJ, FAPERJ, Rio de Janeiro, Brazil
| |
Collapse
|
4
|
Huo J, Feng T, Shang H, Guo C, Wu T, Chu M, Zhao H, Wu E, Li H, Wang S, Wei D. Non-targeted metabolomics reveals the characteristics of the unique bitterness substances in quinoa. Heliyon 2024; 10:e37133. [PMID: 39296137 PMCID: PMC11409112 DOI: 10.1016/j.heliyon.2024.e37133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/21/2024] Open
Abstract
Bitterness is a key factor that affects the consumption of quinoa products, even if they are nutritious. In this study, a non-targeted metabolomics approach based on UHPLC-Orbitrap-MS was applied to comprehensively profile the characteristic metabolites of twenty-two quinoas. A total of twenty key metabolites were identified correlated with bitterness, among which, fifteen were triterpenoid saponins. In addition, these metabolites bind to the active site of the human bitter taste receptor and are the main compounds that produce the bitter taste of quinoa. Our results contribute to a deeper understanding of the origin of quinoa bitterness and provide directions for optimizing its flavor to improve market acceptance.
Collapse
Affiliation(s)
- Junqi Huo
- Hebei North University Hebei Key Laboratory of Analysis and Testing for Quality and Safety of Agricultural Products and Food, Hebei North University, Zhangjiakou, 075000, China
- Hebei North University College of Agriculture, Forestry and Technology, Zhangjiakou, 075000, China
| | - Tingting Feng
- Hebei North University Hebei Key Laboratory of Analysis and Testing for Quality and Safety of Agricultural Products and Food, Hebei North University, Zhangjiakou, 075000, China
- Hebei North University College of traditional Chinese Medicine, Zhangjiakou, 075000, China
| | - Heting Shang
- Hebei North University Hebei Key Laboratory of Analysis and Testing for Quality and Safety of Agricultural Products and Food, Hebei North University, Zhangjiakou, 075000, China
- Hebei North University College of Agriculture, Forestry and Technology, Zhangjiakou, 075000, China
| | - Chen Guo
- Hebei North University Hebei Key Laboratory of Analysis and Testing for Quality and Safety of Agricultural Products and Food, Hebei North University, Zhangjiakou, 075000, China
- Hebei North University College of Agriculture, Forestry and Technology, Zhangjiakou, 075000, China
| | - Tianyu Wu
- Hebei North University College of traditional Chinese Medicine, Zhangjiakou, 075000, China
| | - Mingjuan Chu
- Hebei North University College of traditional Chinese Medicine, Zhangjiakou, 075000, China
| | - Huixin Zhao
- Hebei North University College of traditional Chinese Medicine, Zhangjiakou, 075000, China
| | - Erbin Wu
- Zhangjiakou Animal Health Supervision Institute, Zhangjiakou, 075000, China
| | - Hui Li
- Hebei North University Hebei Key Laboratory of Analysis and Testing for Quality and Safety of Agricultural Products and Food, Hebei North University, Zhangjiakou, 075000, China
- Hebei North University College of Agriculture, Forestry and Technology, Zhangjiakou, 075000, China
- Hebei North University Zhangjiakou City Key Laboratory of Quality and Safety of Special Agricultural Products, Zhangjiakou, 075000, China
| | - Shuo Wang
- School of Medicine, Nankai University, Tianjin, 300350, China
| | - Dong Wei
- Hebei North University Hebei Key Laboratory of Analysis and Testing for Quality and Safety of Agricultural Products and Food, Hebei North University, Zhangjiakou, 075000, China
- Hebei North University College of Agriculture, Forestry and Technology, Zhangjiakou, 075000, China
| |
Collapse
|
5
|
Dubreil E, Darney K, Delignette-Muller ML, Barranger A, Huet S, Hogeveen K, Léger T, Fessard V, Hégarat LL. Modeling HepaRG metabolome responses to pyrrolizidine alkaloid exposure for insight into points of departure and modes of action. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134721. [PMID: 38843629 DOI: 10.1016/j.jhazmat.2024.134721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/12/2024] [Accepted: 05/22/2024] [Indexed: 06/26/2024]
Abstract
The new challenges in toxicology demand novel and innovative in vitro approaches for deriving points of departure (PODs) and determining the mode of action (MOA) of chemicals. Therefore, the aim of this original study was to couple in vitro studies with untargeted metabolomics to model the concentration-response of extra- and intracellular metabolome data on human HepaRG cells treated for 48 h with three pyrrolizidine alkaloids (PAs): heliotrine, retrorsine and lasiocarpine. Modeling revealed that the three PAs induced various monotonic and, importantly, biphasic curves of metabolite content. Based on unannotated metabolites, the endometabolome was more sensitive than the exometabolome in terms of metabolomic effects, and benchmark concentrations (BMCs) confirmed that lasiocarpine was the most hepatotoxic PA. Regarding its MOA, impairment of lipid metabolism was highlighted at a very low BMC (first quartile, 0.003 µM). Moreover, results confirmed that lasiocarpine targets bile acids, as well as amino acid and steroid metabolisms. Analysis of the endometabolome, based on coupling concentration-response and PODs, gave encouraging results for ranking toxins according to their hepatotoxic effects. Therefore, this novel approach is a promising tool for next-generation risk assessment, readily applicable to a broad range of compounds and toxic endpoints.
Collapse
Affiliation(s)
- Estelle Dubreil
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Fougères Laboratory, Toxicology of Contaminants Unit, 10 B rue Claude Bourgelat, 35306 Fougères, France.
| | - Keyvin Darney
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Risk Assessment Department, 14 Rue Pierre et Marie Curie, 94701 Maisons-Alfort, France
| | - Marie-Laure Delignette-Muller
- University of Lyon 1, CNRS, VetAgro Sup, UMR 5558, Laboratoire de Biométrie et Biologie Evolutive, 69622 Villeurbanne, France
| | - Audrey Barranger
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Fougères Laboratory, Toxicology of Contaminants Unit, 10 B rue Claude Bourgelat, 35306 Fougères, France
| | - Sylvie Huet
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Fougères Laboratory, Toxicology of Contaminants Unit, 10 B rue Claude Bourgelat, 35306 Fougères, France
| | - Kevin Hogeveen
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Fougères Laboratory, Toxicology of Contaminants Unit, 10 B rue Claude Bourgelat, 35306 Fougères, France
| | - Thibaut Léger
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Fougères Laboratory, Toxicology of Contaminants Unit, 10 B rue Claude Bourgelat, 35306 Fougères, France
| | - Valérie Fessard
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Fougères Laboratory, Toxicology of Contaminants Unit, 10 B rue Claude Bourgelat, 35306 Fougères, France
| | - Ludovic Le Hégarat
- ANSES, French Agency for Food, Environmental and Occupational Health & Safety, Fougères Laboratory, Toxicology of Contaminants Unit, 10 B rue Claude Bourgelat, 35306 Fougères, France
| |
Collapse
|
6
|
Wang LH, Tan DH, Zhong XS, Jia MQ, Ke X, Zhang YM, Cui T, Shi L. Review on toxicology and activity of tomato glycoalkaloids in immature tomatoes. Food Chem 2024; 447:138937. [PMID: 38492295 DOI: 10.1016/j.foodchem.2024.138937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/28/2024] [Accepted: 03/02/2024] [Indexed: 03/18/2024]
Abstract
Owing to the lack of selection and limited intelligence in mechanical picking, some immature tomatoes that contain alkaloids are thrown away. Tomatine alkaloids are steroidal alkaloids naturally present in Solanaceae plants, which are distributed in small amounts in immature tomato fruits and decrease as the fruits ripen. Tomato glycoalkaloids are harmful to human health. However, in small quantities, there is some evidence that these compounds might be beneficial, as other non-antioxidant bioactivities. This article considers recent research on the biological effects of tomato glycoalkaloids in immature tomatoes, providing reference value for the potential development of these compounds.
Collapse
Affiliation(s)
- Li-Hao Wang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - De-Hong Tan
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Xue-Song Zhong
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Mei-Qi Jia
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Xue Ke
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Yu-Mei Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Tong Cui
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Lin Shi
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
7
|
Dushna O, Dubenska L, Gawor A, Karasińki J, Barabash O, Ostapiuk Y, Blazheyevskiy M, Bulska E. Structural Characterization and Electrochemical Studies of Selected Alkaloid N-Oxides. Molecules 2024; 29:2721. [PMID: 38930787 PMCID: PMC11205554 DOI: 10.3390/molecules29122721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
In this work, we synthesized and confirmed the structure of several alkaloid N-oxides using mass spectrometry and Fourier-transform infrared spectroscopy. We also investigated their reduction mechanisms using voltammetry. For the first time, we obtained alkaloid N-oxides using an oxidation reaction with potassium peroxymonosulfate as an oxidant. The structure was established based on the obtained fragmentation mass spectra recorded by LC-Q-ToF-MS. In the FT-IR spectra of the alkaloid N-oxides, characteristic signals of N-O group vibrations were recorded (bands in the range of 928 cm⁻1 to 971 cm⁻1), confirming the presence of this functional group. Electrochemical reduction studies demonstrated the reduction of alkaloid N-oxides at mercury-based electrodes back to the original form of the alkaloid. For the first time, the products of the electrochemical reduction of alkaloid N-oxides were detected by mass spectrometry. The findings provide insights into the structural characteristics and reduction behaviors of alkaloid N-oxides, offering implications for pharmacological and biochemical applications. This research contributes to a better understanding of alkaloid metabolism and degradation processes, with potential implications for drug development and environmental science.
Collapse
Affiliation(s)
- Olha Dushna
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-093 Warsaw, Poland; (O.D.); (A.G.); (J.K.)
- Faculty of Chemistry, Ivan Franko National University of Lviv, Kyryla i Mefodiya 6, 79-005 Lviv, Ukraine; (L.D.); (O.B.); (Y.O.)
| | - Liliya Dubenska
- Faculty of Chemistry, Ivan Franko National University of Lviv, Kyryla i Mefodiya 6, 79-005 Lviv, Ukraine; (L.D.); (O.B.); (Y.O.)
| | - Andrzej Gawor
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-093 Warsaw, Poland; (O.D.); (A.G.); (J.K.)
| | - Jakub Karasińki
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-093 Warsaw, Poland; (O.D.); (A.G.); (J.K.)
| | - Oksana Barabash
- Faculty of Chemistry, Ivan Franko National University of Lviv, Kyryla i Mefodiya 6, 79-005 Lviv, Ukraine; (L.D.); (O.B.); (Y.O.)
| | - Yurii Ostapiuk
- Faculty of Chemistry, Ivan Franko National University of Lviv, Kyryla i Mefodiya 6, 79-005 Lviv, Ukraine; (L.D.); (O.B.); (Y.O.)
| | - Mykola Blazheyevskiy
- Department of General Chemistry, National University of Pharmacy, Valentynivska 4, 61-168 Kharkiv, Ukraine;
| | - Ewa Bulska
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-093 Warsaw, Poland; (O.D.); (A.G.); (J.K.)
| |
Collapse
|
8
|
Di Dalmazi G, Giuliani C, Bucci I, Mascitti M, Napolitano G. Promising Role of Alkaloids in the Prevention and Treatment of Thyroid Cancer and Autoimmune Thyroid Disease: A Comprehensive Review of the Current Evidence. Int J Mol Sci 2024; 25:5395. [PMID: 38791433 PMCID: PMC11121374 DOI: 10.3390/ijms25105395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Thyroid cancer (TC) and thyroid autoimmune disorders (AITD) are among the most common diseases in the general population, with higher incidence in women. Chronic inflammation and autoimmunity play a pivotal role in carcinogenesis. Some studies, indeed, have pointed out the presence of AITD as a risk factor for TC, although this issue remains controversial. Prevention of autoimmune disease and cancer is the ultimate goal for clinicians and scientists, but it is not always feasible. Thus, new treatments, that overcome the current barriers to prevention and treatment of TC and AITD are needed. Alkaloids are secondary plant metabolites endowed with several biological activities including anticancer and immunomodulatory properties. In this perspective, alkaloids may represent a promising source of prophylactic and therapeutic agents for TC and AITD. This review encompasses the current published literature on alkaloids effects on TC and AITD, with a specific focus on the pathways involved in TC and AITD development and progression.
Collapse
Affiliation(s)
- Giulia Di Dalmazi
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (C.G.); (I.B.); (G.N.)
- Department of Medicine and Aging Science, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Cesidio Giuliani
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (C.G.); (I.B.); (G.N.)
- Department of Medicine and Aging Science, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Ines Bucci
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (C.G.); (I.B.); (G.N.)
- Department of Medicine and Aging Science, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Marco Mascitti
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (C.G.); (I.B.); (G.N.)
- Department of Medicine and Aging Science, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Giorgio Napolitano
- Center for Advanced Studies and Technology (CAST), University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (C.G.); (I.B.); (G.N.)
- Department of Medicine and Aging Science, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
9
|
Che X, Hong X, Gross S, Pearson C, Bartell T, Wang X, Wang G. Maternal Mediterranean-Style Diet Adherence during Pregnancy and Metabolomic Signature in Postpartum Plasma: Findings from the Boston Birth Cohort. J Nutr 2024; 154:846-855. [PMID: 38278216 PMCID: PMC10942856 DOI: 10.1016/j.tjnut.2024.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 12/11/2023] [Accepted: 01/19/2024] [Indexed: 01/28/2024] Open
Abstract
BACKGROUND The health benefits of a Mediterranean-style diet (MSD) are well observed, but the underlying mechanisms are unclear. Metabolomic profiling offers a systematic approach for identifying which metabolic biomarkers and pathways might be affected by an MSD. OBJECTIVES This study aimed to identify postpartum plasma metabolites that are associated with MSD adherence during pregnancy and to further test whether these identified metabolites may vary by maternal characteristics. METHODS We analyzed data from 1410 mothers enrolled in the Boston Birth Cohort (BBC). A maternal food frequency questionnaire (FFQ) was administered and epidemiologic information was obtained via an in-person standard questionnaire interview within 24-72 h postpartum. Maternal clinical information was extracted from electronic medical records. A Mediterranean-style diet score (MSDS) was calculated using responses to the FFQ. Metabolomic profiling in postpartum plasma was conducted by liquid chromatography-MS. Linear regression models were used to assess the associations of each metabolite with an MSDS, adjusting for covariates. RESULTS Among the 380 postpartum plasma metabolites analyzed, 24 were associated with MSDS during pregnancy (false discovery rate < 0.05). Of 24 MSDS-associated metabolites, 19 were lipids [for example, triacylglycerols, phosphatidylcholines (PCs), PC plasmalogen, phosphatidylserine, and phosphatidylethanolamine]; others were amino acids (methionine sulfoxide and threonine), tropane (nor-psi-tropine), vitamin (vitamin A), and nucleotide (adenosine). The association of adenosine and methionine sulfoxide with MSDS differed by race (P-interaction = 0.033) and maternal overweight or obesity status (P-interaction = 0.021), respectively. CONCLUSIONS In the BBC, we identified 24 postpartum plasma metabolites associated with MSDS during pregnancy. The associations of the 2 metabolites varied by maternal race and BMI. This study provides a new insight into dietary effects on health under the skin. More studies are needed to better understand the metabolic pathways underlying the short- and long-term health benefits of an MSD during pregnancy.
Collapse
Affiliation(s)
- Xiaoyu Che
- Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Xiumei Hong
- Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Susan Gross
- Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Colleen Pearson
- Department of Pediatrics, Boston University Chobanian and Avedisian School of Medicine and Boston Medical Center, Boston, MA, United States
| | - Tami Bartell
- Patrick M. Magoon Institute for Healthy Communities, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, IL, United States
| | - Xiaobin Wang
- Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States; Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Guoying Wang
- Department of Population, Family and Reproductive Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States.
| |
Collapse
|