1
|
Siewert V, Kaiser S, Sachser N, Richter SH. Optimism and pessimism: a concept for behavioural ecology. Biol Rev Camb Philos Soc 2024. [PMID: 39711313 DOI: 10.1111/brv.13178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 12/08/2024] [Accepted: 12/11/2024] [Indexed: 12/24/2024]
Abstract
Originating from human psychology, the concepts of "optimism" and "pessimism" were transferred to animal welfare science about 20 years ago to study emotional states in non-human animals. Over time, "optimism" and "pessimism" have developed into valuable welfare indicators, but little focus has been put on the ecological implications of this concept. Here, we aim to bridge this gap and underline the great potential for transferring it to behavioural ecology. We start by outlining why "optimism" and "pessimism" can be considered as aspects of animal personalities. Furthermore, we argue that considering "optimism"/"pessimism" in a behavioural ecology context can facilitate our understanding of individual adjustment to the environment. Specifically, we show how variation in "optimism"/"pessimism" can play a crucial role in adaptation processes to environmental heterogeneity, for example, niche choice and niche conformance. Building on these considerations, we hypothesise that "optimists" might be less plastic than "pessimists" in their behaviour, which could considerably affect the way they adjust to environmental change.
Collapse
Affiliation(s)
- Viktoria Siewert
- Institute for Neuro- and Behavioural Biology, University of Münster, Badestr. 13, Münster, 48149, Germany
| | - Sylvia Kaiser
- Institute for Neuro- and Behavioural Biology, University of Münster, Badestr. 13, Münster, 48149, Germany
| | - Norbert Sachser
- Institute for Neuro- and Behavioural Biology, University of Münster, Badestr. 13, Münster, 48149, Germany
| | - S Helene Richter
- Institute for Neuro- and Behavioural Biology, University of Münster, Badestr. 13, Münster, 48149, Germany
| |
Collapse
|
2
|
Sakai O, Yokohata D, Hotta T. Boldness affects novel object recognition in a gecko species. Behav Processes 2024; 220:105072. [PMID: 38914379 DOI: 10.1016/j.beproc.2024.105072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/26/2024]
Abstract
Individual animals exhibit considerable differences in cognitive characteristics associated with personality differences. The cognition-personality link was intensively investigated in the last decade though with mixed results. To grasp the general pattern, a common method should be applied to a wide range of animals. We tested novel object recognition (NOR) in the mourning gecko (Lepidodactylus lugubris) and investigated whether boldness, assessed in an anti-predator context, explained neophobia and how much attention animals pay to their surroundings. Boldness did not simply explain object neophobia but predicted attention to novel objects. Specifically, shy geckos showed shorter latency to approach the novel object than bold geckos only in the changed situation in which distinct types of objects were presented in two successive phases. However, no significant effect of boldness was detected in the unchanged situation in which the same object was presented twice. Our findings suggest that, in the mourning gecko, (1) boldness and object neophobia represent different aspects of personality traits and that (2) boldness underlies sensitivity to slight changes in the environment.
Collapse
Affiliation(s)
- Osamu Sakai
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto; Department of Environment Conservation, Tokyo University of Agriculture and Technology, Tokyo.
| | - Daichi Yokohata
- Department of Psychology, Graduate School of Science, Kyoto University, Kyoto
| | - Takashi Hotta
- Department of Psychology, Graduate School of Science, Kyoto University, Kyoto
| |
Collapse
|
3
|
Berlinghieri F, Rizzuto G, Kruizinga L, Riedstra B, Groothuis T, Brown C. Are lateralized and bold fish optimistic or pessimistic? Anim Cogn 2024; 27:42. [PMID: 38833197 PMCID: PMC11150292 DOI: 10.1007/s10071-024-01876-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/19/2024] [Accepted: 05/14/2024] [Indexed: 06/06/2024]
Abstract
Cognitive bias is defined as the influence of emotions on cognitive processes. The concept of the cognitive judgement bias has its origins in human psychology but has been applied to animals over the past 2 decades. In this study we were interested in determining if laterality and personality traits, which are known to influence learning style, might also be correlated with a cognitive bias in the three-spined sticklebacks (Gasterosteus aculeatus). We used the judgement bias test with the go/no-go procedure where fish were first trained to discriminate between a black and white card and, after reaching a minimum learning criterion, tested their response to an ambiguous card (grey). Optimistic subjects were expected to have a high expectation of reward associated with an ambiguous stimulus, whereas pessimistic subjects a high expectation of non-reward. We used an emergence and a mirror test to quantify boldness and laterality, respectively. We hypothesised that male, bolder and more strongly lateralized fish would be more optimistic than female, shy and less strongly lateralised fish. We found that males and more strongly lateralized fish were more optimistic than females and less strongly lateralized fish. In addition, bold males were more optimistic than shy males as we predicted, but females showed the opposite pattern. Finally, fish trained on the black colour card learned the training task faster than those trained on a white card. Our results indicate that both laterality and personality traits are linked to animals' internal states (pessimistic or optimistic outlooks) which likely has broad implications for understanding animal behaviour particularly in a welfare context.
Collapse
Affiliation(s)
- F Berlinghieri
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, 9747, AG, The Netherlands.
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, Australia.
| | - G Rizzuto
- CoNISMa, Consorzio Nazionale Interuniversitario per le Scienze del Mare, Rome, Italy
| | - L Kruizinga
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, 9747, AG, The Netherlands
| | - B Riedstra
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, 9747, AG, The Netherlands
| | - Tgg Groothuis
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, 9747, AG, The Netherlands
| | - C Brown
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, Australia
| |
Collapse
|
4
|
Iwasaki S, Taniuchi T. Rats did not show evidence of prospective information-seeking: a pilot study. Front Behav Neurosci 2023; 17:1253780. [PMID: 38111475 PMCID: PMC10725935 DOI: 10.3389/fnbeh.2023.1253780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/20/2023] [Indexed: 12/20/2023] Open
Abstract
Information-seeking behavior often features in research on metacognition in non-human animals; some species seek more information when they do not know the location of a food reward. Rats are known to do this in situations of uncertainty, but it is still unclear if they seek information prospectively for solving a later problem. In this study, we investigated rats' information-seeking responses in two areas that presented different cognitive challenges (N = 4). In one area, a memory task was presented in which rats could access a cue for a food reward during the information-seeking phase of a trial, but the cue was removed before the subsequent test phase. In the other area, a discrimination task presented a cue that was available in both the information-seeking and the test phases, so that it was not necessary to seek information prospectively. The memory and discrimination test trials were given in quasi-random order (Experiment 1). Rats explored in the memory task area no more than in the discrimination task area during the information-seeking phase, even after extensive training. When they were exposed exclusively to the memory task over multiple sessions (Experiment 2), they developed a strategy of exploring the available object cues. In Experiment 3, rats were found to stay longer in an area, which had an object than in other, less potentially informative areas; they were sensitive to the presence of information. Although these results did not support the existence of prospective information-seeking in rats, they do not necessarily imply that rats lack related abilities. This consideration is due to the constraints of the small sample size and the limited scope of the testing environment. Accumulating not only positive but also negative evidence would further understanding of the factors influencing metacognitive responses in non-human animals.
Collapse
Affiliation(s)
- Sumie Iwasaki
- Institute of Human and Social Sciences, Kanazawa University, Kanazawa, Japan
| | - Tohru Taniuchi
- Institute of Human and Social Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
5
|
Kahnau P, Jaap A, Urmersbach B, Diederich K, Lewejohann L. Development of an IntelliCage-based cognitive bias test for mice. OPEN RESEARCH EUROPE 2023; 2:128. [PMID: 37799631 PMCID: PMC10548109 DOI: 10.12688/openreseurope.15294.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/02/2023] [Indexed: 03/28/2024]
Abstract
The cognitive bias test is used to measure the emotional state of animals with regard to future expectations. Thus, the test offers a unique possibility to assess animal welfare with regard to housing and testing conditions of laboratory animals. So far, however, performing such a test is time-consuming and requires the presence of an experimenter. Therefore, we developed an automated and home-cage based cognitive bias test based on the IntelliCage system. We present several developmental steps to improve the experimental design leading to a successful measurement of cognitive bias in group-housed female C57BL/6J mice. The automated and home-cage based test design allows to obtain individual data from group-housed mice, to test the mice in their familiar environment, and during their active phase. By connecting the test-cage to the home-cage via a gating system, the mice participated in the test on a self-chosen schedule, indicating high motivation to actively participate in the experiment. We propose that this should have a positive effect on the animals themselves as well as on the data. Unexpectedly, the mice showed an optimistic cognitive bias after enrichment was removed and additional restraining. An optimistic expectation of the future as a consequence of worsening environmental conditions, however, can also be interpreted as an active coping strategy in which a potential profit is sought to be maximized through a higher willingness to take risks.
Collapse
Affiliation(s)
- Pia Kahnau
- Laboratory Animal Science, German Federal Institute for Risk Assessment, Berlin, 10589, Germany
| | - Anne Jaap
- Laboratory Animal Science, German Federal Institute for Risk Assessment, Berlin, 10589, Germany
| | - Birk Urmersbach
- Laboratory Animal Science, German Federal Institute for Risk Assessment, Berlin, 10589, Germany
| | - Kai Diederich
- Laboratory Animal Science, German Federal Institute for Risk Assessment, Berlin, 10589, Germany
| | - Lars Lewejohann
- Laboratory Animal Science, German Federal Institute for Risk Assessment, Berlin, 10589, Germany
- Insitute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Freie Universität Berlin, Berlin, 14163, Germany
| |
Collapse
|
6
|
Kahnau P, Jaap A, Urmersbach B, Diederich K, Lewejohann L. Development of an IntelliCage-based cognitive bias test for mice. OPEN RESEARCH EUROPE 2023; 2:128. [PMID: 37799631 PMCID: PMC10548109 DOI: 10.12688/openreseurope.15294.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 08/02/2023] [Indexed: 10/07/2023]
Abstract
The cognitive bias test is used to measure the emotional state of animals with regard to future expectations. Thus, the test offers a unique possibility to assess animal welfare with regard to housing and testing conditions of laboratory animals. So far, however, performing such a test is time-consuming and requires the presence of an experimenter. Therefore, we developed an automated and home-cage based cognitive bias test based on the IntelliCage system. We present several developmental steps to improve the experimental design leading to a successful measurement of cognitive bias in group-housed female C57BL/6J mice. The automated and home-cage based test design allows to obtain individual data from group-housed mice, to test the mice in their familiar environment, and during their active phase. By connecting the test-cage to the home-cage via a gating system, the mice participated in the test on a self-chosen schedule, indicating high motivation to actively participate in the experiment. We propose that this should have a positive effect on the animals themselves as well as on the data. Unexpectedly, the mice showed an optimistic cognitive bias after enrichment was removed and additional restraining. An optimistic expectation of the future as a consequence of worsening environmental conditions, however, can also be interpreted as an active coping strategy in which a potential profit is sought to be maximized through a higher willingness to take risks.
Collapse
Affiliation(s)
- Pia Kahnau
- Laboratory Animal Science, German Federal Institute for Risk Assessment, Berlin, 10589, Germany
| | - Anne Jaap
- Laboratory Animal Science, German Federal Institute for Risk Assessment, Berlin, 10589, Germany
| | - Birk Urmersbach
- Laboratory Animal Science, German Federal Institute for Risk Assessment, Berlin, 10589, Germany
| | - Kai Diederich
- Laboratory Animal Science, German Federal Institute for Risk Assessment, Berlin, 10589, Germany
| | - Lars Lewejohann
- Laboratory Animal Science, German Federal Institute for Risk Assessment, Berlin, 10589, Germany
- Insitute of Animal Welfare, Animal Behavior and Laboratory Animal Science, Freie Universität Berlin, Berlin, 14163, Germany
| |
Collapse
|
7
|
Bračić M, Bohn L, Siewert V, von Kortzfleisch VT, Schielzeth H, Kaiser S, Sachser N, Richter SH. Once an optimist, always an optimist? Studying cognitive judgment bias in mice. Behav Ecol 2022; 33:775-788. [PMID: 35812364 PMCID: PMC9262167 DOI: 10.1093/beheco/arac040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 02/23/2022] [Accepted: 03/31/2022] [Indexed: 11/16/2022] Open
Abstract
Individuals differ in the way they judge ambiguous information: some individuals interpret ambiguous information in a more optimistic, and others in a more pessimistic way. Over the past two decades, such "optimistic" and "pessimistic" cognitive judgment biases (CJBs) have been utilized in animal welfare science as indicators of animals' emotional states. However, empirical studies on their ecological and evolutionary relevance are still lacking. We, therefore, aimed at transferring the concept of "optimism" and "pessimism" to behavioral ecology and investigated the role of genetic and environmental factors in modulating CJB in mice. In addition, we assessed the temporal stability of individual differences in CJB. We show that the chosen genotypes (C57BL/6J and B6D2F1N) and environments ("scarce" and "complex") did not have a statistically significant influence on the responses in the CJB test. By contrast, they influenced anxiety-like behavior with C57BL/6J mice and mice from the "complex" environment displaying less anxiety-like behavior than B6D2F1N mice and mice from the "scarce" environment. As the selected genotypes and environments did not explain the existing differences in CJB, future studies might investigate the impact of other genotypes and environmental conditions on CJB, and additionally, elucidate the role of other potential causes like endocrine profiles and epigenetic modifications. Furthermore, we show that individual differences in CJB were repeatable over a period of seven weeks, suggesting that CJB represents a temporally stable trait in laboratory mice. Therefore, we encourage the further study of CJB within an animal personality framework.
Collapse
Affiliation(s)
- Marko Bračić
- Department of Behavioural Biology, University of Münster, Münster, Germany
- Münster Graduate School of Evolution, University of Münster, Münster, Germany
| | - Lena Bohn
- Department of Behavioural Biology, University of Münster, Münster, Germany
- Münster Graduate School of Evolution, University of Münster, Münster, Germany
| | - Viktoria Siewert
- Department of Behavioural Biology, University of Münster, Münster, Germany
| | | | - Holger Schielzeth
- Institute of Ecology and Evolution, Friedrich Schiller University Jena, Jena, Germany
| | - Sylvia Kaiser
- Department of Behavioural Biology, University of Münster, Münster, Germany
- Münster Graduate School of Evolution, University of Münster, Münster, Germany
| | - Norbert Sachser
- Department of Behavioural Biology, University of Münster, Münster, Germany
- Münster Graduate School of Evolution, University of Münster, Münster, Germany
| | - S Helene Richter
- Department of Behavioural Biology, University of Münster, Münster, Germany
- Münster Graduate School of Evolution, University of Münster, Münster, Germany
| |
Collapse
|
8
|
Horback KM, Parsons TD. Judgement bias of group housed gestating sows predicted by behavioral traits, but not physical measures of welfare. PLoS One 2022; 17:e0264258. [PMID: 35213574 PMCID: PMC8880926 DOI: 10.1371/journal.pone.0264258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 02/07/2022] [Indexed: 01/09/2023] Open
Abstract
Judgement bias testing has emerged as a potential tool for assessing affective states in animals. Researchers infer an animal's affective state based on an animal's response to an ambiguous stimulus that is intermediate to both the rewarded and punished conditioned stimuli. Animals can be classified as "optimistic" or having a positive affective state if the animal displays behaviors that suggest an increased expectation of reward in the face of ambiguous stimuli. Alternatively, animals can be classified "pessimistic" or having a negative affective state if the animal displays behaviors that suggest an increased expectation of punishment in the face of ambiguous stimuli. Recent reports in multiple species question what factors influence performance in judgement bias testing, and which may allow for erroneous conclusions regarding individual affective state. In order to better understand this concern, 25 female swine were subjected to behavioral assessments at critical rearing stages to determine response variability. These same individuals were then assessed for physical measures of welfare and judgement bias using the "go/no-go" task as breeding adults. Sows which were more aggressive approached the ambiguous, but not the positive, stimulus significantly faster than others. Both optimistic and pessimistic biases were observed despite all sows living in enriched housing, and, sows with more positive physical welfare measures (fewer skin lesions and healthy body condition) did not exhibit more optimistic judgement biases. Our data demonstrate that behavior traits, such as aggressiveness, can affect a sow's performance in a judgement bias test, while measures of physical health did not. We suggest that individual differences in behavior (e.g., bold-aggressive behavioral syndrome, or, proactive coping style) generate different emotional responses and can contribute to the animal's overall affective state more so than physical ailment. Our findings highlight the complexity of how different factors impact an animal's overall affective state and support the need for complementary measures in future JBT studies, including personality assessment.
Collapse
Affiliation(s)
- Kristina M. Horback
- Department of Animal Science, University of California, Davis, CA, United States of America
| | - Thomas D. Parsons
- Department of Clinical Studies, Swine Teaching and Research Center, University of Pennsylvania School of Veterinary Medicine, Kennett Square, PA, United States of America
| |
Collapse
|
9
|
Resasco A, MacLellan A, Ayala MA, Kitchenham L, Edwards AM, Lam S, Dejardin S, Mason G. Cancer blues? A promising judgment bias task indicates pessimism in nude mice with tumors. Physiol Behav 2021; 238:113465. [PMID: 34029586 DOI: 10.1016/j.physbeh.2021.113465] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 02/06/2023]
Abstract
In humans, affective states can bias responses to ambiguous information: a phenomenon termed judgment bias (JB). Judgment biases have great potential for assessing affective states in animals, in both animal welfare and biomedical research. New animal JB tasks require construct validation, but for laboratory mice (Mus musculus), the most common research vertebrate, a valid JB task has proved elusive. Here (Experiment 1), we demonstrate construct validity for a novel mouse JB test: an olfactory Go/Go task in which subjects dig for high- or low-value food rewards. In C57BL/6 and Balb/c mice faced with ambiguous cues, latencies to dig were sensitive to high/low welfare housing: environmentally-enriched animals responded with relative 'optimism' through shorter latencies. Illustrating the versatility of this validated JB task across different fields of research, it further allowed us to test hypotheses about the mood-altering effects of cancer in male and female nude mice (Experiment 2). Males, although not females, treated ambiguous cues as intermediate; and males bearing subcutaneous lung adenocarcinomas also responded more pessimistically to these than did healthy controls. To our knowledge, this is the first evidence of a valid mouse JB task, and the first demonstration of pessimism in tumor-bearing animals. This task still needs to be refined to improve its sensitivity. However, it has great potential for investigating mouse welfare, the links between affective state and disease, depression-like states in animals, and hypotheses regarding the neurobiological mechanisms that underlie affect-mediated biases in judgment.
Collapse
Affiliation(s)
- A Resasco
- Institute of Cell Biology and Neurosciences, National Scientific and Technical Research Council-University of Buenos Aires, Autonomous City of Buenos Aires, Argentina; Laboratory of Experimental Animals, Faculty of Veterinary Sciences, National University of La Plata, La Plata, Argentina
| | - A MacLellan
- Department of Integrative Biology, University of Guelph, Guelph, Canada
| | - M A Ayala
- Laboratory of Experimental Animals, Faculty of Veterinary Sciences, National University of La Plata, La Plata, Argentina
| | - L Kitchenham
- Department of Integrative Biology, University of Guelph, Guelph, Canada
| | - A M Edwards
- Ontario Agricultural College, University of Guelph, Guelph, Canada
| | - S Lam
- Ontario Veterinary College, University of Guelph, Guelph, Canada
| | - S Dejardin
- Formerly Department of Animal Biosciences, University of Guelph, Guelph, Canada
| | - G Mason
- Department of Integrative Biology, University of Guelph, Guelph, Canada.
| |
Collapse
|
10
|
Jardim V, Verjat A, Féron C, Châline N, Rödel HG. Is there a bias in spatial maze judgment bias tests? Individual differences in subjects' novelty response can affect test results. Behav Brain Res 2021; 407:113262. [PMID: 33775775 DOI: 10.1016/j.bbr.2021.113262] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/22/2021] [Accepted: 03/20/2021] [Indexed: 02/07/2023]
Abstract
Judgment bias tests have become an important tool in the assessment of animals' affective states. Subjects are first trained to discriminate between two cues associated with a positive and a less-positive outcome. After successful training, they are confronted with an ambiguous cue, and responses are used for judgment bias assessment. In spatial settings, ambiguous cue presentation is typically linked with novelty, i.e. to yet unexplored areas or areas to which the animal has a low degree of habituation. We hypothesized that in such settings, responses to ambiguity might be biased by the animals' perception of novelty. We conducted judgment bias tests in mound-building mice phenotyped for their exploration tendency. After subjects had learned to distinguish between the positively and less-positively rewarded arms of a maze, a new ambiguous middle-arm was introduced. During the first test trial, more exploratory, less neophobic individuals displayed higher bidirectional locomotion in the ambiguous arm, indicating intensive exploration. Although this resulted in longer latencies to the reward in more exploratory animals, we conclude that this did not reflect a 'more pessimistic judgment of ambiguity'. Indeed, during the following two trials, with increasing habituation to the ambiguous arm, the direction of the association was inversed compared to the first trial, as more exploratory individuals showed relatively shorter approach latencies. We suggest that in spatial test settings associating the ambiguous cue to novel areas, results can be confounded by subjects' personality-dependent motivational conflict between exploration and reaching the reward. Findings obtained under such conditions should be interpreted with care.
Collapse
Affiliation(s)
- Veridiana Jardim
- Laboratoire d'Ethologie Expérimentale et Comparée UR 4443 (LEEC), Université Sorbonne Paris Nord, F-93430, Villetaneuse, France; Laboratory of Ethology, Ecology and Evolution of Social Insects, Department of Experimental Psychology, University of Sao Paulo, São Paulo, Brazil
| | - Aurélie Verjat
- Laboratoire d'Ethologie Expérimentale et Comparée UR 4443 (LEEC), Université Sorbonne Paris Nord, F-93430, Villetaneuse, France
| | - Christophe Féron
- Laboratoire d'Ethologie Expérimentale et Comparée UR 4443 (LEEC), Université Sorbonne Paris Nord, F-93430, Villetaneuse, France
| | - Nicolas Châline
- Laboratory of Ethology, Ecology and Evolution of Social Insects, Department of Experimental Psychology, University of Sao Paulo, São Paulo, Brazil
| | - Heiko G Rödel
- Laboratoire d'Ethologie Expérimentale et Comparée UR 4443 (LEEC), Université Sorbonne Paris Nord, F-93430, Villetaneuse, France.
| |
Collapse
|