1
|
Ma Z, Feng D, Rui W, Wang Z. Baicalin attenuates chronic unpredictable mild stress-induced hippocampal neuronal apoptosis through regulating SIRT1/PARP1 signaling pathway. Behav Brain Res 2023; 441:114299. [PMID: 36642102 DOI: 10.1016/j.bbr.2023.114299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/29/2022] [Accepted: 01/11/2023] [Indexed: 01/13/2023]
Abstract
Baicalin (BA), a flavonoid glycoside extracts from Scutellaria baicalensis Georgi, has been reported to exert antidepressant effects. Emerging evidence indicates that neuronal apoptosis plays a crucial role in the pathogenesis of depression. Poly (ADP-ribose) polymerase-1 (PARP1) is established as a key regulator of the cellular apoptosis. In the present study, we explored whether BA exerts antidepressant effects by regulating PARP1 signaling pathway and elucidated the underlying mechanisms. We found that administration of BA (30 mg/kg, 60 mg/kg) alleviated chronic unpredictable mild stress (CUMS)-induced depressive-like behaviors by increasing sucrose consumption in sucrose preference test (SPT), improving activity status in open field test (OFT) and reducing rest time in tail suspension test (TST). Hematoxylin and eosin (HE) staining and Nissl staining showed that BA ameliorated CUMS-induced neuronal damage in the hippocampus. Moreover, BA significantly upregulated anti-apoptotic protein Bcl-2, downregulated pro-apoptotic protein Bax and cleaved-caspase-3 after CUMS in hippocampal of mice. Intriguingly, western blot and immunohistochemistry (IHC) results showed that the protein level of PARP1 was significantly increased in hippocampal tissue after CUMS, which was reversed by BA treatment. In primary hippocampal neurons (PHNs), BA abrogated the neuronal apoptosis caused by PARP1 overexpression. Meanwhile, BA significantly increased the protein level of SIRT1, SIRT1 inhibitor (EX-527) treatment reversed the effect of BA on reducing the protein level of PARP1 and neuronal apoptosis in CUMS-induced mice. Overall, our results indicated that BA attenuated the CUMS-induced hippocampal neuronal apoptosis through regulating the SIRT1/PARP1 signaling pathway.
Collapse
Affiliation(s)
- Zhongxuan Ma
- Department of Pharmacy, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, Jiangsu, China.
| | - Dingding Feng
- Department of Pharmaceutical Sciences, Jiangsu Health Vocational College, Nanjing 211800, Jiangsu, China
| | - Wenjuan Rui
- Department of Clinical Laboratory, Shanghai East Hospital, Tongji University School of Medicine, 150 Ji Mo Road, Shanghai 200120, China
| | - Zhiqing Wang
- Department of Pharmacy, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, Jiangsu, China.
| |
Collapse
|
2
|
Solár P, Zamani A, Lakatosová K, Joukal M. The blood-brain barrier and the neurovascular unit in subarachnoid hemorrhage: molecular events and potential treatments. Fluids Barriers CNS 2022; 19:29. [PMID: 35410231 PMCID: PMC8996682 DOI: 10.1186/s12987-022-00312-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
The response of the blood-brain barrier (BBB) following a stroke, including subarachnoid hemorrhage (SAH), has been studied extensively. The main components of this reaction are endothelial cells, pericytes, and astrocytes that affect microglia, neurons, and vascular smooth muscle cells. SAH induces alterations in individual BBB cells, leading to brain homeostasis disruption. Recent experiments have uncovered many pathophysiological cascades affecting the BBB following SAH. Targeting some of these pathways is important for restoring brain function following SAH. BBB injury occurs immediately after SAH and has long-lasting consequences, but most changes in the pathophysiological cascades occur in the first few days following SAH. These changes determine the development of early brain injury as well as delayed cerebral ischemia. SAH-induced neuroprotection also plays an important role and weakens the negative impact of SAH. Supporting some of these beneficial cascades while attenuating the major pathophysiological pathways might be decisive in inhibiting the negative impact of bleeding in the subarachnoid space. In this review, we attempt a comprehensive overview of the current knowledge on the molecular and cellular changes in the BBB following SAH and their possible modulation by various drugs and substances.
Collapse
Affiliation(s)
- Peter Solár
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
- Department of Neurosurgery, Faculty of Medicine, Masaryk University and St. Anne's University Hospital Brno, Pekařská 53, 656 91, Brno, Czech Republic
| | - Alemeh Zamani
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Klaudia Lakatosová
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic
| | - Marek Joukal
- Department of Anatomy, Cellular and Molecular Neurobiology Research Group, Faculty of Medicine, Masaryk University, 625 00, Brno, Czech Republic.
| |
Collapse
|
3
|
Matrix Metalloproteinases as Biomarkers of Atherosclerotic Plaque Instability. Int J Mol Sci 2020; 21:ijms21113946. [PMID: 32486345 PMCID: PMC7313469 DOI: 10.3390/ijms21113946] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 02/07/2023] Open
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases responsible for tissue remodeling and degradation of extracellular matrix (ECM) proteins. MMPs may modulate various cellular and signaling pathways in atherosclerosis responsible for progression and rupture of atherosclerotic plaques. The effect of MMPs polymorphisms and the expression of MMPs in both the atherosclerotic plaque and plasma was shown. They are independent predictors of atherosclerotic plaque instability in stable coronary heart disease (CHD) patients. Increased levels of MMPs in patients with advanced cardiovascular disease (CAD) and acute coronary syndrome (ACS) was associated with future risk of cardiovascular events. These data confirm that MMPs may be biomarkers in plaque instability as they target in potential drug therapies for atherosclerosis. They provide important prognostic information, independent of traditional risk factors, and may turn out to be useful in improving risk stratification.
Collapse
|
4
|
Tian RH, Bai Y, Li JY, Guo KM. Reducing PRLR expression and JAK2 activity results in an increase in BDNF expression and inhibits the apoptosis of CA3 hippocampal neurons in a chronic mild stress model of depression. Brain Res 2019; 1725:146472. [DOI: 10.1016/j.brainres.2019.146472] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 08/27/2019] [Accepted: 09/20/2019] [Indexed: 11/25/2022]
|
5
|
Abstract
PURPOSE OF REVIEW Over the last years, the focus of clinical and animal research in subarachnoid hemorrhage (SAH) shifted towards the early phase after the bleeding based on the association of the early injury pattern (first 72 h) with secondary complications and poor outcome. This phase is commonly referenced as early brain injury (EBI). In this clinical review, we intended to overview commonly used definitions of EBI, underlying mechanisms, and potential treatment implications. RECENT FINDINGS We found a large heterogeneity in the definition used for EBI comprising clinical symptoms, neuroimaging parameters, and advanced neuromonitoring techniques. Although specific treatments are currently not available, therapeutic interventions are aimed at ameliorating EBI by improving the energy/supply mismatch in the early phase after SAH. Future research integrating brain-derived biomarkers is warranted to improve our pathophysiologic understanding of EBI in order to ameliorate early injury patterns and improve patients' outcomes.
Collapse
Affiliation(s)
- Verena Rass
- Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria
| | - Raimund Helbok
- Department of Neurology, Medical University of Innsbruck, Anichstrasse 35, 6020, Innsbruck, Austria.
| |
Collapse
|
6
|
Yang P, Tian YM, Deng WX, Cai X, Liu WH, Li L, Huang HY. Sijunzi decoction may decrease apoptosis via stabilization of the extracellular matrix following cerebral ischaemia-reperfusion in rats. Exp Ther Med 2019; 18:2805-2812. [PMID: 31572528 PMCID: PMC6755478 DOI: 10.3892/etm.2019.7878] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 06/13/2019] [Indexed: 12/19/2022] Open
Abstract
Neurons undergo degeneration, apoptosis and death due to ischaemic stroke. The present study investigated the effect of Sijunzi decoction (SJZD), a type of traditional Chinese medicine known as invigorating spleen therapy, on anoikis (a type of apoptosis) in rat brains following cerebral ischaemia-reperfusion. Rats were randomly divided into sham, model, nimodipine and SJZD low/medium/high dose groups. A middle cerebral artery occlusion model was established. Neurobehavioural scores were evaluated after administration for 14 days using a five-grade scale. Blood-brain barrier permeability and apoptotic rate were detected using Evans blue (EB) extravasation and TUNEL staining, respectively. Tissue inhibitor of metalloproteinase 1 (TIMP-1), matrix metalloproteinase 9 (MMP-9) and collagen IV (COL IV) were determined using immunohistochemistry. Neurobehavioural scores decreased remarkably in all SJZD and nimodipine groups compared to the model group (P<0.05). Compared with the sham group, EB extravasation was higher in the model group (P<0.01). The amount of EB extravasation decreased in the SJZD high dose and nimodipine groups compared to the model group (P<0.01), and extravasation in the SJZD high dose group was lower than the SJZD low and medium dose groups (P<0.01). TIMP-1 and MMP-9 expression and apoptotic rate increased, but COL IV decreased significantly in the hippocampus of the model group compared to the sham group (P<0.01). TIMP-1 and COL IV expression increased significantly and MMP-9 and apoptotic rate decreased remarkably in all SJZD and nimodipine groups compared to the model group (P<0.01). TIMP-1 and COL IV expression decreased, but MMP-9 expression and apoptotic rate increased in the SJZD low and medium dose groups compared to the SJZD high dose group (P<0.01). SJZD rescued neurons and improved neurobehavioural function in rats following cerebral ischaemia-reperfusion, especially when used at a high dose. The mechanism may be related to protection of the extracellular matrix followed by anti-apoptotic effects.
Collapse
Affiliation(s)
- Ping Yang
- Department of Psychiatry, Brains Hospital of Hunan Province, Clinical Medical School, Hunan University of Chinese Medicine, Changsha, Hunan 410007, P.R. China
| | - Ye-Mei Tian
- Provincial Key Laboratory of TCM Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| | - Wen-Xiang Deng
- Provincial Key Laboratory of TCM Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| | - Xiong Cai
- Provincial Key Laboratory of TCM Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| | - Wang-Hua Liu
- Provincial Key Laboratory of TCM Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| | - Liang Li
- Provincial Key Laboratory of TCM Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China.,Key Discipline of Anatomy and Histoembryology, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| | - Hui-Yong Huang
- Provincial Key Laboratory of TCM Diagnostics, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P.R. China
| |
Collapse
|
7
|
Muri L, Leppert D, Grandgirard D, Leib SL. MMPs and ADAMs in neurological infectious diseases and multiple sclerosis. Cell Mol Life Sci 2019; 76:3097-3116. [PMID: 31172218 PMCID: PMC7079810 DOI: 10.1007/s00018-019-03174-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 05/23/2019] [Accepted: 05/29/2019] [Indexed: 12/24/2022]
Abstract
Metalloproteinases-such as matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinases (ADAMs)-are involved in various diseases of the nervous system but also contribute to nervous system development, synaptic plasticity and neuroregeneration upon injury. MMPs and ADAMs proteolytically cleave many substrates including extracellular matrix components but also signaling molecules and receptors. During neuroinfectious disease with associated neuroinflammation, MMPs and ADAMs regulate blood-brain barrier breakdown, bacterial invasion, neutrophil infiltration and cytokine signaling. Specific and broad-spectrum inhibitors for MMPs and ADAMs have experimentally been shown to decrease neuroinflammation and brain damage in diseases with excessive neuroinflammation as a common denominator, such as pneumococcal meningitis and multiple sclerosis, thereby improving the disease outcome. Timing of metalloproteinase inhibition appears to be critical to effectively target the cascade of pathophysiological processes leading to brain damage without inhibiting the neuroregenerative effects of metalloproteinases. As the critical role of metalloproteinases in neuronal repair mechanisms and regeneration was only lately recognized, the original idea of chronic MMP inhibition needs to be conceptually revised. Recently accumulated research urges for a second chance of metalloproteinase inhibitors, which-when correctly applied and dosed-harbor the potential to improve the outcome of different neuroinflammatory diseases.
Collapse
Affiliation(s)
- Lukas Muri
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, 3001, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences (GCB), University of Bern, Freiestrasse 1, 3012, Bern, Switzerland
| | - David Leppert
- Department of Neurology, University Hospital Basel, Petersgraben 4, 4031, Basel, Switzerland
| | - Denis Grandgirard
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, 3001, Bern, Switzerland
| | - Stephen L Leib
- Neuroinfection Laboratory, Institute for Infectious Diseases, University of Bern, Friedbühlstrasse 51, 3001, Bern, Switzerland.
| |
Collapse
|
8
|
Suzuki H, Fujimoto M, Kawakita F, Liu L, Nakatsuka Y, Nakano F, Nishikawa H, Okada T, Kanamaru H, Imanaka-Yoshida K, Yoshida T, Shiba M. Tenascin-C in brain injuries and edema after subarachnoid hemorrhage: Findings from basic and clinical studies. J Neurosci Res 2018; 98:42-56. [PMID: 30242870 DOI: 10.1002/jnr.24330] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 08/11/2018] [Accepted: 08/29/2018] [Indexed: 12/17/2022]
Abstract
Subarachnoid hemorrhage (SAH) by a rupture of cerebral aneurysms remains the most devastating cerebrovascular disease. Early brain injury (EBI) is increasingly recognized to be the primary determinant for poor outcomes, and also considered to cause delayed cerebral ischemia (DCI) after SAH. Both clinical and experimental literatures emphasize the impact of global cerebral edema in EBI as negative prognostic and direct pathological factors. The nature of the global cerebral edema is a mixture of cytotoxic and vasogenic edema, both of which may be caused by post-SAH induction of tenascin-C (TNC) that is an inducible, non-structural, secreted and multifunctional matricellular protein. Experimental SAH induces TNC in brain parenchyma in rats and mice. TNC knockout suppressed EBI in terms of brain edema, blood-brain barrier disruption, neuronal apoptosis and neuroinflammation, associated with the inhibition of post-SAH activation of mitogen-activated protein kinases and nuclear factor-kappa B in mice. In a clinical setting, more severe SAH increases more TNC in cerebrospinal fluid and peripheral blood, which could be a surrogate marker of EBI and predict DCI development and outcomes. In addition, cilostazol, a selective inhibitor of phosphodiesterase type III that is a clinically available anti-platelet agent and is known to suppress TNC induction, dose-dependently inhibited delayed cerebral infarction and improved outcomes in a pilot clinical study. Thus, further studies may facilitate application of TNC as biomarkers for non-invasive diagnosis or assessment of EBI and DCI, and lead to development of a molecular target drug against TNC, contributing to the improvement of post-SAH outcomes.
Collapse
Affiliation(s)
- Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan.,Research Center for Matrix Biology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Masashi Fujimoto
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Fumihiro Kawakita
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Lei Liu
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Yoshinari Nakatsuka
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Fumi Nakano
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hirofumi Nishikawa
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Takeshi Okada
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Hideki Kanamaru
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| | - Kyoko Imanaka-Yoshida
- Research Center for Matrix Biology, Mie University Graduate School of Medicine, Tsu, Japan.,Department of Pathology and Matrix Biology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Toshimichi Yoshida
- Research Center for Matrix Biology, Mie University Graduate School of Medicine, Tsu, Japan.,Department of Pathology and Matrix Biology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Masato Shiba
- Department of Neurosurgery, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
9
|
Vellimana AK, Diwan D, Clarke J, Gidday JM, Zipfel GJ. SIRT1 Activation: A Potential Strategy for Harnessing Endogenous Protection Against Delayed Cerebral Ischemia After Subarachnoid Hemorrhage. Neurosurgery 2018; 65:1-5. [PMID: 31076789 DOI: 10.1093/neuros/nyy201] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/21/2018] [Indexed: 01/18/2023] Open
Affiliation(s)
- Ananth K Vellimana
- Department of Neurological Surgery, Washington University School of Medi-cine, St. Louis, Missouri
| | - Deepti Diwan
- Department of Neurological Surgery, Washington University School of Medi-cine, St. Louis, Missouri
| | - Julian Clarke
- Department of Neurological Surgery, Washington University School of Medi-cine, St. Louis, Missouri
| | - Jeffrey M Gidday
- Department of Ophthalmology, Louisiana State University Health Sciences Center, New Orleans, Louisiana
| | - Gregory J Zipfel
- Department of Neurological Surgery, Washington University School of Medi-cine, St. Louis, Missouri
| |
Collapse
|
10
|
Vellimana AK, Zhou ML, Singh I, Aum DJ, Nelson JW, Harris GR, Athiraman U, Han BH, Zipfel GJ. Minocycline protects against delayed cerebral ischemia after subarachnoid hemorrhage via matrix metalloproteinase-9 inhibition. Ann Clin Transl Neurol 2017; 4:865-876. [PMID: 29296615 PMCID: PMC5740245 DOI: 10.1002/acn3.492] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/06/2017] [Accepted: 09/25/2017] [Indexed: 12/11/2022] Open
Abstract
Objective Delayed cerebral ischemia (DCI) is an independent risk factor for poor outcome after aneurysmal subarachnoid hemorrhage (SAH) and is multifactorial in etiology. While prior studies have suggested a role for matrix metalloproteinase-9 (MMP-9) in early brain injury after SAH, its contribution to the pathophysiology of DCI is unclear. Methods In the first experiment, wild-type (WT) and MMP-9-/- mice were subjected to sham or endovascular perforation SAH surgery. In separate experiments, WT and MMP-9-/-mice were administered vehicle or minocycline either pre- or post-SAH. All mice underwent assessment of multiple components of DCI including vasospasm, neurobehavioral function, and microvessel thrombosis. In another experiment, rabbits were subjected to sham or cisterna magna injection SAH surgery, and administered vehicle or minocycline followed by vasospasm assessment. Results MMP-9 expression and activity was increased after SAH. Genetic (MMP-9-/- mice) and pharmacological (pre-SAH minocycline administration) inhibition of MMP-9 resulted in decreased vasospasm and neurobehavioral deficits. A therapeutically feasible strategy of post-SAH administration of minocycline resulted in attenuation of multiple components of DCI. Minocycline administration to MMP-9-/- mice did not yield additional protection. Consistent with experiments in mice, both pre- and post-SAH administration of minocycline attenuated SAH-induced vasospasm in rabbits. Interpretation MMP-9 is a key player in the pathogenesis of DCI. The consistent attenuation of multiple components of DCI with both pre- and post-SAH administration of minocycline across different species and experimental models of SAH, combined with the excellent safety profile of minocycline in humans suggest that a clinical trial in SAH patients is warranted.
Collapse
Affiliation(s)
- Ananth K Vellimana
- Department of Neurological Surgery Washington University School of Medicine St. Louis Missouri
| | - Meng-Liang Zhou
- Department of Neurosurgery Jinling Hospital School of Medicine Nanjing University Nanjing Jiangsu Province China
| | - Itender Singh
- Department of Neurological Surgery Washington University School of Medicine St. Louis Missouri
| | - Diane J Aum
- Department of Neurological Surgery Washington University School of Medicine St. Louis Missouri
| | - James W Nelson
- Department of Neurological Surgery Washington University School of Medicine St. Louis Missouri
| | - Glenn R Harris
- Department of Neurological Surgery Washington University School of Medicine St. Louis Missouri
| | - Umeshkumar Athiraman
- Department of Anesthesiology Washington University School of Medicine St. Louis Missouri
| | - Byung H Han
- Department of Pharmacology A.T. Still University of Health Sciences Kirksville College of Osteopathic Medicine Kirksville Missouri
| | - Gregory J Zipfel
- Department of Neurological Surgery Washington University School of Medicine St. Louis Missouri
| |
Collapse
|
11
|
Wang X, Khalil RA. Matrix Metalloproteinases, Vascular Remodeling, and Vascular Disease. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2017; 81:241-330. [PMID: 29310800 DOI: 10.1016/bs.apha.2017.08.002] [Citation(s) in RCA: 361] [Impact Index Per Article: 51.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases that degrade various proteins in the extracellular matrix (ECM). Typically, MMPs have a propeptide sequence, a catalytic metalloproteinase domain with catalytic zinc, a hinge region or linker peptide, and a hemopexin domain. MMPs are commonly classified on the basis of their substrates and the organization of their structural domains into collagenases, gelatinases, stromelysins, matrilysins, membrane-type (MT)-MMPs, and other MMPs. MMPs are secreted by many cells including fibroblasts, vascular smooth muscle (VSM), and leukocytes. MMPs are regulated at the level of mRNA expression and by activation through removal of the propeptide domain from their latent zymogen form. MMPs are often secreted in an inactive proMMP form, which is cleaved to the active form by various proteinases including other MMPs. MMPs degrade various protein substrates in ECM including collagen and elastin. MMPs could also influence endothelial cell function as well as VSM cell migration, proliferation, Ca2+ signaling, and contraction. MMPs play a role in vascular tissue remodeling during various biological processes such as angiogenesis, embryogenesis, morphogenesis, and wound repair. Alterations in specific MMPs could influence arterial remodeling and lead to various pathological disorders such as hypertension, preeclampsia, atherosclerosis, aneurysm formation, as well as excessive venous dilation and lower extremity venous disease. MMPs are often regulated by endogenous tissue inhibitors of metalloproteinases (TIMPs), and the MMP/TIMP ratio often determines the extent of ECM protein degradation and tissue remodeling. MMPs may serve as biomarkers and potential therapeutic targets for certain vascular disorders.
Collapse
Affiliation(s)
- Xi Wang
- Vascular Surgery Research Laboratories, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Raouf A Khalil
- Vascular Surgery Research Laboratories, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.
| |
Collapse
|
12
|
ApoE Influences the Blood-Brain Barrier Through the NF-κB/MMP-9 Pathway After Traumatic Brain Injury. Sci Rep 2017; 7:6649. [PMID: 28751738 PMCID: PMC5532277 DOI: 10.1038/s41598-017-06932-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/22/2017] [Indexed: 01/16/2023] Open
Abstract
Apolipoprotein E (ApoE), encoded by the ApoE gene (APOE), influences the outcomes of traumatic brain injury (TBI), but the mechanism remains unclear. The present study aimed to investigate the effects of different ApoEs on the outcome of TBI and to explore the possible mechanisms. Controlled cortical impact (CCI) was performed on APOEε3 (E3) and APOEε4 (E4) transgenic mice, APOE-KO (KO) mice, and wild type (WT) mice to construct an in vivo TBI model. Neurological deficits, blood brain barrier (BBB) permeability and brain edema were detected at days 1, 3, and 7 after TBI. The results revealed no significant differences among the four groups at day 1 or day 3 after injury, but more severe deficits were found in E4 and KO mice than in E3 and WT mice. Furthermore, a significant loss of tight junction proteins was observed in E4 and KO mice compared with E3 and WT mice at day 7. Additionally, more expression and activation of NF-κB and MMP-9 were found in E4 mice compared with E3 mice. Different ApoEs had distinct effects on neuro-function and BBB integrity after TBI. ApoE3, but not E4, might inhibit the NF-κB/MMP-9 pathway to alleviate BBB disruption and improve TBI outcomes.
Collapse
|
13
|
Matrix Metalloproteinase Inhibitors as Investigational and Therapeutic Tools in Unrestrained Tissue Remodeling and Pathological Disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2017; 148:355-420. [PMID: 28662828 DOI: 10.1016/bs.pmbts.2017.04.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Matrix metalloproteinases (MMPs) are zinc-dependent proteolytic enzymes that degrade various proteins in the extracellular matrix (ECM). MMPs may also regulate the activity of membrane receptors and postreceptor signaling mechanisms and thereby affect cell function. The MMP family includes collagenases, gelatinases, stromelysins, matrilysins, membrane-type MMPs, and other MMPs. Inactive proMMPs are cleaved by other MMPs or proteases into active MMPs, which interact with various protein substrates in ECM and cell surface. MMPs regulate important biological processes such as vascular remodeling and angiogenesis and may be involved in the pathogenesis of cardiovascular disorders such as hypertension, atherosclerosis, and aneurysm. The role of MMPs is often assessed by measuring their mRNA expression, protein levels, and proteolytic activity using gel zymography. MMP inhibitors are also used to assess the role of MMPs in different biological processes and pathological conditions. MMP activity is regulated by endogenous tissue inhibitors of metalloproteinases (TIMPs), and the MMP/TIMP balance could determine the net MMP activity, ECM turnover, and tissue remodeling. Also, several synthetic MMP inhibitors have been developed. Synthetic MMP inhibitors include a large number of zinc-binding globulins (ZBGs), in addition to non-ZBGs and mechanism-based inhibitors. MMP inhibitors have been proposed as potential tools in the management of osteoarthritis, cancer, and cardiovascular disorders. However, most MMP inhibitors have broad-spectrum actions on multiple MMPs and could cause undesirable musculoskeletal side effects. Currently, doxycycline is the only MMP inhibitor approved by the Food and Drug Administration. New generation biological and synthetic MMP inhibitors may show greater MMP specificity and fewer side effects and could be useful in targeting specific MMPs, reducing unrestrained tissue remodeling, and the management of MMP-related pathological disorders.
Collapse
|
14
|
Early elevated levels of soluble triggering receptor expressed on myeloid cells-1 in subarachnoid hemorrhage patients. Neurol Sci 2017; 38:873-877. [DOI: 10.1007/s10072-017-2853-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 02/15/2017] [Indexed: 02/03/2023]
|
15
|
Yuan J, Liu W, Zhu H, Zhang X, Feng Y, Chen Y, Feng H, Lin J. Curcumin attenuates blood-brain barrier disruption after subarachnoid hemorrhage in mice. J Surg Res 2017; 207:85-91. [DOI: 10.1016/j.jss.2016.08.090] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 08/23/2016] [Accepted: 08/26/2016] [Indexed: 12/23/2022]
|
16
|
Teng Z, Jiang L, Hu Q, He Y, Guo Z, Wu Y, Huang Z, Cao F, Cheng C, Sun X, Guo Z. Peroxisome Proliferator-Activated Receptor β/δ Alleviates Early Brain Injury After Subarachnoid Hemorrhage in Rats. Stroke 2015; 47:196-205. [PMID: 26628385 DOI: 10.1161/strokeaha.115.011701] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 10/19/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND PURPOSE Early brain injury is proposed to be the primary cause of the poor outcome after subarachnoid hemorrhage (SAH), which is closely related to the neural apoptosis. To date, the relationship between peroxisome proliferator-activated receptor β/δ (PPARβ/δ) and nuclear factor-κB/matrix metalloproteinase-9 (NF-κB/MMP-9) pathway, both of which are closely related to apoptotic effects, has been poorly studied in SAH. The present study was undertaken to evaluate the effects of PPARβ/δ on early brain injury and NF-κB/MMP-9 pathway after SAH in rats. METHODS SAH model was established by injecting nonheparinized autologous arterial blood into the prechiasmatic cistern in male Sprague-Dawley rats. Adenoviruses or small interfering RNAs were injected into the right lateral cerebral ventricle to, respectively, up- or downregulate PPARβ/δ expression before SAH. All animals were assessed with a neurological score and then killed at 24 hours after SAH surgery. The indexes of brain water content, blood-brain barrier permeability, and apoptosis were used to detect brain injury. The expression of PPARβ/δ, NF-κB, and MMP-9 were measured by immunohistochemistry, gelatin zymography, and Western Blot methods, respectively. In addition, GW0742, a specific agonist of PPARβ/δ, was used to treat SAH in rats, the effects of which were evaluated by neurological scoring and Evans blue extravasation. RESULTS Overexpression of PPARβ/δ by adenoviruses treatment significantly ameliorated brain injury with improvement in neurological deficits, brain edema, blood-brain barrier impairment, and neural cell apoptosis at 24 hours after SAH in rats, whereas downregulation of PPARβ/δ by small interfering RNAs administration resulted in the reverse effects of the above. The expression levels of NF-κB and MMP-9 were markedly downregulated when PPARβ/δ increased after PPARβ/δ adenovirus transfection and upregulated when PPARβ/δ decreased by PPARβ/δ small interfering RNAs treatment. Moreover, GW0742 improved neurological deficits and reduced Evans blue extravasation at 24 hours after SAH. CONCLUSIONS PPARβ/δ's overexpression may attenuate early brain injury after rats' SAH administration, which reduces neural apoptosis possibly through blocking NF-κB/MMP-9 pathway.
Collapse
Affiliation(s)
- Zhipeng Teng
- From the Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China (Z.T., L.J., Y.W., Z.H., F.C., C.C., X.S., Zongduo Guo); Discipline of Neuroscience and Department of Anatomy, Histology and Embryology, Collaborative Innovation Center for Brain Science, and Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China (Q.H.); Department of Neurosurgery, Tong-ji Hospital, Wuhan, China (Y.H.); and Department of Neurology, the First Hospital of Jilin University, Changchun, China (Zhenni Guo)
| | - Li Jiang
- From the Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China (Z.T., L.J., Y.W., Z.H., F.C., C.C., X.S., Zongduo Guo); Discipline of Neuroscience and Department of Anatomy, Histology and Embryology, Collaborative Innovation Center for Brain Science, and Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China (Q.H.); Department of Neurosurgery, Tong-ji Hospital, Wuhan, China (Y.H.); and Department of Neurology, the First Hospital of Jilin University, Changchun, China (Zhenni Guo)
| | - Qin Hu
- From the Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China (Z.T., L.J., Y.W., Z.H., F.C., C.C., X.S., Zongduo Guo); Discipline of Neuroscience and Department of Anatomy, Histology and Embryology, Collaborative Innovation Center for Brain Science, and Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China (Q.H.); Department of Neurosurgery, Tong-ji Hospital, Wuhan, China (Y.H.); and Department of Neurology, the First Hospital of Jilin University, Changchun, China (Zhenni Guo)
| | - Yue He
- From the Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China (Z.T., L.J., Y.W., Z.H., F.C., C.C., X.S., Zongduo Guo); Discipline of Neuroscience and Department of Anatomy, Histology and Embryology, Collaborative Innovation Center for Brain Science, and Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China (Q.H.); Department of Neurosurgery, Tong-ji Hospital, Wuhan, China (Y.H.); and Department of Neurology, the First Hospital of Jilin University, Changchun, China (Zhenni Guo)
| | - Zhenni Guo
- From the Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China (Z.T., L.J., Y.W., Z.H., F.C., C.C., X.S., Zongduo Guo); Discipline of Neuroscience and Department of Anatomy, Histology and Embryology, Collaborative Innovation Center for Brain Science, and Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China (Q.H.); Department of Neurosurgery, Tong-ji Hospital, Wuhan, China (Y.H.); and Department of Neurology, the First Hospital of Jilin University, Changchun, China (Zhenni Guo)
| | - Yue Wu
- From the Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China (Z.T., L.J., Y.W., Z.H., F.C., C.C., X.S., Zongduo Guo); Discipline of Neuroscience and Department of Anatomy, Histology and Embryology, Collaborative Innovation Center for Brain Science, and Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China (Q.H.); Department of Neurosurgery, Tong-ji Hospital, Wuhan, China (Y.H.); and Department of Neurology, the First Hospital of Jilin University, Changchun, China (Zhenni Guo)
| | - Zhijian Huang
- From the Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China (Z.T., L.J., Y.W., Z.H., F.C., C.C., X.S., Zongduo Guo); Discipline of Neuroscience and Department of Anatomy, Histology and Embryology, Collaborative Innovation Center for Brain Science, and Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China (Q.H.); Department of Neurosurgery, Tong-ji Hospital, Wuhan, China (Y.H.); and Department of Neurology, the First Hospital of Jilin University, Changchun, China (Zhenni Guo)
| | - Fang Cao
- From the Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China (Z.T., L.J., Y.W., Z.H., F.C., C.C., X.S., Zongduo Guo); Discipline of Neuroscience and Department of Anatomy, Histology and Embryology, Collaborative Innovation Center for Brain Science, and Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China (Q.H.); Department of Neurosurgery, Tong-ji Hospital, Wuhan, China (Y.H.); and Department of Neurology, the First Hospital of Jilin University, Changchun, China (Zhenni Guo)
| | - Chongjie Cheng
- From the Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China (Z.T., L.J., Y.W., Z.H., F.C., C.C., X.S., Zongduo Guo); Discipline of Neuroscience and Department of Anatomy, Histology and Embryology, Collaborative Innovation Center for Brain Science, and Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China (Q.H.); Department of Neurosurgery, Tong-ji Hospital, Wuhan, China (Y.H.); and Department of Neurology, the First Hospital of Jilin University, Changchun, China (Zhenni Guo)
| | - Xiaochuan Sun
- From the Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China (Z.T., L.J., Y.W., Z.H., F.C., C.C., X.S., Zongduo Guo); Discipline of Neuroscience and Department of Anatomy, Histology and Embryology, Collaborative Innovation Center for Brain Science, and Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China (Q.H.); Department of Neurosurgery, Tong-ji Hospital, Wuhan, China (Y.H.); and Department of Neurology, the First Hospital of Jilin University, Changchun, China (Zhenni Guo).
| | - Zongduo Guo
- From the Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China (Z.T., L.J., Y.W., Z.H., F.C., C.C., X.S., Zongduo Guo); Discipline of Neuroscience and Department of Anatomy, Histology and Embryology, Collaborative Innovation Center for Brain Science, and Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, China (Q.H.); Department of Neurosurgery, Tong-ji Hospital, Wuhan, China (Y.H.); and Department of Neurology, the First Hospital of Jilin University, Changchun, China (Zhenni Guo).
| |
Collapse
|
17
|
Egashira Y, Zhao H, Hua Y, Keep RF, Xi G. White Matter Injury After Subarachnoid Hemorrhage: Role of Blood-Brain Barrier Disruption and Matrix Metalloproteinase-9. Stroke 2015; 46:2909-15. [PMID: 26374478 DOI: 10.1161/strokeaha.115.010351] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 07/31/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND PURPOSE We recently observed early white matter injury after experimental subarachnoid hemorrhage (SAH), but the underlying mechanisms are uncertain. This study investigated the potential role of matrix metalloproteinase (MMP)-9 in blood-brain barrier (BBB) disruption and consequent white matter injury. METHODS SAH was induced by endovascular perforation in adult male mice. The following 3 experiments were devised: (1) mice underwent magnetic resonance imaging at 24 h after SAH and were euthanized to determine BBB disruption and MMP-9 activation in white matter; (2) to investigate the role of MMP-9 in BBB disruption, lesion volumes on magnetic resonance imaging were compared between wild-type (WT) and MMP-9 knockout (MMP-9-/-) mice at 24 h after SAH; (3) WT and MMP-9-/- mice underwent magnetic resonance imaging at 1 and 8 days after SAH to detect time-dependent changes in brain injury. Brains were used to investigate myelin integrity in white matter. RESULTS In WT mice with SAH, white matter showed BBB disruption (albumin leakage) and T2 hyperintensity on magnetic resonance imaging. MMP-9 activity was elevated at 24 h after SAH. MMP-9-/- mice had less white matter T2 hyperintensity after SAH than WT mice. At 8 days after SAH, WT mice had decreased myelin integrity and MMP-9-/- mice developed less white matter injury. CONCLUSIONS SAH causes BBB disruption and consequent injury in white matter. MMP-9 plays an important role in those pathologies and could be a therapeutic target for SAH-induced white matter injury.
Collapse
Affiliation(s)
- Yusuke Egashira
- From the Department of Neurosurgery, University of Michigan, Ann Arbor
| | - Hao Zhao
- From the Department of Neurosurgery, University of Michigan, Ann Arbor
| | - Ya Hua
- From the Department of Neurosurgery, University of Michigan, Ann Arbor
| | - Richard F Keep
- From the Department of Neurosurgery, University of Michigan, Ann Arbor
| | - Guohua Xi
- From the Department of Neurosurgery, University of Michigan, Ann Arbor.
| |
Collapse
|
18
|
Zhang XS, Zhang X, Zhang QR, Wu Q, Li W, Jiang TW, Hang CH. Astaxanthin reduces matrix metalloproteinase-9 expression and activity in the brain after experimental subarachnoid hemorrhage in rats. Brain Res 2015. [PMID: 26210617 DOI: 10.1016/j.brainres.2015.07.020] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have previously shown that astaxanthin (ATX) reduces the blood-brain barrier (BBB) disruption and neurovascular dysfunction following subarachnoid hemorrhage (SAH) insults. However, the underlying mechanisms remain unclear. It is known that the matrix metalloproteinases (MMPs), especially matrix metalloproteinase-9 (MMP-9) plays a crucial role in the pathogenesis of secondary brain injury after SAH. And ATX has the ability to regulate MMP-9 in other models. Herein, we investigated whether ATX could ameliorate MMP-9 activation and expression in a rat model of SAH. A total of 144 rats were randomly divided into the following groups: control group (n=36), SAH group (n=36), SAH+vehicle group (n=36), and SAH+ATX group (n=36). The SAH model was induced by injection of 0.3 ml autologous blood into the prechiasmatic cistern. ATX (20 μl of 0.1 mmol) or vehicle was administered intracerebroventricularly 30 min after SAH induction. Mortality, neurological function, brain edema and blood-brain barrier (BBB) permeability were measured at 24 and 72 h after SAH. Biochemical and zymographic methods were used to analyze MMP-9 expression and activity in brain samples. Immunohistochemistry and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) staining were also evaluated at 24h. Our data indicated that ATX could significantly reduce the expression and activity of MMP-9, leading to the amelioration of brain edema, BBB impairment, neurological deficits and TUNEL-positive cells at 24h but not 72 h after SAH. The ATX-mediated down-regulation of MMP-9 was correlated with the decreased levels of IL-1β, TNF-α, oxidative stress, activated microglia and infiltrating neutrophils. These results suggest that the neurovascular protection of ATX in SAH is partly associated with the inhibition of MMP-9 expression and activity.
Collapse
Affiliation(s)
- Xiang-Sheng Zhang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Xin Zhang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China.
| | - Qing-Rong Zhang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Qi Wu
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Wei Li
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Tian-Wei Jiang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | - Chun-Hua Hang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
19
|
Helbok R, Schiefecker AJ, Beer R, Dietmann A, Antunes AP, Sohm F, Fischer M, Hackl WO, Rhomberg P, Lackner P, Pfausler B, Thomé C, Humpel C, Schmutzhard E. Early brain injury after aneurysmal subarachnoid hemorrhage: a multimodal neuromonitoring study. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2015; 19:75. [PMID: 25887441 PMCID: PMC4384312 DOI: 10.1186/s13054-015-0809-9] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Accepted: 02/12/2015] [Indexed: 12/01/2022]
Abstract
Introduction There is a substantial amount of evidence from animal models that early brain injury (EBI) may play an important role for secondary brain injury after aneurysmal subarachnoid hemorrhage (aSAH). Cerebral microdialysis (CMD) allows online measurement of brain metabolites, including the pro-inflammatory cytokine interleukin-6 (IL-6) and matrix metalloproteinase-9 (MMP-9), which is indicative for disruption of the blood-brain barrier. Methods Twenty-six consecutive poor-grade aSAH patients with multimodal neuromonitoring were analyzed for brain hemodynamic and metabolic changes, including CMD-IL-6 and CMD-MMP-9 levels. Statistical analysis was performed by using a generalized estimating equation with an autoregressive function. Results The baseline cerebral metabolic profile revealed brain metabolic distress and an excitatory response which improved over the following 5 days (P <0.001). Brain tissue hypoxia (brain tissue oxygen tension of less than 20 mm Hg) was common (more than 60% of patients) in the first 24 hours of neuromonitoring and improved thereafter (P <0.05). Baseline CMD-IL-6 and CMD-MMP-9 levels were elevated in all patients (median = 4,059 pg/mL, interquartile range (IQR) = 1,316 to 12,456 pg/mL and median = 851 pg/mL, IQR = 98 to 25,860 pg/mL) and significantly decreased over days (P <0.05). A higher pro-inflammatory response was associated with the development of delayed cerebral ischemia (P = 0.04), whereas admission disease severity and early brain tissue hypoxia were associated with higher CMD-MMP-9 levels (P <0.03). Brain metabolic distress and increased IL-6 levels were associated with poor functional outcome (modified Rankin Scale of more than 3, P ≤0.01). All models were adjusted for probe location, aneurysm securing procedure, and disease severity as appropriate. Conclusions Multimodal neuromonitoring techniques allow insight into pathophysiologic changes in the early phase after aSAH. The results may be used as endpoints for future interventions targeting EBI in poor-grade aSAH patients.
Collapse
Affiliation(s)
- Raimund Helbok
- Neurological Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Anichstreet 35, 6020, Innsbruck, Austria.
| | - Alois Josef Schiefecker
- Neurological Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Anichstreet 35, 6020, Innsbruck, Austria.
| | - Ronny Beer
- Neurological Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Anichstreet 35, 6020, Innsbruck, Austria.
| | - Anelia Dietmann
- Neurological Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Anichstreet 35, 6020, Innsbruck, Austria.
| | - Ana Patrícia Antunes
- Neurological Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Anichstreet 35, 6020, Innsbruck, Austria. .,Department of Neurosciences, Santa Maria Hospital, Hospital de Santa Maria, 1649-028, Lisbon, Portugal.
| | - Florian Sohm
- Department of Neurosurgery, Innsbruck Medical University, Anichstreet 35, 6020, Innsbruck, Austria.
| | - Marlene Fischer
- Neurological Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Anichstreet 35, 6020, Innsbruck, Austria.
| | - Werner Oskar Hackl
- Institute of Biomedical Informatics, UMIT-University for Health Sciences, Medical Informatics and Technology, Eduard Wallnöfer-Zentrum I, 6060, Hall in Tirol, Austria.
| | - Paul Rhomberg
- Department of Radiology, Innsbruck Medical University, Anichstreet 35, 6020, Innsbruck, Austria.
| | - Peter Lackner
- Neurological Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Anichstreet 35, 6020, Innsbruck, Austria.
| | - Bettina Pfausler
- Neurological Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Anichstreet 35, 6020, Innsbruck, Austria.
| | - Claudius Thomé
- Department of Neurosurgery, Innsbruck Medical University, Anichstreet 35, 6020, Innsbruck, Austria.
| | - Christian Humpel
- Department of Psychiatry and Psychotherapy, Medical University Innsbruck, Anichstreet 35, 6020, Innsbruck, Austria.
| | - Erich Schmutzhard
- Neurological Intensive Care Unit, Department of Neurology, Medical University of Innsbruck, Anichstreet 35, 6020, Innsbruck, Austria.
| |
Collapse
|
20
|
MMP-9 expression and activity is concurrent with endothelial cell apoptosis in the basilar artery after subarachnoid hemorrhaging in rats. Neurol Sci 2015; 36:1241-5. [DOI: 10.1007/s10072-015-2092-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 01/21/2015] [Indexed: 01/28/2023]
|
21
|
Dai Y, Zhang W, Zhou X, Shi J. Inhibition of c-Jun N-terminal kinase ameliorates early brain injury after subarachnoid hemorrhage through inhibition of a Nur77 dependent apoptosis pathway. Neurochem Res 2014; 39:1603-11. [PMID: 24928238 DOI: 10.1007/s11064-014-1355-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 05/26/2014] [Accepted: 06/03/2014] [Indexed: 12/21/2022]
Abstract
Nur77 is a potent pro-apoptotic member of the orphan nuclear receptor superfamily. Our previous study revealed Nur77-mediated apoptotic also involved in early brain injury (EBI) after experimental subarachnoid hemorrhage (SAH). Previous researches show that c-Jun N-terminal kinase (JNK) positively regulates Nur77 nuclear export and apoptosis by phosphorylating Nur77. To determine whether activation of JNK is directly associated with Nur77 dependent apoptosis pathway. We hypothesized that SP600125, a chemical inhibitor of JNK, may effectively ameliorate EBI by inhibiting Nur77 phosphorylation and its transcriptional activity. Hence, in this study was designed to explore the neuroprotective effects of SP600125 in EBI after SAH. Adult male SD rats were randomly assigned to four groups: control; SAH + DMSO; SAH + SP10 and SAH + SP30, a dose of 10 and 30 mg/kg SP600125 was directly administered intraperitoneally 30 min before and 2 h after SAH induction. SP600125 markedly decreased expressions of p-JNK, p-Nur77, Bcl-2, cyto C, caspase-3 and inhibited apoptosis. Improvement of neurological deficit, alleviation of brain edema and amelioration of EBI were obtained after treatment of SP600125. Transferase-mediated dUTP nick end labeling-positive cells were reduced markedly in brain cortex by SP600125. Our studies indicate JNK plays important roles in Nur77 activation. These findings strongly support the hypothesis that SP600125 treatment can ameliorate EBI after experimentally induced SAH by inhibiting a Nur77-dependent apoptotic pathway.
Collapse
Affiliation(s)
- Yuxiang Dai
- Department of Neurosurgery, Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu Province, China
| | | | | | | |
Collapse
|
22
|
Dai Y, Zhang W, Sun Q, Zhang X, Zhou X, Hu Y, Shi J. Nuclear receptor nur77 promotes cerebral cell apoptosis and induces early brain injury after experimental subarachnoid hemorrhage in rats. J Neurosci Res 2014; 92:1110-21. [PMID: 24737679 DOI: 10.1002/jnr.23392] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 03/14/2014] [Accepted: 03/14/2014] [Indexed: 01/11/2023]
Abstract
Nur77 is a potent proapoptotic member of the nuclear receptor superfamily that is expressed predominantly in brain tissue. It has been demonstrated that Nur77 mediates apoptosis in multiple organs. Nur77-mediated early brain injury (EBI) involves a conformational change in BCL-2 and triggers cytochrome C (cytoC) release resulting in cellular apoptosis. This study investigates whether Nur77 can promote cerebral cell apoptosis after experimentally induced subarachnoid hemorrhage (SAH) in rats. Sprague Dawley rats were randomly assigned to three groups: 1) untreated group, 2) treatment control group, and 3) SAH group. The experimental SAH group was divided into four subgroups, corresponding to 12 hr, 24 hr, 48 hr, and 72 hr after experimentally induced SAH. It remains unclear whether Nur77 can play an important role during EBI after SAH as a proapoptotic protein in cerebral cells. Cytosporone B (Csn-B) was used to demonstrate that Nur77 could be enriched and used to aggravate EBI after SAH. Rats treated with Csn-B were given an intraperitoneal injection (13 mg/kg) 30 min after experimentally induced SAH. We found that Nur77 promotes cerebral cell apoptosis by mediating EBI and triggering a conformational change in BCL-2, resulting in cytoC release. Nur77 activity, along with cerebral cell apoptosis, peaked at 24 hr after SAH onset. After induction of SAH, an injection of Csn-B, an agonist for Nur77, enhanced the expression and function of Nur77. In summary, we have demonstrated the proapoptotic effect of Nur77 within cerebral cells, an effect that can be further exacerbated with Csn-B stimulation.
Collapse
Affiliation(s)
- Yuxiang Dai
- Jinling Hospital, School of Medicine, Department of Neurosurgery, Nanjing University, Nanjing, China
| | | | | | | | | | | | | |
Collapse
|
23
|
Dai Y, Sun Q, Zhang X, Hu Y, Zhou M, Shi J. Cyclosporin A ameliorates early brain injury after subarachnoid hemorrhage through inhibition of a Nur77 dependent apoptosis pathway. Brain Res 2014; 1556:67-76. [DOI: 10.1016/j.brainres.2014.01.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Revised: 01/25/2014] [Accepted: 01/30/2014] [Indexed: 12/25/2022]
|
24
|
Baranger K, Rivera S, Liechti FD, Grandgirard D, Bigas J, Seco J, Tarrago T, Leib SL, Khrestchatisky M. Endogenous and synthetic MMP inhibitors in CNS physiopathology. PROGRESS IN BRAIN RESEARCH 2014; 214:313-51. [DOI: 10.1016/b978-0-444-63486-3.00014-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Chowdhury T, Dash HH, Cappellani RB, Daya J. Early brain injury and subarachnoid hemorrhage: Where are we at present? Saudi J Anaesth 2013; 7:187-90. [PMID: 23956721 PMCID: PMC3737697 DOI: 10.4103/1658-354x.114047] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The current era has adopted many new innovations in nearly every aspect of management of subarachnoid hemorrhage (SAH); however, the neurological outcome has still not changed significantly. These major therapeutic advances mainly addressed the two most important sequels of the SAH-vasospasm and re-bleed. Thus, there is a possibility of some different pathophysiological mechanism that would be responsible for causing poor outcome in these patients. In this article, we have tried to compile the current role of this different yet potentially treatable pathophysiological mechanism in post-SAH patients. The main pathophysiological mechanism for the development of early brain injury (EBI) is the apoptotic pathways. The macro-mechanism includes increased intracranial pressure, disruption of the blood-brain barrier, and finally global ischemia. Most of the treatment strategies are still in the experimental phase. Although the role of EBI following SAH is now well established, the treatment modalities for human patients are yet to be testified.
Collapse
Affiliation(s)
- Tumul Chowdhury
- Department of Anesthesiology and Perioperative Medicine, Health Sciences Center, University of Manitoba, Winnipeg, Canada
| | | | | | | |
Collapse
|
26
|
Li DD, Song JN, Huang H, Guo XY, An JY, Zhang M, Li Y, Sun P, Pang HG, Zhao YL, Wang JF. The roles of MMP-9/TIMP-1 in cerebral edema following experimental acute cerebral infarction in rats. Neurosci Lett 2013; 550:168-72. [DOI: 10.1016/j.neulet.2013.06.034] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 06/04/2013] [Accepted: 06/17/2013] [Indexed: 11/27/2022]
|
27
|
Matrix Metalloproteinases in Cerebral Vasospasm following Aneurysmal Subarachnoid Hemorrhage. Neurol Res Int 2013; 2013:943761. [PMID: 23691315 PMCID: PMC3649803 DOI: 10.1155/2013/943761] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 03/09/2013] [Indexed: 12/13/2022] Open
Abstract
Delayed cerebral vasospasm is a significant cause of morbidity and mortality following aneurysmal subarachnoid hemorrhage (SAH). While the cellular mechanisms underlying vasospasm remain unclear, it is believed that inflammation may play a critical role in vasospasm. Matrix metalloproteinasees (MMPs) are a family of extracellular and membrane-bound proteases capable of degrading the blood-rain barrier (BBB). As such, MMP upregulation following SAH may result in a proinflammatory extravascular environment capable of inciting delayed cerebral vasospasm. This paper presents an overview of MMPs and describes existing data pertinent to delayed cerebral vasospasm.
Collapse
|
28
|
Dabrowski W, Rzecki Z, Czajkowski M, Pilat J, Wacinski P, Kotlinska E, Sztanke M, Sztanke K, Stazka K, Pasternak K. Volatile Anesthetics Reduce Biochemical Markers of Brain Injury and Brain Magnesium Disorders in Patients Undergoing Coronary Artery Bypass Graft Surgery. J Cardiothorac Vasc Anesth 2012; 26:395-402. [DOI: 10.1053/j.jvca.2011.10.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Indexed: 11/11/2022]
|
29
|
Lin NN, Cheng CC, Lee YF, Fu YC, Chen JS, Ho SP, Chiu YT. Early activation of myocardial matrix metalloproteinases and degradation of cardiac troponin I after experimental subarachnoid hemorrhage. J Surg Res 2012; 179:e41-8. [PMID: 22475348 DOI: 10.1016/j.jss.2012.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 01/21/2012] [Accepted: 02/03/2012] [Indexed: 10/28/2022]
Abstract
BACKGROUND Matrix metalloproteinases (MMPs) are involved in acute myocardial dysfunction by degrading several intracellular contractile proteins, including cardiac troponin I (cTnI). Here, we examined the temporal profiles of MMPs and cTnI in plasma and myocardial tissue in the acute stage of subarachnoid hemorrhage (SAH). MATERIALS AND METHODS SAH was induced by the endovascular suture method in rats. Intracranial pressure and left ventricular (LV) function were recorded. Plasma cTnI and MMPs were measured at 0, 5, 15, 30, 60, 120, and 180 minutes after SAH. Myocardial cTnI and MMP activities were quantified at 30, 60 and 180 min after SAH from homogenized hearts. RESULTS SAH-induced rats showed a marked decline in -LV dP/dt(max) (index of LV diastolic function). Plasma samples revealed a noticeable increase in cTnI and pro-MMP-9 activities over the course of 180 minutes. In myocardial tissue, there was a marked increase in pro-MMP-9, pro-MMP-2 activities and expression of activated MMP-2. Western blot analysis revealed a striking decrease in cTnI content and increase in cTnI degradation in myocardium. Simultaneous cTnI depletion and MMP-2 expression in myocardium was detected by immunohistochemistry as early as 30 minutes after SAH. MMPs correlated with -LV dP/dt(max) (% of baseline) both in plasma and in myocardial tissue. Furthermore, activated MMP-2 activity correlated positively with cTnI degradation in myocardium. CONCLUSIONS Early activation of MMPs was observed in myocardium and plasma following SAH. Activated MMP-2 may regulate proteolytic cTnI and contribute to myocardium stunning injury in SAH rats.
Collapse
Affiliation(s)
- Nai-Nu Lin
- Department of Medical Education and Research, Taichung Veterans General Hospital, Taichung, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
30
|
Lee JH, Lee SR. The Effect of Baicalein on Hippocampal Neuronal Damage and Metalloproteinase Activity Following Transient Global Cerebral Ischaemia. Phytother Res 2012; 26:1614-9. [DOI: 10.1002/ptr.4644] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Revised: 01/20/2012] [Accepted: 01/23/2012] [Indexed: 11/08/2022]
|
31
|
Matrix metalloproteinase inhibitors as investigative tools in the pathogenesis and management of vascular disease. EXPERIENTIA SUPPLEMENTUM (2012) 2012; 103:209-79. [PMID: 22642194 DOI: 10.1007/978-3-0348-0364-9_7] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Matrix metalloproteinases (MMPs) are proteolytic enzymes that degrade various components of the extracellular matrix (ECM). MMPs could also regulate the activity of several non-ECM bioactive substrates and consequently affect different cellular functions. Members of the MMPs family include collagenases, gelatinases, stromelysins, matrilysins, membrane-type MMPs, and others. Pro-MMPs are cleaved into active MMPs, which in turn act on various substrates in the ECM and on the cell surface. MMPs play an important role in the regulation of numerous physiological processes including vascular remodeling and angiogenesis. MMPs may also be involved in vascular diseases such as hypertension, atherosclerosis, aortic aneurysm, and varicose veins. MMPs also play a role in the hemodynamic and vascular changes associated with pregnancy and preeclampsia. The role of MMPs is commonly assessed by measuring their gene expression, protein amount, and proteolytic activity using gel zymography. Because there are no specific activators of MMPs, MMP inhibitors are often used to investigate the role of MMPs in different physiologic processes and in the pathogenesis of specific diseases. MMP inhibitors include endogenous tissue inhibitors (TIMPs) and pharmacological inhibitors such as zinc chelators, doxycycline, and marimastat. MMP inhibitors have been evaluated as diagnostic and therapeutic tools in cancer, autoimmune disease, and cardiovascular disease. Although several MMP inhibitors have been synthesized and tested both experimentally and clinically, only one MMP inhibitor, i.e., doxycycline, is currently approved by the Food and Drug Administration. This is mainly due to the undesirable side effects of MMP inhibitors especially on the musculoskeletal system. While most experimental and clinical trials of MMP inhibitors have not demonstrated significant benefits, some trials still showed promising results. With the advent of new genetic and pharmacological tools, disease-specific MMP inhibitors with fewer undesirable effects are being developed and could be useful in the management of vascular disease.
Collapse
|
32
|
Feiler S, Plesnila N, Thal SC, Zausinger S, Schöller K. Contribution of matrix metalloproteinase-9 to cerebral edema and functional outcome following experimental subarachnoid hemorrhage. Cerebrovasc Dis 2011; 32:289-95. [PMID: 21912109 DOI: 10.1159/000328248] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 03/29/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Cerebral edema is an important risk factor for death and poor outcome following subarachnoid hemorrhage (SAH). However, underlying mechanisms are still poorly understood. Matrix metalloproteinase (MMP)-9 is held responsible for the degradation of microvascular basal lamina proteins leading to blood-brain barrier dysfunction and, thus, formation of vasogenic cerebral edema. The current study was conducted to clarify the role of MMP-9 for the development of cerebral edema and for functional outcome after SAH. METHODS SAH was induced in FVB/N wild-type (WT) or MMP-9 knockout (MMP-9(-/-)) mice by endovascular puncture. Intracranial pressure (ICP), regional cerebral blood flow (rCBF), and mean arterial blood pressure (MABP) were continuously monitored up to 30 min after SAH. Mortality was quantified for 7 days after SAH. In an additional series neurological function and body weight were assessed for 3 days after SAH. Subsequently, ICP and brain water content were quantified. RESULTS Acute ICP, rCBF, and MABP did not differ between WT and MMP-9(-/-) mice, while 7 days' mortality was lower in MMP-9(-/-) mice (p = 0.03; 20 vs. 60%). MMP-9(-/-) mice also exhibited better neurological recovery, less brain edema formation, and lower chronic ICP. CONCLUSIONS The results of the current study suggest that MMP-9 contributes to the development of early brain damage after SAH by promoting cerebral edema formation. Hence, MMP- 9 may represent a novel molecular target for the treatment of SAH.
Collapse
Affiliation(s)
- Sergej Feiler
- Department of Neurosurgery, University of Munich, Medical Center Grosshadern, Ludwig Maximilians University, Munich, Germany
| | | | | | | | | |
Collapse
|
33
|
Role of rho kinase in microvascular damage following cerebral ischemia reperfusion in rats. Int J Mol Sci 2011; 12:1222-31. [PMID: 21541054 PMCID: PMC3083701 DOI: 10.3390/ijms12021222] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2010] [Revised: 01/21/2011] [Accepted: 02/07/2011] [Indexed: 11/22/2022] Open
Abstract
Rho kinase (ROCK) is a well-known downstream effector of Rho and plays an important role in various physiopathological processes. In this study, we aim to investigate the correlation between ROCK and microvascular damage in rat brain subjected to middle cerebral artery occlusion (MCAO) and reperfusion, and to elucidate the mechanisms underlying the microvascular damage. ROCK and matrix metalloproteinase 9 (MMP9) mRNA levels were determined by real time quantitative PCR, Laminin was detected by immunofluorescence and Blood Brain Barrier (BBB) permeability was examined by Evans Blue (EB) in rat MCAO models. We observed similar patterns of changes in ROCK expression, brain EB content, and Laminin expression at different time points after brain ischemia. Statistical analysis further confirmed a significant linear correlation of ROCK expression with the onset of microvascular damage in brain. Furthermore, the ROCK inhibitor fasudil decreased brain EB content but increased Laminin expression. These results provide strong evidence that ROCK mediates microvascular damage. In addition, we found that fasudil could significantly inhibit MMP9 expression induced by ischemia. Thus, our findings suggest that ROCK promotes microvascular damage by upregulating MMP9 and reveal ROCK as a promising therapeutic target for stroke.
Collapse
|