1
|
Mazza V, Eccard JA. Expanding through the Emerald Isle: exploration and spatial orientation of non-native bank voles in Ireland. Curr Zool 2024; 70:320-331. [PMID: 39035766 PMCID: PMC11255993 DOI: 10.1093/cz/zoad038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 08/09/2023] [Indexed: 07/23/2024] Open
Abstract
Whether introduced into a completely novel habitat or slowly expanding their current range, the degree to which animals can efficiently explore and navigate new environments can be key to survival, ultimately determining population establishment and colonization success. We tested whether spatial orientation and exploratory behavior are associated with non-native spread in free-living bank voles (Myodes glareolus, N = 43) from a population accidentally introduced to Ireland a century ago. We measured spatial orientation and navigation in a radial arm maze, and behaviors associated to exploratory tendencies and risk-taking in repeated open-field tests, at the expansion edge and in the source population. Bank voles at the expansion edge re-visited unrewarded arms of the maze more, waited longer before leaving it, took longer to start exploring both the radial arm maze and the open field, and were more risk-averse compared to conspecifics in the source population. Taken together, results suggest that for this small mammal under heavy predation pressure, a careful and thorough exploration strategy might be favored when expanding into novel environments.
Collapse
Affiliation(s)
- Valeria Mazza
- Animal Ecology, Institute for Biochemistry and Biology, University of Potsdam, Maulbeerallee 1, 14469, Potsdam, Germany
- Department of Ecological and Biological Sciences, University of Tuscia, Largo dell'Università 1, 0100 Viterbo, Italy
| | - Jana A Eccard
- Animal Ecology, Institute for Biochemistry and Biology, University of Potsdam, Maulbeerallee 1, 14469, Potsdam, Germany
| |
Collapse
|
2
|
Breen AJ, Deffner D. Risk-sensitive learning is a winning strategy for leading an urban invasion. eLife 2024; 12:RP89315. [PMID: 38562050 PMCID: PMC10987091 DOI: 10.7554/elife.89315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
In the unpredictable Anthropocene, a particularly pressing open question is how certain species invade urban environments. Sex-biased dispersal and learning arguably influence movement ecology, but their joint influence remains unexplored empirically, and might vary by space and time. We assayed reinforcement learning in wild-caught, temporarily captive core-, middle-, or edge-range great-tailed grackles-a bird species undergoing urban-tracking rapid range expansion, led by dispersing males. We show, across populations, both sexes initially perform similarly when learning stimulus-reward pairings, but, when reward contingencies reverse, male-versus female-grackles finish 'relearning' faster, making fewer choice-option switches. How do male grackles do this? Bayesian cognitive modelling revealed male grackles' choice behaviour is governed more strongly by the 'weight' of relative differences in recent foraging payoffs-i.e., they show more pronounced risk-sensitive learning. Confirming this mechanism, agent-based forward simulations of reinforcement learning-where we simulate 'birds' based on empirical estimates of our grackles' reinforcement learning-replicate our sex-difference behavioural data. Finally, evolutionary modelling revealed natural selection should favour risk-sensitive learning in hypothesised urban-like environments: stable but stochastic settings. Together, these results imply risk-sensitive learning is a winning strategy for urban-invasion leaders, underscoring the potential for life history and cognition to shape invasion success in human-modified environments.
Collapse
Affiliation(s)
- Alexis J Breen
- Department of Human Behavior, Ecology and Culture, Max Planck Institute for Evolutionary AnthropologyLeipzigGermany
| | - Dominik Deffner
- Science of Intelligence Excellence Cluster, Technical University BerlinBerlinGermany
- Center for Adaptive Rationality, Max Planck Institute for Human DevelopmentBerlinGermany
| |
Collapse
|
3
|
McCallum E, Shaw RC. Repeatability and heritability of inhibitory control performance in wild toutouwai ( Petroica longipes). ROYAL SOCIETY OPEN SCIENCE 2023; 10:231476. [PMID: 38026029 PMCID: PMC10646466 DOI: 10.1098/rsos.231476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023]
Abstract
Despite increasing interest in the evolution of inhibitory control, few studies have examined the validity of widespread testing paradigms, the long-term repeatability and the heritability of this cognitive ability in the wild. We investigated these aspects in the inhibitory control performance of wild toutouwai (North Island robin; Petroica longipes), using detour and reversal learning tasks. We assessed convergent validity by testing whether individual performance correlated across detour and reversal learning tasks. We then further evaluated task validity by examining whether individual performance was confounded by non-cognitive factors. We tested a subset of subjects twice in each task to estimate the repeatability of performance across a 1-year period. Finally, we used a population pedigree to estimate the heritability of task performance. Individual performance was unrelated across detour and reversal learning tasks, indicating that these measured different cognitive abilities. Task performance was not influenced by body condition, boldness or prior experience, and showed moderate between-year repeatability. Yet despite this individual consistency, we found no evidence that task performance was heritable. Our findings suggest that detour and reversal learning tasks measure consistent individual differences in distinct forms of inhibitory control in toutouwai, but this variation may be environmentally determined rather than genetic.
Collapse
Affiliation(s)
- Ella McCallum
- School of Biological Sciences, Te Herenga Waka Victoria University of Wellington, Wellington, New Zealand
| | - Rachael C. Shaw
- School of Biological Sciences, Te Herenga Waka Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
4
|
van den Heuvel K, Quinn JL, Kotrschal A, van Oers K. Artificial selection for reversal learning reveals limited repeatability and no heritability of cognitive flexibility in great tits ( Parus major). Proc Biol Sci 2023; 290:20231067. [PMID: 37464752 PMCID: PMC10354490 DOI: 10.1098/rspb.2023.1067] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/20/2023] [Indexed: 07/20/2023] Open
Abstract
Cognitive flexibility controls how animals respond to changing environmental conditions. Individuals within species vary considerably in cognitive flexibility but the micro-evolutionary potential in animal populations remains enigmatic. One prerequisite for cognitive flexibility to be able to evolve is consistent and heritable among-individual variation. Here we determine the repeatability and heritability of cognitive flexibility among great tits (Parus major) by performing an artificial selection experiment on reversal learning performance using a spatial learning paradigm over three generations. We found low, yet significant, repeatability (R = 0.15) of reversal learning performance. Our artificial selection experiment showed no evidence for narrow-sense heritability of associative or reversal learning, while we confirmed the heritability of exploratory behaviour. We observed a phenotypic, but no genetic, correlation between associative and reversal learning, showing the importance of prior information on reversal learning. We found no correlation between cognitive and personality traits. Our findings emphasize that cognitive flexibility is a multi-faceted trait that is affected by memory and prior experience, making it challenging to retrieve reliable values of temporal consistency and assess the contribution of additive genetic variation. Future studies need to identify what cognitive components underlie variation in reversal learning and study their between-individual and additive genetic components.
Collapse
Affiliation(s)
- Krista van den Heuvel
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB, Wageningen, The Netherlands, The Netherlands
- Behavioural Ecology Group, Wageningen University and Research, 6708 WD, Wageningen, The Netherlands
| | - John L. Quinn
- School of Biological Earth and Environmental Sciences, University College Cork, Cork, T23 N73K4, Ireland
- Environmental Research Institute, University College Cork, Cork, T23 XE10, Ireland
| | - Alexander Kotrschal
- Behavioural Ecology Group, Wageningen University and Research, 6708 WD, Wageningen, The Netherlands
| | - Kees van Oers
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), 6708 PB, Wageningen, The Netherlands, The Netherlands
- Behavioural Ecology Group, Wageningen University and Research, 6708 WD, Wageningen, The Netherlands
| |
Collapse
|
5
|
Lucon-Xiccato T, Montalbano G, Bertolucci C. Adaptive phenotypic plasticity induces individual variability along a cognitive trade-off. Proc Biol Sci 2023; 290:20230350. [PMID: 37357854 PMCID: PMC10291716 DOI: 10.1098/rspb.2023.0350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 06/02/2023] [Indexed: 06/27/2023] Open
Abstract
Animal species, including humans, display patterns of individual variability in cognition that are difficult to explain. For instance, some individuals perform well in certain cognitive tasks but show difficulties in others. We experimentally analysed the contribution of cognitive plasticity to such variability. Theory suggests that diametrically opposed cognitive phenotypes increase individuals' fitness in environments with different conditions such as resource predictability. Therefore, if selection has generated plasticity that matches individuals' cognitive phenotypes to the environment, this might produce remarkable cognitive variability. We found that guppies, Poecilia reticulata, exposed to an environment with high resource predictability (i.e. food available at the same time and in the same location) developed enhanced learning abilities. Conversely, guppies exposed to an environment with low resource predictability (i.e. food available at a random time and location) developed enhanced cognitive flexibility and inhibitory control. These cognitive differences align along a trade-off between functions that favour the acquisition of regularities such as learning and functions that adjust behaviour to changing conditions (cognitive flexibility and inhibitory control). Therefore, adaptive cognitive plasticity in response to resource predictability (and potentially similar factors) is a key determinant of cognitive individual differences.
Collapse
Affiliation(s)
- Tyrone Lucon-Xiccato
- Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy
| | - Giulia Montalbano
- Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy
| | - Cristiano Bertolucci
- Department of Life Sciences and Biotechnology, University of Ferrara, Via L. Borsari 46, 44121 Ferrara, Italy
| |
Collapse
|
6
|
Assessing sex differences in behavioural flexibility in an endangered bird species: the Southern ground-hornbill (Bucorvus leadbeateri). Anim Cogn 2023; 26:599-609. [PMID: 36251104 DOI: 10.1007/s10071-022-01705-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 10/09/2022] [Accepted: 10/11/2022] [Indexed: 11/01/2022]
Abstract
Since ecology influences the expression of cognitive traits, intra-specific variation in ecological demands can drive differences in cognition. This is often the case, for instance, when sexes face different ecological challenges. However, so far, most studies have focused on few cognitive domains (i.e., spatial cognition), which limits our understanding of the evolution of sexually dimorphic cognition in animals. Endangered Southern ground-hornbills (Bucorvus leadbeateri), for example, show sex-specific ecological differences in age at dispersal, where females disperse from their natal group earlier than males. Based on this potential sex-specific source of selection, females and males may differ in their capacity to behave flexibly. Here, we used the reversal-learning paradigm in ten Southern ground-hornbills in two conditions: spatial and colour. During the pre-test (learning phase), regardless the sex, all subjects were faster at associating the food reward with spatial rather than with colour cues. Similarly, during the test (reversal-learning phase), both sexes learned the new association quicker with spatial cues. There were no sex differences in learning or reversal learning during both experimental phases. This possibility, however, requires further observation and experimentation. We hope our study will provide the impetus to assess further the cognitive capacities of this still overlooked species.
Collapse
|
7
|
Stevens DR, Graham MA, Bardjis CI, Foster SA, Baker JA, Mathis KA. Evolution of chemical-cue-mediated antipredator behavior in threespine stickleback populations experiencing northern pike predation. Biol Invasions 2023. [DOI: 10.1007/s10530-023-02996-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
8
|
Can animal personalities save human lives? Evidence for repeatable differences in activity and anxiety in African giant pouched rats (Cricetomys ansorgei). Appl Anim Behav Sci 2023. [DOI: 10.1016/j.applanim.2023.105848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
9
|
Bensky MK, Bell AM. A Behavioral Syndrome Linking Boldness and Flexibility Facilitates Invasion Success in Sticklebacks. Am Nat 2022; 200:846-856. [PMID: 36409977 PMCID: PMC9756172 DOI: 10.1086/721765] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
AbstractFor a species to expand its range, it needs to be good at dispersing and also capable of exploiting resources and adapting to different environments. Therefore, behavioral and cognitive traits could play key roles in facilitating invasion success. Marine threespined sticklebacks (Gasterosteus aculeatus) have repeatedly colonized freshwater environments and rapidly adapted to them. Here, by comparing the behavior of hundreds of lab-reared sticklebacks from six different populations, we show that marine sticklebacks are bold, while sticklebacks that have become established in freshwater lakes are flexible. Moreover, boldness and flexibility are negatively correlated with one another at the individual, family, and population levels. These results support the hypothesis that boldness is favored in invaders during the initial dispersal stage, while flexibility is favored in recent immigrants during the establishment stage, and they suggest that the link between boldness and flexibility facilitates success during both the dispersal stage and the establishment stage. This study adds to the growing body of work showing the importance of behavioral correlations in facilitating colonization success in sticklebacks and other organisms.
Collapse
Affiliation(s)
- Miles K. Bensky
- Program in Ecology, Evolution and Conservation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | - Alison M. Bell
- Program in Ecology, Evolution and Conservation, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
- Carl R. Woese Institute for Genomic Biology and Department of Evolution, Ecology and Behavior, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| |
Collapse
|
10
|
Bold and bright: shy and supple? The effect of habitat type on personality-cognition covariance in the Aegean wall lizard (Podarcis erhardii). Anim Cogn 2022; 25:745-767. [PMID: 35037121 DOI: 10.1007/s10071-021-01587-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 11/04/2021] [Accepted: 11/24/2021] [Indexed: 12/27/2022]
Abstract
Animals exhibit considerable and consistent among-individual variation in cognitive abilities, even within a population. Recent studies have attempted to address this variation using insights from the field of animal personality. Generally, it is predicted that animals with "faster" personalities (bolder, explorative, and neophilic) should exhibit faster but less flexible learning. However, the empirical evidence for a link between cognitive style and personality is mixed. One possible reason for such conflicting results may be that personality-cognition covariance changes along ecological conditions, a hypothesis that has rarely been investigated so far. In this study, we tested the effect of habitat complexity on multiple aspects of animal personality and cognition, and how this influenced their relationship, in five populations of the Aegean wall lizard (Podarcis erhardii). Overall, lizards from both habitat types did not differ in average levels of personality or cognition, with the exception that lizards from more complex habitats performed better on a spatial learning task. Nevertheless, we found an intricate interplay between ecology, cognition, and personality, as behavioral associations were often habitat- but also year-dependent. In general, behavioral covariance was either independent of habitat, or found exclusively in the simple, open environments. Our results highlight that valuable insights may be gained by taking ecological variation into account while studying the link between personality and cognition.
Collapse
|
11
|
Álvarez-Quintero N, Velando A, Kim SY. Smart mating: the cognitive ability of females influences their preference for male cognitive ability. Behav Ecol 2021; 32:803-813. [PMID: 34690544 PMCID: PMC8528552 DOI: 10.1093/beheco/arab052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/15/2021] [Accepted: 05/12/2021] [Indexed: 12/27/2022] Open
Abstract
Cognitive abilities may be crucial for individuals to respond appropriately to their social and natural environment, thereby increasing fitness. However, the role of cognitive traits in sexual selection has received relatively little attention. Here, we studied 1) whether male secondary sexual traits (colour, courtship, and nest) reflect their cognitive ability, 2) whether females choose mates based on males' and their own cognitive abilities, and 3) how the interplay between secondary sexual traits and cognitive ability determines male attractiveness in the three-spined stickleback (Gasterosteus aculetaus). For this, we first evaluated the cognitive ability of sexually mature males and females in a detour-reaching task. Then, female preference was repeatedly assessed in a dichotomous-choice test, where the female was exposed to two males with contrasting performances (relatively good and bad) in the detour-reaching task. Female preference for better performing males was affected by the female's own cognitive ability. Females with relatively medium-low cognitive ability preferred males with high ability, whereas females with high ability showed no preference. We also found that males with higher cognitive abilities built more elaborated nests, but showed weaker red nuptial colouration. To our knowledge, this is among the first results that illustrate how cognitive traits of both sexes influence female mate preference, which has implications for the strength and direction of sexual selection.
Collapse
Affiliation(s)
- Náyade Álvarez-Quintero
- Centro de Investigación Mariña, Universidade de Vigo, Grupo Ecoloxía Animal, Torre CACTI, Campus de Vigo, 36310 Vigo, Spain
| | - Alberto Velando
- Centro de Investigación Mariña, Universidade de Vigo, Grupo Ecoloxía Animal, Torre CACTI, Campus de Vigo, 36310 Vigo, Spain
| | - Sin-Yeon Kim
- Centro de Investigación Mariña, Universidade de Vigo, Grupo Ecoloxía Animal, Torre CACTI, Campus de Vigo, 36310 Vigo, Spain
| |
Collapse
|