1
|
Salvatierra D, González MP, Blasco J, Krull M, Araújo CVM. Habitat loss and discontinuity as drivers of habitat fragmentation: The role of contamination and connectivity of habitats. ENVIRONMENTAL RESEARCH 2025; 266:120609. [PMID: 39672495 DOI: 10.1016/j.envres.2024.120609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/26/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024]
Abstract
Habitat discontinuity of aquatic environments is a serious problem that might hamper the different activities performed by organisms. When combined with contamination, the consequences for the population's dynamics might be exacerbated, particularly regarding foraging activity. Therefore, the aim of this study was to evaluate the combined effects of habitat discontinuity and contamination on the foraging behavior by zebrafish (Danio rerio) and on their ability to explore heterogeneous landscapes. The organisms were exposed to three different scenarios of contamination (0, 0.5 and 25 μg L-1 of Cu) and habitat discontinuity (zero, low and high), using the Heterogeneous Multi-Habitat Assay System (HeMHAS). Generalized Bayesian linear models were used to analyze the data and evidence ratios (ER) were used to test the hypotheses. As results, both high levels of contamination and habitat discontinuity had significant effects on the probability of organisms to reach food (ER = 111.8 and > 1,000, respectively), the time taken to reach food (ER = 532.22 and > 1000, respectively) and the time spent in each compartment (ER = 614.4 and > 1000 for contamination and the number of connections available, respectively). As conclusion, the habitat fragmentation as a consequence of contamination and discontinuity affected the probability of fish to reach food and the time spent to reach it. This could lead to additional energy budget with serious consequences for population dynamics. Also, the HeMHAS demonstrated its suitability to assess the role of the contamination and habitat connectivity stressors in the spatial distribution and habitat selection response.
Collapse
Affiliation(s)
- David Salvatierra
- . Institute of Marine Sciences of Andalusia (CSIC), Department of Ecology and Coastal Management, Campus Universitario Río San Pedro, s/n, 11510, Puerto Real, Spain.
| | - María Pilar González
- . Institute of Marine Sciences of Andalusia (CSIC), Department of Ecology and Coastal Management, Campus Universitario Río San Pedro, s/n, 11510, Puerto Real, Spain
| | - Julián Blasco
- . Institute of Marine Sciences of Andalusia (CSIC), Department of Ecology and Coastal Management, Campus Universitario Río San Pedro, s/n, 11510, Puerto Real, Spain
| | - Marcos Krull
- . Senckenberg Research Institute and Natural History Museum, Mertonstraße 17, 60325, Frankfurt Am Main, Germany; . Benthic Ecology Laboratory, IBIO & CIEnAM & INCT IN-TREE, Universidade Federal da Bahia, Rua Barão de Geremoabo, S/n, Campus de Ondina, Salvador, Bahia 40170-000, Brazil
| | - Cristiano V M Araújo
- . Institute of Marine Sciences of Andalusia (CSIC), Department of Ecology and Coastal Management, Campus Universitario Río San Pedro, s/n, 11510, Puerto Real, Spain
| |
Collapse
|
2
|
Xiao K, Li R, Lin S, Huang X. Enhancing eco-sensing in aquatic environments: Fish jumping behavior automatic recognition using YOLOv5. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 277:107137. [PMID: 39520842 DOI: 10.1016/j.aquatox.2024.107137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/13/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024]
Abstract
Contemporary research on ichthyological behavior predominantly investigates underwater environments. However, the intricate nature of aquatic ecosystems often hampers subaqueous observations of fish behavior due to interference. Transitioning the observational perspective from subaqueous to supra-aquatic enables a more direct assessment of fish physiology and habitat conditions. In this study, we utilized the YOLOv5 convolutional neural network target detection model to develop a fish jumping behavior (FJB) recognition model. A dataset comprising 877 images of fish jumping, captured via a camera in a reservoir, was assembled for model training and validation. After training and validating the model, its recognition accuracy was further tested in real aquatic environments. The results show that YOLOv5 outperforms YOLOv7, YOLOv8, and YOLOv9 in detecting splashes. Post 50 training epochs, YOLOv5 achieved over 97 % precision and recall in the validation set, with an F1 score exceeding 0.9. Furthermore, an enhanced YOLOv5-SN model was devised by integrating specific rules related to ripple size variation and duration, attributable to fish jumping. This modification significantly mitigates noise interference in the detection process. The model's robustness against weather variations ensures reliable detection of fish jumping behavior under diverse meteorological conditions, including rain, cloudiness, and sunshine. Different meteorological elements exert varying effects on fish jumping behavior. The research results can lay the foundation for intelligent perception in aquatic ecology assessment and aquaculture.
Collapse
Affiliation(s)
- Kaibang Xiao
- College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, PR China; Key Laboratory of Disaster Prevention and Structural Safety of the Ministry of Education, College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, PR China
| | - Ronghui Li
- College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, PR China; Key Laboratory of Disaster Prevention and Structural Safety of the Ministry of Education, College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, PR China.
| | - Senhai Lin
- College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, PR China; Key Laboratory of Disaster Prevention and Structural Safety of the Ministry of Education, College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, PR China
| | - Xianyu Huang
- College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, PR China; Key Laboratory of Disaster Prevention and Structural Safety of the Ministry of Education, College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, PR China
| |
Collapse
|
3
|
Agrillo C, Pecunioso A. Using an Automated Operant Conditioning Procedure to Test Colour Discrimination in Two Juvenile Piranhas, Pygocentrus nattereri: A Lesson on Failures and Pitfalls and How to Avoid Them. Animals (Basel) 2024; 14:3187. [PMID: 39595240 PMCID: PMC11591000 DOI: 10.3390/ani14223187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/01/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Most studies on the cognitive abilities of fish have focused on model organisms adopted in behavioural neuroscience. To date, little attention has been devoted to characiformes fish and we record a lack of cognitive investigation on the piranha. In this study, we conducted a preliminary set of experiments to assess whether red-bellied piranhas (Pygocentrus nattereri) can solve an automated operant conditioning task, specifically, a reversal learning task. In Experiment 1, the fish were required to discriminate between red and green, while in Experiment 2, they had to discriminate between white and yellow. In either case, we found no evidence of learning capacities with our protocol after extensive training exceeding one thousand trials overall. In Experiment 3, we simplified the learning task by using achromatic stimuli (black and white discrimination) and always presenting the reinforced stimulus on the same side of the tank (a combination of response learning and place learning). Subjects did learn how to discriminate between the colours, although no subject was able to reach the criterion in the subsequent reversal learning task, suggesting that piranhas may be limited in their cognitive flexibility. However, our training procedure may have been inefficient in addressing this issue. We outline some potential limitations of the current methodology to help to establish a more effective approach for investigating operant conditioning in this species.
Collapse
Affiliation(s)
- Christian Agrillo
- Department of General Psychology, University of Padova, Via Venezia 8, 35131 Padova, Italy;
- Padua Neuroscience Center, 35131 Padova, Italy
| | - Alessandra Pecunioso
- Department of General Psychology, University of Padova, Via Venezia 8, 35131 Padova, Italy;
| |
Collapse
|
4
|
Vinogradov IM, Zang C, Mahmud-Al-Hasan M, Head ML, Jennions MD. Inbreeding and high developmental temperatures affect cognition and boldness in guppies ( Poecilia reticulata). Proc Biol Sci 2024; 291:20240785. [PMID: 39317321 PMCID: PMC11421933 DOI: 10.1098/rspb.2024.0785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 07/24/2024] [Accepted: 07/30/2024] [Indexed: 09/26/2024] Open
Abstract
Inbreeding impairs the cognitive abilities of humans, but its impact on cognition in other animals is poorly studied. For example, environmental stress (e.g. food limitation and extreme temperatures) often amplifies inbreeding depression in morphological traits, but whether cognition is similarly affected is unclear. We, therefore, tested if a higher temperature (30°C versus 26°C) during development exacerbates any difference in inhibitory control between inbred (f = 0.25) and outbred guppies (Poecilia reticulata). Inhibitory control is an aspect of cognition that is often measured in vertebrates using a detour test, in which animals have to navigate around a transparent barrier to reach a reward. We also tested if inbreeding and temperature affect 'boldness', which is a putative personality trait in guppies. Inbreeding lowered inhibitory control of guppies raised at the higher temperature but not those raised at the control temperature. Inbred fish were significantly less bold than outbred fish. In addition, males, but not females, raised at the higher temperature had significantly lower inhibitory control. There was no effect of temperature on the boldness of either sex. Our study is among the first to test if experimentally induced inbreeding impairs cognition in a non-domesticated vertebrate. We show that both inbreeding and higher temperatures during development can affect the behaviour and cognitive abilities of fish. These findings are noteworthy given the twin threats of rising global temperatures and more frequent inbreeding as habitat fragmentation reduces population sizes.
Collapse
Affiliation(s)
- I M Vinogradov
- Division of Ecology and Evolution, Research School of Biology, Australian National University, 46 Sullivans Creek Road , Canberra, Australian Captial Territory 2600, Australia
| | - C Zang
- Division of Ecology and Evolution, Research School of Biology, Australian National University, 46 Sullivans Creek Road , Canberra, Australian Captial Territory 2600, Australia
| | - M Mahmud-Al-Hasan
- Division of Ecology and Evolution, Research School of Biology, Australian National University, 46 Sullivans Creek Road , Canberra, Australian Captial Territory 2600, Australia
| | - M L Head
- Division of Ecology and Evolution, Research School of Biology, Australian National University, 46 Sullivans Creek Road , Canberra, Australian Captial Territory 2600, Australia
| | - M D Jennions
- Division of Ecology and Evolution, Research School of Biology, Australian National University, 46 Sullivans Creek Road , Canberra, Australian Captial Territory 2600, Australia
- Stellenbosch Institute for Advanced Study (STIAS), Wallenberg Research Centre at Stellenbosch University , Stellenbosch 7600, South Africa
| |
Collapse
|
5
|
Kryzhanovskaya I, Dhaliwal G. Ted Talks: Learning the Lasso Way. J Grad Med Educ 2024; 16:251-253. [PMID: 38882408 PMCID: PMC11173038 DOI: 10.4300/jgme-d-23-00735.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/18/2024] Open
Affiliation(s)
- Irina Kryzhanovskaya
- is Associate Professor of Medicine, Division of General Internal Medicine, Department of Medicine, University of California, San Francisco, California, USA; and
| | - Gurpreet Dhaliwal
- is Professor of Medicine, Department of Medicine, University of California, and Medical Service, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA
| |
Collapse
|
6
|
Ernst TR, Hogers RMHW, Korosi A, van Leeuwen JL, Kotrschal A, Pollux BJA. Coercive mating has no impact on spatial learning, cognitive flexibility, and fecundity in female porthole livebearers (Poeciliopsis gracilis). JOURNAL OF FISH BIOLOGY 2024. [PMID: 38402692 DOI: 10.1111/jfb.15696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/27/2024]
Abstract
Coercive mating is a sexual selection strategy that is likely to influence female cognition. Female harassment levels have been linked to altered brain gene expression patterns and brain size evolution, suggesting females may respond to coercive mating by investing energy into "outsmarting" males. However, females exposed to coercive males have decreased foraging efficiency and likely increased stress levels, suggesting their brain function might instead be impaired. While it is therefore likely that coercive mating impacts female cognitive abilities, a direct test of this idea is currently lacking. In this study, we investigate the impact of coercive mating on female spatial memory and cognitive flexibility in a species with prevalent coercive mating. We compared the performance of female porthole livebearers (Poeciliopsis gracilis), which had been previously housed alone or with a coercive male, in both a spatial food localization task and a reversal learning task. While we found that both single and paired fish exhibited high proficiency in learning both tasks, we found no differences in learning ability between females that had or had not experienced coercive mating. In addition, our study found that the presence of a coercive male had no impact on female fecundity, but did influence female mass and standard length. Several studies have assumed that the presence of males, particularly coercive males, may affect the cognitive performance of female fish. However, our study shows that for some species females adapted to coercive mating regimes may be unaffected by male presence with regards to some cognitive tasks.
Collapse
Affiliation(s)
- Tiffany R Ernst
- Department of Animal Sciences, Experimental Zoology Group, Wageningen University, Wageningen, The Netherlands
| | - R M H W Hogers
- Department of Animal Sciences, Experimental Zoology Group, Wageningen University, Wageningen, The Netherlands
| | - A Korosi
- University of Amsterdam, Swammerdam Institute of Life Sciences, Center for Neuroscience, Brain Plasticity Group, Amsterdam, The Netherlands
| | - J L van Leeuwen
- Department of Animal Sciences, Experimental Zoology Group, Wageningen University, Wageningen, The Netherlands
| | - A Kotrschal
- Department of Animal Sciences, Behavioral Ecology Group, Wageningen University, Wageningen, The Netherlands
| | - Bart J A Pollux
- Department of Animal Sciences, Experimental Zoology Group, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
7
|
Buenhombre J, Daza-Cardona EA, Mota-Rojas D, Domínguez-Oliva A, Rivera A, Medrano-Galarza C, de Tarso P, Cajiao-Pachón MN, Vargas F, Pedraza-Toscano A, Sousa P. Trait sensitivity to stress and cognitive bias processes in fish: A brief overview. PERSONALITY NEUROSCIENCE 2024; 7:e3. [PMID: 38384666 PMCID: PMC10877277 DOI: 10.1017/pen.2023.14] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/02/2023] [Accepted: 10/24/2023] [Indexed: 02/23/2024]
Abstract
Like other animals, fish have unique personalities that can affect their cognition and responses to environmental stressors. These individual personality differences are often referred to as "behavioural syndromes" or "stress coping styles" and can include personality traits such as boldness, shyness, aggression, exploration, locomotor activity, and sociability. For example, bolder or proactive fish may be more likely to take risks and present lower hypothalamo-pituitary-adrenal/interrenal axis reactivity as compared to shy or reactive individuals. Likewise, learning and memory differ between fish personalities. Reactive or shy individuals tend to have faster learning and better association recall with aversive stimuli, while proactive or bold individuals tend to learn more quickly when presented with appetitive incentives. However, the influence of personality on cognitive processes other than cognitive achievement in fish has been scarcely explored. Cognitive bias tests have been employed to investigate the interplay between emotion and cognition in both humans and animals. Fish present cognitive bias processes (CBP) in which fish's interpretation of stimuli could be influenced by its current emotional state and open to environmental modulation. However, no study in fish has explored whether CBP, like in other species, can be interpreted as long-lasting traits and whether other individual characteristics may explain its variation. We hold the perspective that CBP could serve as a vulnerability factor for the onset, persistence, and recurrence of stress-related disorders. Therefore, studying fish's CBP as a state or trait and its interactions with individual variations may be valuable in future efforts to enhance our understanding of anxiety and stress neurobiology in animal models and humans.
Collapse
Affiliation(s)
- Jhon Buenhombre
- Faculty of Veterinary Medicine, Faculty of Agrarian Science, Animal Welfare Program, Universidad Antonio Nariño, Bogotá, Colombia
- ICB Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Erika Alexandra Daza-Cardona
- Faculty of Veterinary Medicine, Faculty of Agrarian Science, Animal Welfare Program, Universidad Antonio Nariño, Bogotá, Colombia
| | - Daniel Mota-Rojas
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana, Xochimilco Campus, Mexico City, Mexico
| | - Adriana Domínguez-Oliva
- Neurophysiology, Behavior and Animal Welfare Assessment, DPAA, Universidad Autónoma Metropolitana, Xochimilco Campus, Mexico City, Mexico
| | - Astrid Rivera
- Faculty of Veterinary Medicine, Faculty of Agrarian Science, Animal Welfare Program, Universidad Antonio Nariño, Bogotá, Colombia
| | - Catalina Medrano-Galarza
- Faculty of Veterinary Medicine, Faculty of Agrarian Science, Animal Welfare Program, Universidad Antonio Nariño, Bogotá, Colombia
| | | | - María Nelly Cajiao-Pachón
- Especialización en Bienestar Animal y Etología, Fundación Universitaria Agraria de Colombia, Bogotá, Colombia
| | - Francisco Vargas
- Faculty of Veterinary Medicine, Faculty of Agrarian Science, Animal Welfare Program, Universidad Antonio Nariño, Bogotá, Colombia
| | - Adriana Pedraza-Toscano
- Faculty of Veterinary Medicine, Faculty of Agrarian Science, Animal Welfare Program, Universidad Antonio Nariño, Bogotá, Colombia
| | - Pêssi Sousa
- ICB Biological Sciences, Federal University of Pará, Belém, Brazil
| |
Collapse
|
8
|
Ajuwon V, Cruz BF, Carriço P, Kacelnik A, Monteiro T. GoFish: A low-cost, open-source platform for closed-loop behavioural experiments on fish. Behav Res Methods 2024; 56:318-329. [PMID: 36622558 PMCID: PMC10794453 DOI: 10.3758/s13428-022-02049-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2022] [Indexed: 01/10/2023]
Abstract
Fish are the most species-rich vertebrate group, displaying vast ecological, anatomical and behavioural diversity, and therefore are of major interest for the study of behaviour and its evolution. However, with respect to other vertebrates, fish are relatively underrepresented in psychological and cognitive research. A greater availability of easily accessible, flexible, open-source experimental platforms that facilitate the automation of task control and data acquisition may help to reduce this bias and improve the scalability and refinement of behavioural experiments in a range of different fish species. Here we present GoFish, a fully automated platform for behavioural experiments in aquatic species. GoFish includes real-time video tracking of subjects, presentation of stimuli in a computer screen, an automatic feeder device, and closed-loop control of task contingencies and data acquisition. The design and software components of the platform are freely available, while the hardware is open-source and relatively inexpensive. The control software, Bonsai, is designed to facilitate rapid development of task workflows and is supported by a growing community of users. As an illustration and test of its use, we present the results of two experiments on discrimination learning, reversal, and choice in goldfish (Carassius auratus). GoFish facilitates the automation of high-throughput protocols and the acquisition of rich behavioural data. Our platform has the potential to become a widely used tool that facilitates complex behavioural experiments in aquatic species.
Collapse
Affiliation(s)
- Victor Ajuwon
- Department of Biology, University of Oxford, Oxford, UK.
| | - Bruno F Cruz
- Champalimaud Neuroscience Programme, Champalimaud Foundation, Lisbon, Portugal
- NeuroGEARS Ltd., London, UK
| | - Paulo Carriço
- Champalimaud Research Scientific Hardware Platform, Champalimaud Foundation, Lisbon, Portugal
| | - Alex Kacelnik
- Department of Biology, University of Oxford, Oxford, UK
| | - Tiago Monteiro
- Department of Biology, University of Oxford, Oxford, UK.
- Domestication Lab, Konrad Lorenz Institute of Ethology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine Vienna, Vienna, Austria.
| |
Collapse
|
9
|
Turko AJ, Firth BL, Craig PM, Eliason EJ, Raby GD, Borowiec BG. Physiological differences between wild and captive animals: a century-old dilemma. J Exp Biol 2023; 226:jeb246037. [PMID: 38031957 DOI: 10.1242/jeb.246037] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Laboratory-based research dominates the fields of comparative physiology and biomechanics. The power of lab work has long been recognized by experimental biologists. For example, in 1932, Georgy Gause published an influential paper in Journal of Experimental Biology describing a series of clever lab experiments that provided the first empirical test of competitive exclusion theory, laying the foundation for a field that remains active today. At the time, Gause wrestled with the dilemma of conducting experiments in the lab or the field, ultimately deciding that progress could be best achieved by taking advantage of the high level of control offered by lab experiments. However, physiological experiments often yield different, and even contradictory, results when conducted in lab versus field settings. This is especially concerning in the Anthropocene, as standard laboratory techniques are increasingly relied upon to predict how wild animals will respond to environmental disturbances to inform decisions in conservation and management. In this Commentary, we discuss several hypothesized mechanisms that could explain disparities between experimental biology in the lab and in the field. We propose strategies for understanding why these differences occur and how we can use these results to improve our understanding of the physiology of wild animals. Nearly a century beyond Gause's work, we still know remarkably little about what makes captive animals different from wild ones. Discovering these mechanisms should be an important goal for experimental biologists in the future.
Collapse
Affiliation(s)
- Andy J Turko
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada, N2L 3C5
| | - Britney L Firth
- Department of Biology, University of Waterloo, Waterloo, ON, Canada, N2L 3G1
| | - Paul M Craig
- Department of Biology, University of Waterloo, Waterloo, ON, Canada, N2L 3G1
| | - Erika J Eliason
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, Goleta, CA 93117, USA
| | - Graham D Raby
- Department of Biology, Trent University, Peterborough, ON, Canada, K9L 0G2
| | - Brittney G Borowiec
- Department of Biology, University of Waterloo, Waterloo, ON, Canada, N2L 3G1
| |
Collapse
|
10
|
Jones NAR, Cortese D, Munson A, Spence‐Jones HC, Storm Z, Killen SS, Bethel R, Deacon AE, Webster MM, Závorka L. Maze design: size and number of choices impact fish performance in cognitive assays. JOURNAL OF FISH BIOLOGY 2023; 103:974-984. [PMID: 37386747 PMCID: PMC10952265 DOI: 10.1111/jfb.15493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/01/2023]
Abstract
Although studies on fish cognition are increasing, consideration of how methodological details influence the ability to detect and measure performance is lagging. Here, in two separate experiments the authors compared latency to leave the start position, latency to make a decision, levels of participation and success rates (whether fish entered the rewarded chamber as first choice) across different physical designs. Experiments compared fish performance across (a) two sizes of T-mazes, large and standard, and a plus-maze, and (b) open choice arenas with either two or four doors. Fish in T-mazes with longer arms took longer to leave the start chamber and were less likely to participate in a trial than fish in T-mazes with shorter arms. The number of options, or complexity, in a maze significantly impacted success but did not necessarily impact behavioural measures, and did not impact the number of fish that reached a chamber. Fish in the plus-maze had similar latencies to leave the start box and time to reach any chamber as fish in the same-sized T-maze but exhibited lower overall success. Similarly, in an open choice arena, increasing the number of options - doors to potential reward chambers - resulted in lower probability of success. There was an influence of reward position in the choice arena, with rewarded chambers closest to the sides of the arena resulting in lower latencies to enter and higher probability of decision success. Together the results allow the authors to offer practical suggestions towards optimal maze design for studies of fish cognition.
Collapse
Affiliation(s)
- Nick A. R. Jones
- Department of Animal PhysiologyUniversity of BayreuthBayreuthGermany
- Centre for Social Learning and Cognitive Evolution, School of Biology, University of St AndrewsSt AndrewsUK
| | - Daphne Cortese
- School of Biodiversity, One Health and Veterinary Medicine, University of GlasgowGlasgowUK
| | - Amelia Munson
- School of Biodiversity, One Health and Veterinary Medicine, University of GlasgowGlasgowUK
| | - Helen C. Spence‐Jones
- Alfred‐Wegener‐Institut Helmholtz‐Zentrum für Polar‐ und Meeresforschung, Wadden Sea Station SyltListGermany
| | - Zoe Storm
- School of Biodiversity, One Health and Veterinary Medicine, University of GlasgowGlasgowUK
| | - Shaun S. Killen
- School of Biodiversity, One Health and Veterinary Medicine, University of GlasgowGlasgowUK
| | - Ruth Bethel
- Department of Life SciencesThe University of the West IndiesSt AugustineTrinidad and Tobago
| | - Amy E. Deacon
- Department of Life SciencesThe University of the West IndiesSt AugustineTrinidad and Tobago
| | - Mike M. Webster
- Centre for Social Learning and Cognitive Evolution, School of Biology, University of St AndrewsSt AndrewsUK
| | - Libor Závorka
- WasserCluster Lunz – Biologische Station, Inter‐university Centre for Aquatic Ecosystem ResearchLunz am SeeAustria
- Danube University KremsKremsAustria
| |
Collapse
|
11
|
Tomasek M, Stark M, Dufour V, Jordan A. Cognitive flexibility in a Tanganyikan bower-building cichlid, Aulonocranus dewindti. Anim Cogn 2023; 26:1959-1971. [PMID: 37851187 PMCID: PMC10770232 DOI: 10.1007/s10071-023-01830-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/18/2023] [Accepted: 10/02/2023] [Indexed: 10/19/2023]
Abstract
Cognitive flexibility, the ability to modify one's decision rules to adapt to a new situation, has been extensively studied in many species. In fish, though, data on cognitive flexibility are scarce, especially in the wild. We studied a lekking species of cichlid fish in Lake Tanganyika, Aulonocranus dewindti. Males create sand bowers as spawning sites and maintain them by removing any objects falling into it. In the first part of our experiment, we investigated the existence of spontaneous decision rules for the maintenance of the bowers. We showed that if a snail shell and a stone are placed in their bower, fish prefer to remove the shell first. In the second phase of our experiment, we took advantage of this spontaneous decision rule to investigate whether this rule was flexible. We tested five individuals in a choice against preference task, in which the fish had to modify their preference rule and remove the stone first to be allowed to then remove the shell and have a clean bower. While there was no overall trend towards flexibility in this task, there was variation at an individual level. Some individuals increased their preference for removing the shell first, deciding quickly and with little exploration of the objects. Others were more successful at choosing against preference and showed behaviours suggesting self-regulatory inhibition abilities. Bower-building cichlids could therefore be a promising model to study cognitive flexibility, and other aspects of animal cognition in the wild.
Collapse
Affiliation(s)
- Maëlan Tomasek
- Cognitive and Social Ethology Team, UMR 7247, PRC, BAT 40, Campus CNRS, Physiologie de la Reproduction et des Comportements, INRAE, CNRS, IFCE, Université de Tours, 23 Rue de Loess, 67037, Strasbourg, France.
- University of Konstanz, 78464, Constance, Germany.
- Max Planck Institute of Animal Behaviour, 78467, Constance, Germany.
| | - Midori Stark
- University of Konstanz, 78464, Constance, Germany
- Max Planck Institute of Animal Behaviour, 78467, Constance, Germany
| | - Valérie Dufour
- Cognitive and Social Ethology Team, UMR 7247, PRC, BAT 40, Campus CNRS, Physiologie de la Reproduction et des Comportements, INRAE, CNRS, IFCE, Université de Tours, 23 Rue de Loess, 67037, Strasbourg, France
| | - Alex Jordan
- University of Konstanz, 78464, Constance, Germany
- Max Planck Institute of Animal Behaviour, 78467, Constance, Germany
| |
Collapse
|
12
|
Lai NHY, Mohd Zahir IA, Liew AKY, Ogawa S, Parhar I, Soga T. Teleosts as behaviour test models for social stress. Front Behav Neurosci 2023; 17:1205175. [PMID: 37744951 PMCID: PMC10512554 DOI: 10.3389/fnbeh.2023.1205175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Stress is an important aspect of our everyday life and exposure to it is an unavoidable occurrence. In humans, this can come in the form of social stress or physical stress from an injury. Studies in animal models have helped researchers to understand the body's adaptive response to stress in human. Notably, the use of behavioural tests in animal models plays a pivotal role in understanding the neural, endocrine and behavioural changes induced by social stress. Under socially stressed conditions, behavioural parameters are often measured physiological and molecular parameters as changes in behaviour are direct responses to stress and are easily assessed by behavioural tests. Throughout the past few decades, the rodent model has been used as a well-established animal model for stress and behavioural changes. Recently, more attention has been drawn towards using fish as an animal model. Common fish models such as zebrafish, medaka, and African cichlids have the advantage of a higher rate of reproduction, easier handling techniques, sociability and most importantly, share evolutionary conserved genetic make-up, neural circuitry, neuropeptide molecular structure and function with mammalian species. In fact, some fish species exhibit a clear diurnal or seasonal rhythmicity in their stress response, similar to humans, as opposed to rodents. Various social stress models have been established in fish including but not limited to chronic social defeat stress, social stress avoidance, and social stress-related decision-making. The huge variety of behavioural patterns in teleost also aids in the study of more behavioural phenotypes than the mammalian species. In this review, we focus on the use of fish models as alternative models to study the effects of stress on different types of behaviours. Finally, fish behavioural tests against the typical mammalian model-based behavioural test are compared and discussed for their viability.
Collapse
Affiliation(s)
| | | | | | | | | | - Tomoko Soga
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| |
Collapse
|
13
|
Brunet V, Lafond T, Kleiber A, Lansade L, Calandreau L, Colson V. Environmental enrichment improves cognitive flexibility in rainbow trout in a visual discrimination task: first insights. Front Vet Sci 2023; 10:1184296. [PMID: 37396987 PMCID: PMC10313407 DOI: 10.3389/fvets.2023.1184296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 05/09/2023] [Indexed: 07/04/2023] Open
Abstract
Research on fish cognition provides strong evidence that fish are endowed with high level cognitive skills. However, most studies on cognitive flexibility and generalization abilities, two key adaptive traits for captive animals, focused on model species, and farmed fish received too little attention. Environmental enrichment was shown to improve learning abilities in various fish species, but its influence on cognitive flexibility and generalization abilities is still unknown. We studied farmed rainbow trout (Oncorhynchus mykiss) as an aquaculture model to study how environmental enrichment impacts their cognitive abilities. Using an operant conditioning device, allowing the expression of a motivated choice, we measured fish cognitive flexibility with serial reversal learning tests, after a successful acquisition phase based on two colors discrimination (2-alternative forced choice, 2-AFC), and their ability to generalize a rewarded color to any shape. Eight fish were divided into two groups: Condition E (fish reared from fry stages under enriched conditions with plants, rocks and pipes for ~9 months); Condition B (standard barren conditions). Only one fish (condition E) failed in the habituation phase of the device and one fish (condition B) failed in the 2-AFC task. We showed that after a successful acquisition phase in which the fish correctly discriminated two colors, they all succeeded in four reversal learnings, supporting evidence for cognitive flexibility in rainbow trout. They were all successful in the generalization task. Interestingly, fish reared in an enriched environment performed better in the acquisition phase and in the reversal learning (as evidenced by fewer trials needed to reach the learning criterion), but not in the generalization task. We assume that color-based generalization may be a simpler cognitive process than discriminative learning and cognitive flexibility, and does not seem to be influenced by environmental conditions. Given the small number of individuals tested, our results may be considered as first insights into cognitive flexibility in farmed fish using an operant conditioning device, but they pave the way for future studies. We conclude that farming conditions should take into account the cognitive abilities of fish, in particular their cognitive flexibility, by allowing them to live in an enriched environment.
Collapse
Affiliation(s)
- Valentin Brunet
- Laboratoire de Physiologie et Génomique des Poissons, INRAE, Rennes, France
| | - Thomas Lafond
- Laboratoire de Physiologie et Génomique des Poissons, INRAE, Rennes, France
| | - Aude Kleiber
- Laboratoire de Physiologie et Génomique des Poissons, INRAE, Rennes, France
- Comportement Animal et Systèmes d’Elevage, JUNIA, Lille, France
| | - Léa Lansade
- Physiologie de la Reproduction et des Comportements, CNRS, IFCE, INRAE, Université de Tours, Nouzilly, France
| | - Ludovic Calandreau
- Physiologie de la Reproduction et des Comportements, CNRS, IFCE, INRAE, Université de Tours, Nouzilly, France
| | - Violaine Colson
- Laboratoire de Physiologie et Génomique des Poissons, INRAE, Rennes, France
| |
Collapse
|
14
|
Triki Z, Fong S, Amcoff M, Vàsquez-Nilsson S, Kolm N. Experimental expansion of relative telencephalon size improves the main executive function abilities in guppy. PNAS NEXUS 2023; 2:pgad129. [PMID: 37346268 PMCID: PMC10281379 DOI: 10.1093/pnasnexus/pgad129] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/14/2023] [Accepted: 04/07/2023] [Indexed: 06/23/2023]
Abstract
Executive functions are a set of cognitive control processes required for optimizing goal-directed behavior. Despite more than two centuries of research on executive functions, mostly in humans and nonhuman primates, there is still a knowledge gap in what constitutes the mechanistic basis of evolutionary variation in executive function abilities. Here, we show experimentally that size changes in a forebrain structure (i.e. telencephalon) underlie individual variation in executive function capacities in a fish. For this, we used male guppies (Poecilia reticulata) issued from artificial selection lines with substantial differences in telencephalon size relative to the rest of the brain. We tested fish from the up- and down-selected lines not only in three tasks for the main core executive functions: cognitive flexibility, inhibitory control, and working memory, but also in a basic conditioning test that does not require executive functions. Individuals with relatively larger telencephalons outperformed individuals with smaller telencephalons in all three executive function assays but not in the conditioning assay. Based on our findings, we propose that the telencephalon is the executive brain in teleost fish. Together, it suggests that selective enlargement of key brain structures with distinct functions, like the fish telencephalon, is a potent evolutionary pathway toward evolutionary enhancement of advanced cognitive abilities in vertebrates.
Collapse
Affiliation(s)
| | - Stephanie Fong
- Department of Zoology, Stockholm University, Svante Arrheniusväg 18 B, Stockholm 106 91, Sweden
| | - Mirjam Amcoff
- Department of Zoology, Stockholm University, Svante Arrheniusväg 18 B, Stockholm 106 91, Sweden
| | | | | |
Collapse
|
15
|
Molnár T, Urbányi B, Benedek I. Impact of exploration behavior, aptitude for pellet consumption, and the predation practice on the performance in consecutive live prey foraging tests in a piscivorous species. Anim Cogn 2023; 26:973-984. [PMID: 36708449 PMCID: PMC10066078 DOI: 10.1007/s10071-023-01747-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 12/21/2022] [Accepted: 01/23/2023] [Indexed: 01/29/2023]
Abstract
Within the predator-prey relationship, predator behavior is less studied. Even in natural populations, it shows great diversity, and the factors influencing this are even less known. Among these factors, the personality type of the individual, (including exploration, and neophilia) and the practice significantly influence the success of adapting to a changing environment and switching to new prey types. In the present study, we investigated the first five consecutive foraging trials on live fish prey in naïve pikeperch individuals, which previously consumed or refused pelleted food. We hypothesized that individuals which were willing to consume alternative (pelleted) food would also show higher foraging success on living prey and that the practice would influence the learning process. Our results show that the timing of prey detection is influenced by exploratory behavior, the latency of the first attack by the aptitude for consuming pellets, and both traits by the individual's practice. However, neither of the factor affects the latency and success rate of capturing the prey, suggesting that predation is an independent behavioral trait.
Collapse
Affiliation(s)
- Tamás Molnár
- Department of Molecular Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Guba S. Street 40, Kaposvár, 7400, Hungary.
| | - Béla Urbányi
- Department of Aquaculture, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Ildikó Benedek
- Department of Animal Breeding, Institute of Animal Breeding Sciences, Hungarian University of Agriculture and Life Sciences, Kaposvár, Hungary
| |
Collapse
|
16
|
Sibeaux A, Karlsson C, Newport C, Burt de Perera T. Distance estimation in the goldfish ( Carassius auratus). Proc Biol Sci 2022; 289:20221220. [PMID: 36476009 PMCID: PMC9554733 DOI: 10.1098/rspb.2022.1220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Neurophysiological advances have given us exciting insights into the systems responsible for spatial mapping in mammals. However, we are still lacking information on the evolution of these systems and whether the underlying mechanisms identified are universal across phyla, or specific to the species studied. Here we address these questions by exploring whether a species that is evolutionarily distant from mammals can perform a task central to mammalian spatial mapping-distance estimation. We developed a behavioural paradigm allowing us to test whether goldfish (Carassius auratus) can estimate distance and explored the behavioural mechanisms that underpin this ability. Fish were trained to swim a set distance within a narrow tank covered with a striped pattern. After changing the background pattern, we found that goldfish use the spatial frequency of their visual environment to estimate distance, doubling the spatial frequency of the background pattern resulted in a large overestimation of the swimming distance. We present robust evidence that goldfish can accurately estimate distance and show that they use local optic flow to do so. These results provide a compelling basis to use goldfish as a model system to interrogate the evolution of the mechanisms that underpin spatial cognition, from brain to behaviour.
Collapse
Affiliation(s)
- Adelaide Sibeaux
- Department of Biology, University of Oxford, Zoology Research and Administration Building, 11a Mansfield Road, Oxford, Oxfordshire OX1 3SZ, UK
| | - Cecilia Karlsson
- Department of Biology, University of Oxford, Zoology Research and Administration Building, 11a Mansfield Road, Oxford, Oxfordshire OX1 3SZ, UK
| | - Cait Newport
- Department of Biology, University of Oxford, Zoology Research and Administration Building, 11a Mansfield Road, Oxford, Oxfordshire OX1 3SZ, UK
| | - Theresa Burt de Perera
- Department of Biology, University of Oxford, Zoology Research and Administration Building, 11a Mansfield Road, Oxford, Oxfordshire OX1 3SZ, UK
| |
Collapse
|
17
|
Torgerson-White L, Sánchez-Suárez W. Looking beyond the Shoal: Fish Welfare as an Individual Attribute. Animals (Basel) 2022; 12:ani12192592. [PMID: 36230333 PMCID: PMC9559274 DOI: 10.3390/ani12192592] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The fish farming industry is characterized by settings where large numbers of fishes are raised together at high stocking densities, effectively obliterating the individual. Given that animal welfare is an individual attribute that refers to how an animal experiences her world, it follows that ensuring good welfare for the different individuals is difficult in fish farms. In this paper we review evidence supporting the notion that fishes are individuals and fish welfare should thus also be considered at the individual level, examine the ways that animal welfare is assessed in fish farms, evaluate these practices in light of individualized terrestrial animal welfare assessment methods, and make recommendations regarding research that could lead to a better understanding of how to provide each individual fish with good welfare in captivity. Abstract Welfare is an individual attribute. In general, providing captive nonhuman animals with conditions conducive to good welfare is an idea more easily applied when dealing with few individuals. However, this becomes much harder—if not impossible—under farming conditions that may imply high numbers of animals living in large group sizes. Although this is a problem inherent to intensive animal farming, it is possibly best exemplified in fish farming, for these practices often rely on extremely high numbers. In this paper we review evidence supporting the notion that fishes are individuals and fish welfare should thus also be considered at the individual level, examine the current state of welfare assessment in the aquaculture industry, evaluate these practices in light of individualized terrestrial animal welfare assessment methods, and make recommendations regarding research that could lead to a better understanding of how to provide each individual fish with good welfare in captivity.
Collapse
Affiliation(s)
- Lauri Torgerson-White
- Department of Research, Farm Sanctuary, Watkins Glen, NY 14891, USA
- Correspondence: (L.T.-W.); (W.S.-S.); Tel.: +1-248-835-4770 (L.T.-W.)
| | - Walter Sánchez-Suárez
- Department of Research, Mercy For Animals, Los Angeles, CA 90046, USA
- Correspondence: (L.T.-W.); (W.S.-S.); Tel.: +1-248-835-4770 (L.T.-W.)
| |
Collapse
|
18
|
Bshary R, Triki Z. Fish ecology and cognition: insights from studies on wild and wild-caught teleost fishes. Curr Opin Behav Sci 2022. [DOI: 10.1016/j.cobeha.2022.101174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
19
|
Triki Z, Granell-Ruiz M, Fong S, Amcoff M, Kolm N. Brain morphology correlates of learning and cognitive flexibility in a fish species ( Poecilia reticulata). Proc Biol Sci 2022; 289:20220844. [PMID: 35858069 PMCID: PMC9277233 DOI: 10.1098/rspb.2022.0844] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Determining how variation in brain morphology affects cognitive abilities is important to understand inter-individual variation in cognition and, ultimately, cognitive evolution. Yet, despite many decades of research in this area, there is surprisingly little experimental data available from assays that quantify cognitive abilities and brain morphology in the same individuals. Here, we tested female guppies (Poecilia reticulata) in two tasks, colour discrimination and reversal learning, to evaluate their learning abilities and cognitive flexibility. We then estimated the size of five brain regions (telencephalon, optic tectum, hypothalamus, cerebellum and dorsal medulla), in addition to relative brain size. We found that optic tectum relative size, in relation to the rest of the brain, correlated positively with discrimination learning performance, while relative telencephalon size correlated positively with reversal learning performance. The other brain measures were not associated with performance in either task. By evaluating how fast learning occurs and how fast an animal adjusts its learning rules to changing conditions, we find support for that different brain regions have distinct functional correlations at the individual level. Importantly, telencephalon size emerges as an important neural correlate of higher executive functions such as cognitive flexibility. This is rare evidence supporting the theory that more neural tissue in key brain regions confers cognitive benefits.
Collapse
Affiliation(s)
- Zegni Triki
- Department of Zoology, Stockholm University, Svante Arrheniusväg 18 B, Stockholm, Sweden
| | - Maria Granell-Ruiz
- Department of Zoology, Stockholm University, Svante Arrheniusväg 18 B, Stockholm, Sweden
| | - Stephanie Fong
- Department of Zoology, Stockholm University, Svante Arrheniusväg 18 B, Stockholm, Sweden
| | - Mirjam Amcoff
- Department of Zoology, Stockholm University, Svante Arrheniusväg 18 B, Stockholm, Sweden
| | - Niclas Kolm
- Department of Zoology, Stockholm University, Svante Arrheniusväg 18 B, Stockholm, Sweden
| |
Collapse
|
20
|
Tanaka Y, Hojo MK, Shimoji H. Individual experience influences reconstruction of division of labour under colony disturbance in a queenless ant species. Front Zool 2022; 19:20. [PMID: 35706054 PMCID: PMC9202139 DOI: 10.1186/s12983-022-00466-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 05/31/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Division of labour (DOL) is ubiquitous across biological hierarchies. In eusocial insects, DOL is often characterized by age-related task allocation, but workers can flexibly change their tasks, allowing for DOL reconstruction in fluctuating environments. Behavioural change driven by individual experience is regarded as a key to understanding this task flexibility. However, experimental evidence for the influence of individual experience is remains sparse. Here we tested the effect of individual experience on task choice in the queenless ponerine ant, Diacamma cf. indicum from Japan. RESULTS We confirmed that both nurses and foragers shifted to vacant tasks when the colony composition was biased to one or the other. We also found that nurses which are induced to forage readily revert to nursing when reintroduced into balanced colonies. In contrast, foragers which are induced to revert to nursing very rarely return to a foraging role, even 19 days post reintroduction to their original colony. CONCLUSIONS Taken together, our results suggest that individual experience decreases the response threshold of original foragers, as they continue to be specialist nurses in a disturbed colony. However, original nurses do not appear strongly affected by having forager experience and revert to being nurses. Therefore, while individual experience does have an effect, other factors, such as reproductive ability, are clearly required to understand DOL maintenance in fluctuating environments.
Collapse
Affiliation(s)
- Yasunari Tanaka
- School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo, 669-1330, Japan
| | - Masaru K Hojo
- School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo, 669-1330, Japan
| | - Hiroyuki Shimoji
- School of Biological and Environmental Sciences, Kwansei Gakuin University, Sanda, Hyogo, 669-1330, Japan.
| |
Collapse
|
21
|
Griebling HJ, Sluka CM, Stanton LA, Barrett LP, Bastos JB, Benson-Amram S. How technology can advance the study of animal cognition in the wild. Curr Opin Behav Sci 2022. [DOI: 10.1016/j.cobeha.2022.101120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
22
|
Lee CJ, Paull GC, Tyler CR. Improving zebrafish laboratory welfare and scientific research through understanding their natural history. Biol Rev Camb Philos Soc 2022; 97:1038-1056. [PMID: 34983085 PMCID: PMC9303617 DOI: 10.1111/brv.12831] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 12/13/2022]
Abstract
Globally, millions of zebrafish (Danio rerio) are used for scientific laboratory experiments for which researchers have a duty of care, with legal obligations to consider their welfare. Considering the growing use of the zebrafish as a vertebrate model for addressing a diverse range of scientific questions, optimising their laboratory conditions is of major importance for both welfare and improving scientific research. However, most guidelines for the care and breeding of zebrafish for research are concerned primarily with maximising production and minimising costs and pay little attention to the effects on welfare of the environments in which the fish are maintained, or how those conditions affect their scientific research. Here we review the physical and social conditions in which laboratory zebrafish are kept, identifying and drawing attention to factors likely to affect their welfare and experimental science. We also identify a fundamental lack knowledge of how zebrafish interact with many biotic and abiotic features in their natural environment to support ways to optimise zebrafish health and well-being in the laboratory, and in turn the quality of scientific data produced. We advocate that the conditions under which zebrafish are maintained need to become a more integral part of research and that we understand more fully how they influence experimental outcome and in turn interpretations of the data generated.
Collapse
Affiliation(s)
- Carole J. Lee
- Biosciences, Geoffrey Pope BuildingUniversity of ExeterStocker RoadExeterEX4 4QDU.K.
| | - Gregory C. Paull
- Biosciences, Geoffrey Pope BuildingUniversity of ExeterStocker RoadExeterEX4 4QDU.K.
| | - Charles R. Tyler
- Biosciences, Geoffrey Pope BuildingUniversity of ExeterStocker RoadExeterEX4 4QDU.K.
| |
Collapse
|
23
|
Affiliation(s)
- Mélisande Aellen
- Department of Behavioural Ecology University of Neuchâtel Neuchâtel Switzerland
| | - Judith M. Burkart
- Anthropological Institute and Museum University of Zürich Zürich Switzerland
| | - Redouan Bshary
- Department of Behavioural Ecology University of Neuchâtel Neuchâtel Switzerland
| |
Collapse
|
24
|
Crane AL, Demers EE, Feyten LEA, Ramnarine IW, Brown GE. Exploratory decisions of Trinidadian guppies when uncertain about predation risk. Anim Cogn 2021; 25:581-587. [PMID: 34741669 DOI: 10.1007/s10071-021-01575-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/20/2021] [Accepted: 10/31/2021] [Indexed: 11/28/2022]
Abstract
Animals can reduce their uncertainty of predation risk by gathering new information via exploration behaviour. However, a decision to explore may also be costly due to increased predator exposure. Here, we found contextual effects of predation risk on the exploratory activity of Trinidadian guppies Poecilia reticulata in a novel environment. First, guppies were exposed to a 3-day period of either high or low background predation risk in the form of repeated exposure to either injured conspecific cues (i.e. alarm cues) or control water, respectively. A day later, guppies were moved into a testing arena with limited visual information due to structural barriers and were then presented with an acute chemical stimulus, either alarm cues (a known and reliable indicator of risk), a novel odour (an ambiguous cue), or control water. In the presence of control water, guppies from high and low background risk showed a similar willingness to explore the arena. However, high-risk individuals significantly reduced their spatial evenness, although not their movement latency, in the presence of both the alarm and novel cues. When these high-risk individuals were a member of a shoal, they became willing to explore the environment more evenly in the presence of alarm cues while remaining cautious toward the novel cue, indicating an effect of the greater uncertainty associated with the novel cue. In contrast, low-risk guppies showed a willingness to explore the arena regardless of acute threat or social context. Such contextual effects of background risk and social context highlight the complexity of exploratory decisions when uncertain.
Collapse
Affiliation(s)
- Adam L Crane
- Department of Biology, Concordia University, Montreal, QC, Canada.
| | - Ebony E Demers
- Department of Biology, Concordia University, Montreal, QC, Canada
| | | | - Indar W Ramnarine
- Department of Life Sciences, University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Grant E Brown
- Department of Biology, Concordia University, Montreal, QC, Canada
| |
Collapse
|