1
|
Maiworm M. The relevance of BDNF for neuroprotection and neuroplasticity in multiple sclerosis. Front Neurol 2024; 15:1385042. [PMID: 39148705 PMCID: PMC11325594 DOI: 10.3389/fneur.2024.1385042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 06/24/2024] [Indexed: 08/17/2024] Open
Abstract
Background Neuroplasticity as a mechanism to overcome central nervous system injury resulting from different neurological diseases has gained increasing attention in recent years. However, deficiency of these repair mechanisms leads to the accumulation of neuronal damage and therefore long-term disability. To date, the mechanisms by which remyelination occurs and why the extent of remyelination differs interindividually between multiple sclerosis patients regardless of the disease course are unclear. A member of the neurotrophins family, the brain-derived neurotrophic factor (BDNF) has received particular attention in this context as it is thought to play a central role in remyelination and thus neuroplasticity, neuroprotection, and memory. Objective To analyse the current literature regarding BDNF in different areas of multiple sclerosis and to provide an overview of the current state of knowledge in this field. Conclusion To date, studies assessing the role of BDNF in patients with multiple sclerosis remain inconclusive. However, there is emerging evidence for a beneficial effect of BDNF in multiple sclerosis, as studies reporting positive effects on clinical as well as MRI characteristics outweighed studies assuming detrimental effects of BDNF. Furthermore, studies regarding the Val66Met polymorphism have not conclusively determined whether this is a protective or harmful factor in multiple sclerosis, but again most studies hypothesized a protective effect through modulation of BDNF secretion and anti-inflammatory effects with different effects in healthy controls and patients with multiple sclerosis, possibly due to the pro-inflammatory milieu in patients with multiple sclerosis. Further studies with larger cohorts and longitudinal follow-ups are needed to improve our understanding of the effects of BDNF in the central nervous system, especially in the context of multiple sclerosis.
Collapse
Affiliation(s)
- Michelle Maiworm
- Department of Neurology, University Hospital Frankfurt, Frankfurt, Germany
| |
Collapse
|
2
|
Rademacher TD, Meuth SG, Wiendl H, Johnen A, Landmeyer NC. Molecular biomarkers and cognitive impairment in multiple sclerosis: State of the field, limitations, and future direction - A systematic review and meta-analysis. Neurosci Biobehav Rev 2023; 146:105035. [PMID: 36608917 DOI: 10.1016/j.neubiorev.2023.105035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/20/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Multiple sclerosis (MS) is associated with cognitive impairment (CI) such as slowed information processing speed (IPS). Currently, no immunocellular or molecular markers have been established in cerebrospinal fluid and serum analysis as surrogate biomarkers with diagnostic or predictive value for the development of CI. This systematic review and meta-analysis aims to sum up the evidence regarding currently discussed markers for CI in MS. METHODS A literature search was conducted on molecular biomarkers of CI in MS, such as neurofilament light chain, chitinases, and vitamin D. RESULTS 5543 publications were screened, of which 77 entered the systematic review. 13 studies were included in the meta-analysis. Neurofilament light chain (CSF: rp = -0.294, p = 0.003; serum: rp = -0.137, p = 0.001) and serum levels of vitamin D (rp = 0.190, p = 0.014) were associated with IPS outcomes. CONCLUSIONS Neurofilament light chain and vitamin D are promising biomarkers to track impairments in IPS in MS. Further longitudinal research is needed to establish the use of molecular biomarkers to monitor cognitive decline.
Collapse
Affiliation(s)
| | - Sven G Meuth
- Department of Neurology, University Hospital Düsseldorf, Germany
| | - Heinz Wiendl
- Department of Neurology, University Hospital Münster, Germany
| | - Andreas Johnen
- Department of Neurology, University Hospital Münster, Germany
| | | |
Collapse
|
3
|
The Influence of Conventional and Innovative Rehabilitation Methods on Brain Plasticity Induction in Patients with Multiple Sclerosis. J Clin Med 2023; 12:jcm12051880. [PMID: 36902665 PMCID: PMC10003891 DOI: 10.3390/jcm12051880] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/15/2023] [Accepted: 02/25/2023] [Indexed: 03/08/2023] Open
Abstract
Physical rehabilitation and physical activity are known non-pharmacological methods of treating multiple sclerosis. Both lead to an improvement in physical fitness in patients with movement deficits while improving cognitive function and coordination. These changes occur through the induction of brain plasticity. This review presents the basics of the induction of brain plasticity in response to physical rehabilitation. It also analyzes the latest literature evaluating the impact of traditional physical rehabilitation methods, as well as innovative virtual reality-based rehabilitation methods, on the induction of brain plasticity in patients with multiple sclerosis.
Collapse
|
4
|
Galindo C, Nguyen VT, Hill B, Sims N, Heck A, Negron M, Lusk C. Brain-derived neurotrophic factor rs6265 (Val66Met) single nucleotide polymorphism as a master modifier of human pathophysiology. Neural Regen Res 2023. [PMID: 35799516 PMCID: PMC9241394 DOI: 10.4103/1673-5374.343894] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Brain-derived neurotrophic factor is the most prevalent member of the nerve growth factor family. Since its discovery in 1978, this enigmatic molecule has spawned more than 27,000 publications, most of which are focused on neurological disorders. Brain-derived neurotrophic factor is indispensable during embryogenesis and postnatally for the normal development and function of both the central and peripheral nervous systems. It is becoming increasingly clear, however, that brain-derived neurotrophic factor likewise plays crucial roles in a variety of other biological functions independently of sympathetic or parasympathetic involvement. Brain-derived neurotrophic factor is also increasingly recognized as a sophisticated environmental sensor and master coordinator of whole organismal physiology. To that point, we recently found that a common nonsynonymous (Val66→Met) single nucleotide polymorphism in the brain-derived neurotrophic factor gene (rs6265) not only substantially alters basal cardiac transcriptomics in mice but subtly influences heart gene expression and function differentially in males and females. In addition to a short description of recent results from associative neuropsychiatric studies, this review provides an eclectic assortment of research reports that support a modulatory role for rs6265 including and beyond the central nervous system.
Collapse
|
5
|
Giordano A, Clarelli F, Cannizzaro M, Mascia E, Santoro S, Sorosina M, Ferrè L, Leocani L, Esposito F. BDNF Val66Met Polymorphism Is Associated With Motor Recovery After Rehabilitation in Progressive Multiple Sclerosis Patients. Front Neurol 2022; 13:790360. [PMID: 35265024 PMCID: PMC8899087 DOI: 10.3389/fneur.2022.790360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/28/2022] [Indexed: 12/27/2022] Open
Abstract
Background Rehabilitation is fundamental for progressive multiple sclerosis (MS), but predictive biomarkers of motor recovery are lacking, making patient selection difficult. Motor recovery depends on synaptic plasticity, in which the Brain-Derived Neurotrophic Factor (BDNF) is a key player, through its binding to the Neurotrophic-Tyrosine Kinase-2 (NTRK2) receptor. Therefore, genetic polymorphisms in the BDNF pathway may impact motor recovery. The most well-known polymorphism in BDNF gene (rs6265) causes valine to methionine substitution (Val66Met) and it influences memory and motor learning in healthy individuals and neurodegenerative diseases. To date, no studies have explored whether polymorphisms in BDNF or NTRK2 genes may impact motor recovery in MS. Objectives To assess whether genetic variants in BDNF and NTRK2 genes affect motor recovery after rehabilitation in progressive MS. Methods The association between motor recovery after intensive neurorehabilitation and polymorphisms in BDNF (rs6265) and NTKR2 receptor (rs2289656 and rs1212171) was assessed using Six-Minutes-Walking-Test (6MWT), 10-Metres-Test (10MT) and Nine-Hole-Peg-Test (9HPT) in 100 progressive MS patients. Results We observed greater improvement at 6MWT after rehabilitation in carriers of the BDNF Val66Met substitution, compared to BDNF Val homozygotes (p = 0.024). No significant association was found for 10MT and 9HPT. NTRK2 polymorphisms did not affect the results of motor function tests. Conclusion BDNF Val66Met was associated with walking function improvement after rehabilitation in progressive MS patients. This result is in line with previous evidence showing a protective effect of Val66Met substitution on brain atrophy in MS. Larger studies are needed to explore its potential as a predictive biomarker of rehabilitation outcome.
Collapse
Affiliation(s)
- Antonino Giordano
- Laboratory of Human Genetics of Neurological Disorders, Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Ferdinando Clarelli
- Laboratory of Human Genetics of Neurological Disorders, Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Miryam Cannizzaro
- Laboratory of Human Genetics of Neurological Disorders, Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Elisabetta Mascia
- Laboratory of Human Genetics of Neurological Disorders, Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Santoro
- Laboratory of Human Genetics of Neurological Disorders, Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Melissa Sorosina
- Laboratory of Human Genetics of Neurological Disorders, Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Laura Ferrè
- Laboratory of Human Genetics of Neurological Disorders, Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Letizia Leocani
- Vita-Salute San Raffaele University, Milan, Italy
- Experimental Neurophysiology Unit, Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Esposito
- Laboratory of Human Genetics of Neurological Disorders, Institute of Experimental Neurology (INSPE), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
6
|
Dolcetti E, Bruno A, Azzolini F, Gilio L, Moscatelli A, De Vito F, Pavone L, Iezzi E, Gambardella S, Giardina E, Ferese R, Buttari F, Rizzo FR, Furlan R, Finardi A, Musella A, Mandolesi G, Guadalupi L, Centonze D, Stampanoni Bassi M. The BDNF Val66Met Polymorphism (rs6265) Modulates Inflammation and Neurodegeneration in the Early Phases of Multiple Sclerosis. Genes (Basel) 2022; 13:genes13020332. [PMID: 35205376 PMCID: PMC8871843 DOI: 10.3390/genes13020332] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/04/2022] [Accepted: 02/07/2022] [Indexed: 11/23/2022] Open
Abstract
The clinical course of multiple sclerosis (MS) is critically influenced by the interplay between inflammatory and neurodegenerative processes. The brain-derived neurotrophic factor (BDNF) Val66Met polymorphism (rs6265), one of the most studied single-nucleotide polymorphisms (SNPs), influences brain functioning and neurodegenerative processes in healthy individuals and in several neuropsychiatric diseases. However, the role of this polymorphism in MS is still controversial. In 218 relapsing–remitting (RR)-MS patients, we explored, at the time of diagnosis, the associations between the Val66Met polymorphism, clinical characteristics, and the cerebrospinal fluid (CSF) levels of a large set of pro-inflammatory and anti-inflammatory molecules. In addition, associations between Val66Met and structural MRI measures were assessed. We identified an association between the presence of Met and a combination of cytokines, identified by principal component analysis (PCA), including the pro-inflammatory molecules MCP-1, IL-8, TNF, Eotaxin, and MIP-1b. No significant associations emerged with clinical characteristics. Analysis of MRI measures evidenced reduced cortical thickness at the time of diagnosis in patients with Val66Met. We report for the first time an association between the Val66Met polymorphism and central inflammation in MS patients at the time of diagnosis. The role of this polymorphism in both inflammatory and neurodegenerative processes may explain its complex influence on the MS course.
Collapse
Affiliation(s)
| | - Antonio Bruno
- Neurology Unit, IRCSS Neuromed, 86077 Pozzilli, Italy
| | | | - Luana Gilio
- Neurology Unit, IRCSS Neuromed, 86077 Pozzilli, Italy
| | - Alessandro Moscatelli
- Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy
- Laboratory of Neuromotor Physiology, IRCSS Fondazione Santa Lucia, 00179 Rome, Italy
| | | | - Luigi Pavone
- Neurology Unit, IRCSS Neuromed, 86077 Pozzilli, Italy
| | - Ennio Iezzi
- Neurology Unit, IRCSS Neuromed, 86077 Pozzilli, Italy
| | - Stefano Gambardella
- Neurology Unit, IRCSS Neuromed, 86077 Pozzilli, Italy
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", 61029 Urbino, Italy
| | - Emiliano Giardina
- Genomic Medicine Laboratory, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", 00133 Rome, Italy
| | | | - Fabio Buttari
- Neurology Unit, IRCSS Neuromed, 86077 Pozzilli, Italy
| | | | - Roberto Furlan
- Clinical Neuroimmunology Unit, Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Annamaria Finardi
- Clinical Neuroimmunology Unit, Institute of Experimental Neurology (INSpe), Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Alessandra Musella
- Synaptic Immunopathology Lab, IRCCS San Raffaele Roma, 00163 Rome, Italy
- Department of Human Sciences and Quality of Life Promotion, University of Rome San Raffaele, 00163 Rome, Italy
| | - Georgia Mandolesi
- Synaptic Immunopathology Lab, IRCCS San Raffaele Roma, 00163 Rome, Italy
- Department of Human Sciences and Quality of Life Promotion, University of Rome San Raffaele, 00163 Rome, Italy
| | - Livia Guadalupi
- Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy
- Synaptic Immunopathology Lab, IRCCS San Raffaele Roma, 00163 Rome, Italy
| | - Diego Centonze
- Neurology Unit, IRCSS Neuromed, 86077 Pozzilli, Italy
- Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy
| | | |
Collapse
|
7
|
De Meo E, Portaccio E, Prestipino E, Nacmias B, Bagnoli S, Razzolini L, Pastò L, Niccolai C, Goretti B, Bellinvia A, Fonderico M, Giorgio A, Stromillo ML, Filippi M, Sorbi S, De Stefano N, Amato MP. Effect of BDNF Val66Met polymorphism on hippocampal subfields in multiple sclerosis patients. Mol Psychiatry 2022; 27:1010-1019. [PMID: 34650209 DOI: 10.1038/s41380-021-01345-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 01/20/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) Val66Met polymorphism was shown to strongly affect BDNF function, but its role in modulating gray matter damage in multiple sclerosis (MS) patients is still not clear. Given BDNF relevance on the hippocampus, we aimed to explore BDNF Val66Met polymorphism effect on hippocampal subfield volumes and its role in cognitive functioning in MS patients. Using a 3T scanner, we obtained dual-echo and 3DT1-weighted sequences from 50 MS patients and 15 healthy controls (HC) consecutively enrolled. MS patients also underwent genotype analysis of BDNF, neurological and neuropsychological evaluation. Hippocampal subfields were segmented by using Freesurfer. The BDNF Val66Met polymorphism was found in 22 MS patients (44%). Compared to HC, MS patients had lower volume in: bilateral hippocampus-amygdala transition area (HATA); cornus ammonis (CA)1, granule cell layer of dentate gyrus (GCL-DG), CA4 and CA3 of the left hippocampal head; molecular layer (ML) of the left hippocampal body; presubiculum of right hippocampal body and right fimbria. Compared to BDNF Val66Val, Val66Met MS patients had higher volume in bilateral hippocampal tail; CA1, ML, CA3, CA4, and GCL-DG of left hippocampal head; CA1, ML, and CA3 of the left hippocampal body; left HATA and presubiculum of the right hippocampal head. In MS patients, higher lesion burden was associated with lower volume of presubiculum of right hippocampal body; lower volume of left hippocampal tail was associated with worse visuospatial memory performance; lower volume of left hippocampal head with worse performance in semantic fluency. Our findings suggest the BNDF Val66Met polymorphism may have a protective role in MS patients against both hippocampal atrophy and cognitive impairment. BDNF genotype might be a potential biomarker for predicting cognitive prognosis, and an interesting target to study for neuroprotective strategies.
Collapse
Affiliation(s)
- Ermelinda De Meo
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy. .,Vita-Salute San Raffaele University, Milan, Italy.
| | - Emilio Portaccio
- Department NEUROFARBA, Section Neurosciences, University of Florence, Florence, Italy.,IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Elio Prestipino
- Department NEUROFARBA, Section Neurosciences, University of Florence, Florence, Italy
| | - Benedetta Nacmias
- Department NEUROFARBA, Section Neurosciences, University of Florence, Florence, Italy.,IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Silvia Bagnoli
- Department NEUROFARBA, Section Neurosciences, University of Florence, Florence, Italy
| | | | - Luisa Pastò
- Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| | | | - Benedetta Goretti
- Department NEUROFARBA, Section Neurosciences, University of Florence, Florence, Italy
| | | | | | - Antonio Giorgio
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | | | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy.,Neurology Unit,, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurophysiology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sandro Sorbi
- Department NEUROFARBA, Section Neurosciences, University of Florence, Florence, Italy.,IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Nicola De Stefano
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Maria Pia Amato
- Department NEUROFARBA, Section Neurosciences, University of Florence, Florence, Italy.,IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| |
Collapse
|
8
|
Martens L, Herrmann L, Colic L, Li M, Richter A, Behnisch G, Stork O, Seidenbecher C, Schott BH, Walter M. Met carriers of the BDNF Val66Met polymorphism show reduced Glx/NAA in the pregenual ACC in two independent cohorts. Sci Rep 2021; 11:6742. [PMID: 33762638 PMCID: PMC7990923 DOI: 10.1038/s41598-021-86220-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 03/02/2021] [Indexed: 12/17/2022] Open
Abstract
The Met allele of the Val66Met SNP of the BDNF gene (rs6265) is associated with impaired activity-dependent release of brain-derived neurotrophic factor (BDNF), resulting in reduced synaptic plasticity, impaired glutamatergic neurotransmission, and morphological changes. While previous work has demonstrated Val66Met effects on magnetic resonance spectroscopy (MRS) markers of either glutamatergic metabolism (Glx) or neuronal integrity (NAA), no study has investigated Val66Met effects on these related processes simultaneously. As these metabolites share a metabolic pathway, the Glx/NAA ratio may be a more sensitive marker of changes associated with the Val66Met SNP. This ratio is increased in psychiatric disorders linked to decreased functioning in the anterior cingulate cortex (ACC). In this study, we investigated the correlation of the Val66Met polymorphism of the BDNF gene with Glx/NAA in the pregenual anterior cingulate cortex (pgACC) using MRS at 3 Tesla (T) (n = 30, all males) and 7 T (n = 98, 40 females). In both cohorts, Met carriers had lower Glx/NAA compared to Val homozygotes. Follow-up analyses using absolute quantification revealed that the Met carriers do not show decreased pgACC glutamate or glutamine levels, but instead show increased NAA compared to the Val homozygotes. This finding may in part explain conflicting evidence for Val66Met as a risk factor for developing psychiatric illnesses.
Collapse
Affiliation(s)
- Louise Martens
- University Department of Psychiatry and Psychotherapy, Tübingen, Germany.,Graduate Training Center, IMPRS, Tübingen, Germany.,Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Luisa Herrmann
- University Department of Psychiatry and Psychotherapy, Tübingen, Germany.,Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Lejla Colic
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany.,Clinical Affective Neuroscience Laboratory, Magdeburg, Germany.,Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Meng Li
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany.,Clinical Affective Neuroscience Laboratory, Magdeburg, Germany
| | - Anni Richter
- Leibniz Institute for Neurobiology, Magdeburg, Germany
| | | | - Oliver Stork
- Department of Genetics & Molecular Neurobiology, Institute of Biology, Otto-Von-Guericke-University, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Constanze Seidenbecher
- Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Björn H Schott
- Leibniz Institute for Neurobiology, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany.,Department of Psychiatry and Psychotherapy, University Medicine Göttingen, Göttingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Martin Walter
- University Department of Psychiatry and Psychotherapy, Tübingen, Germany. .,Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany. .,Clinical Affective Neuroscience Laboratory, Magdeburg, Germany.
| |
Collapse
|
9
|
Portaccio E, Bellinvia A, Prestipino E, Nacmias B, Bagnoli S, Razzolini L, Pastò L, Niccolai C, Goretti B, Fonderico M, Zimatore GB, Losignore NA, Sorbi S, Amato MP. The Brain-Derived Neurotrophic Factor Val66Met Polymorphism Can Protect Against Cognitive Impairment in Multiple Sclerosis. Front Neurol 2021; 12:645220. [PMID: 33815257 PMCID: PMC8011315 DOI: 10.3389/fneur.2021.645220] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/04/2021] [Indexed: 11/25/2022] Open
Abstract
Introduction: Brain-derived neurotrophic factor (BDNF) is a member of the neurotrophin family, involved in neuronal survival and synaptic plasticity. The BDNF Val66Met polymorphism is known to reduce BDNF expression and secretion; its role in multiple sclerosis (MS) is poorly investigated. Objectives and Methods: In this multicenter, retrospective study, we assessed the role of BDNF Val66Met polymorphism on cognitive and motor disability in MS patients consecutively referred to the University of Florence and the Hospital of Barletta. All patients underwent a genetic analysis for the presence of Val66Met polymorphism and a comprehensive neuropsychological examination on the Rao's Brief Repeatable Battery and the Stroop Color Word Test. Possible predictors of the Expanded Disability Status Scale (EDSS) score and number of failed neuropsychological tests were assessed through linear multivariable regression models. Results: Ninety-eight patients were recruited. Patients with the BDNF Val66Met polymorphism (35.7%) were more frequently males (p = 0.020), more disabled (p = 0.026) and, marginally, older (p = 0.064). In the multivariable analysis, BDNF Val66Met polymorphism was associated with a better cognitive performance (B = −1.1 ± 0.5, p = 0.027). Higher EDSS score was associated with a progressive disease course (B = 3.4, p < 0.001) and, marginally, with the presence of the BDNF Val66Met polymorphism (B = 0.56, p = 0.066). Discussion: Our results preliminarily suggest a protective role of BDNF Val66Met polymorphism against cognitive impairment in MS patients, possibly related to a detrimental effect of increased BDNF concentration in a neuroinflammatory environment.
Collapse
Affiliation(s)
- Emilio Portaccio
- SOD Riabilitazione Neurologica, AOU Careggi, Florence, Italy.,IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | | | - Elio Prestipino
- NEUROFARBA Department, University of Florence, Florence, Italy
| | - Benedetta Nacmias
- IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy.,NEUROFARBA Department, University of Florence, Florence, Italy
| | - Silvia Bagnoli
- NEUROFARBA Department, University of Florence, Florence, Italy
| | | | - Luisa Pastò
- SOD Riabilitazione Neurologica, AOU Careggi, Florence, Italy
| | | | | | | | | | | | - Sandro Sorbi
- IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy.,NEUROFARBA Department, University of Florence, Florence, Italy
| | - Maria Pia Amato
- IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy.,NEUROFARBA Department, University of Florence, Florence, Italy
| |
Collapse
|
10
|
Filippi M, Preziosa P, Rocca MA. Brain mapping in multiple sclerosis: Lessons learned about the human brain. Neuroimage 2019; 190:32-45. [DOI: 10.1016/j.neuroimage.2017.09.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/07/2017] [Accepted: 09/09/2017] [Indexed: 02/07/2023] Open
|
11
|
Shen T, You Y, Joseph C, Mirzaei M, Klistorner A, Graham SL, Gupta V. BDNF Polymorphism: A Review of Its Diagnostic and Clinical Relevance in Neurodegenerative Disorders. Aging Dis 2018; 9:523-536. [PMID: 29896439 PMCID: PMC5988606 DOI: 10.14336/ad.2017.0717] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 07/17/2017] [Indexed: 12/17/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) has a unique role in the neuronal development, differentiation, and survival in the developing and adult nervous system. A common single-nucleotide polymorphism in the pro-region of the human BDNF gene, resulting in a valine to methionine substitution (Val66Met), has been associated with the susceptibility, incidence, and clinical features of several neurodegenerative disorders. Much research has been dedicated to evaluating the effects of polymorphism in the past decade, and functional effects of this genetic variation. A better understanding of how this naturally occurring polymorphism associates with or influences physiology, anatomy, and cognition in both healthy and diseased adults in neurodegenerative conditions will help understand neurochemical mechanisms and definable clinical outcomes in humans. Here we review the role and relevance of the BDNF Val66Met polymorphism in neurodegenerative diseases, with particular emphasis on glaucoma, multiple sclerosis (MS), Alzheimer’s disease (AD) and Parkinson’s disease (PD). Several controversies and unresolved issues, including small effect sizes, possible ethnicity, gender, and age effects of the BDNF Val66Met are also discussed with respect to future research.
Collapse
Affiliation(s)
- Ting Shen
- 1Faculty of Medicine and Health Sciences, Macquarie University, Australia
| | - Yuyi You
- 2Save Sight Institute, Sydney University, Sydney, Australia
| | - Chitra Joseph
- 1Faculty of Medicine and Health Sciences, Macquarie University, Australia
| | - Mehdi Mirzaei
- 3Faculty of Science and Engineering, Macquarie University, Australia
| | - Alexander Klistorner
- 1Faculty of Medicine and Health Sciences, Macquarie University, Australia.,2Save Sight Institute, Sydney University, Sydney, Australia
| | - Stuart L Graham
- 1Faculty of Medicine and Health Sciences, Macquarie University, Australia.,2Save Sight Institute, Sydney University, Sydney, Australia
| | - Vivek Gupta
- 1Faculty of Medicine and Health Sciences, Macquarie University, Australia
| |
Collapse
|
12
|
Santoro M, Nociti V, De Fino C, Caprara A, Giordano R, Palomba N, Losavio F, Marra C, Patanella AK, Mirabella M, Gainotti G, Quaranta D. Depression in multiple sclerosis: effect of brain derived neurotrophic factor Val66Met polymorphism and disease perception. Eur J Neurol 2016; 23:630-40. [PMID: 26756166 DOI: 10.1111/ene.12913] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 10/01/2015] [Indexed: 01/19/2023]
Abstract
BACKGROUND AND PURPOSE Depression is common amongst subjects with multiple sclerosis (MS), and several investigations have explored different determinants of this condition, including physical disability, psychological and psychosocial factors. The brain derived neurotrophic factor (BDNF) Val66Met polymorphism has been associated with depression. The aim of this study was to analyze the influence of disease-related factors, BDNF Val66Met polymorphism and perception of disease on the severity of depression in MS. METHOD In total, 136 MS patients (88 women) were recruited and genotyped for BDNF rs6265 polymorphism at nucleotide 196 (G/A) using 'high resolution melting'. Depressive symptoms were assessed by the Multiple Sclerosis Depression Rating Scale. Perception of health status was assessed using the SF-36 questionnaire. RESULTS A multivariable linear regression model showed that the best predictors of depression were the SF-36 General health (β = -0.209; P = 0.013), Mental health (β = -0.410; P < 0.001) and Social activity (β = -0.195; P = 0.035) scores; physical disability (assessed by the Extended Disability Status Scale score) was directly correlated to depression severity on univariate analysis, but it was not a relevant predictor of depression on multivariate analysis; other variables directly related to the disease (treatment, annual relapsing rate) and the BDNF Val66Met polymorphism were not significantly associated with depression. CONCLUSION Perception of the health status is the principal predictor of depressive symptoms in our sample. This result supports the hypothesis that the subjective interpretation of the disease's consequences is one of the main factors in determining depression in MS.
Collapse
Affiliation(s)
- M Santoro
- Fondazione Don Gnocchi - ONLUS, Milan, Italy
| | - V Nociti
- Fondazione Don Gnocchi - ONLUS, Milan, Italy.,Institute of Neurology, Catholic University, Rome, Italy
| | - C De Fino
- Institute of Neurology, Catholic University, Rome, Italy
| | - A Caprara
- Institute of Neurology, Catholic University, Rome, Italy
| | - R Giordano
- Institute of Neurology, Catholic University, Rome, Italy
| | - N Palomba
- Institute of Neurology, Catholic University, Rome, Italy
| | - F Losavio
- Institute of Neurology, Catholic University, Rome, Italy
| | - C Marra
- Institute of Neurology, Catholic University, Rome, Italy.,Research Center for Neuropsychology, Institute of Neurology, Catholic University, Rome, Italy
| | - A K Patanella
- Institute of Neurology, Catholic University, Rome, Italy
| | - M Mirabella
- Institute of Neurology, Catholic University, Rome, Italy
| | - G Gainotti
- Institute of Neurology, Catholic University, Rome, Italy.,Research Center for Neuropsychology, Institute of Neurology, Catholic University, Rome, Italy
| | - D Quaranta
- Institute of Neurology, Catholic University, Rome, Italy.,Research Center for Neuropsychology, Institute of Neurology, Catholic University, Rome, Italy
| |
Collapse
|
13
|
Sternberg Z. Genetic, Epigenetic, and Environmental Factors Influencing Neurovisceral Integration of Cardiovascular Modulation: Focus on Multiple Sclerosis. Neuromolecular Med 2015; 18:16-36. [PMID: 26502224 DOI: 10.1007/s12017-015-8375-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 10/19/2015] [Indexed: 12/31/2022]
Abstract
Thought to be an autoimmune inflammatory CNS disease, multiple sclerosis (MS) involves multiple pathologies with heterogeneous clinical presentations. An impaired neurovisceral integration of cardiovascular modulation, indicated by sympathetic and parasympathetic autonomic nervous system (ANS) dysfunction, is among common MS clinical presentations. ANS dysfunction could not only enhance MS inflammatory and neurodegenerative processes, but can also lead to clinical symptoms such as depression, fatigue, sleep disorder, migraine, osteoporosis, and cerebral hemodynamic impairments. Therefore, factors influencing ANS functional activities, in one way or another, will have a significant impact on MS disease course. This review describes the genetic and epigenetic factors, and their interactions with a number of environmental factors contributing to the neurovisceral integration of cardiovascular modulation, with a focus on MS. Future studies should investigate the improvement in cardiovascular ANS function, as a strategy for preventing and minimizing MS-related morbidities, and improving patients' quality of life.
Collapse
|
14
|
Harrisberger F, Smieskova R, Schmidt A, Lenz C, Walter A, Wittfeld K, Grabe HJ, Lang UE, Fusar-Poli P, Borgwardt S. BDNF Val66Met polymorphism and hippocampal volume in neuropsychiatric disorders: A systematic review and meta-analysis. Neurosci Biobehav Rev 2015; 55:107-18. [PMID: 25956254 DOI: 10.1016/j.neubiorev.2015.04.017] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 04/15/2015] [Accepted: 04/25/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND Brain-derived neurotrophic factor (BDNF) is a neurotrophin involved in neurogenesis and synaptic plasticity in the central nervous system, especially in the hippocampus, and has been implicated in the pathophysiology of several neuropsychiatric disorders. Its Val66Met polymorphism (refSNP Cluster Report: rs6265) is a functionally relevant single nucleotide polymorphism affecting the secretion of BDNF and is implicated in differences in hippocampal volumes. METHODS This is a systematic meta-analytical review of findings from imaging genetic studies on the impact of the rs6265 SNP on hippocampal volumes in neuropsychiatric patients with major depressive disorder, anxiety, bipolar disorder or schizophrenia. RESULTS The overall sample size of 18 independent clinical cohorts comprised 1695 patients. Our results indicated no significant association of left (Hedge's g=0.08, p=0.12), right (g=0.07, p=0.22) or bilateral (g=0.07, p=0.16) hippocampal volumes with BDNF rs6265 in neuropsychiatric patients. There was no evidence for a publication bias or any demographic, clinical, or methodological moderating effects. Both Val/Val homozygotes (g=0.32, p=0.004) and Met-carriers (g=0.20, p=0.004) from the patient sample had significantly smaller hippocampal volumes than the healthy control sample with the same allele. The magnitude of these effects did not differ between the two genotypes. CONCLUSION This meta-analysis suggests that there is no association between this BDNF polymorphism and hippocampal volumes. For each BDNF genotype, the hippocampal volumes were significantly lower in neuropsychiatric patients than in healthy controls.
Collapse
Affiliation(s)
- F Harrisberger
- University of Basel, Department of Psychiatry (UPK), Wilhelm Klein-Strasse 27, 4056 Basel, Switzerland; University of Basel, Department of Clinical Research (DKF), 4031 Basel, Switzerland
| | - R Smieskova
- University of Basel, Department of Psychiatry (UPK), Wilhelm Klein-Strasse 27, 4056 Basel, Switzerland; University of Basel, Department of Clinical Research (DKF), 4031 Basel, Switzerland
| | - A Schmidt
- University of Basel, Department of Psychiatry (UPK), Wilhelm Klein-Strasse 27, 4056 Basel, Switzerland; University of Basel, Department of Clinical Research (DKF), 4031 Basel, Switzerland
| | - C Lenz
- University of Basel, Department of Psychiatry (UPK), Wilhelm Klein-Strasse 27, 4056 Basel, Switzerland; University of Basel, Department of Clinical Research (DKF), 4031 Basel, Switzerland
| | - A Walter
- University of Basel, Department of Psychiatry (UPK), Wilhelm Klein-Strasse 27, 4056 Basel, Switzerland; University of Basel, Department of Clinical Research (DKF), 4031 Basel, Switzerland
| | - K Wittfeld
- German Centre for Neurodegenerative Diseases (DZNE), Rostock/Greifswald, Germany
| | - H J Grabe
- German Centre for Neurodegenerative Diseases (DZNE), Rostock/Greifswald, Germany; Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Helios Hospital Stralsund, Stralsund, Germany
| | - U E Lang
- University of Basel, Department of Psychiatry (UPK), Wilhelm Klein-Strasse 27, 4056 Basel, Switzerland; University of Basel, Department of Clinical Research (DKF), 4031 Basel, Switzerland
| | - P Fusar-Poli
- King's College London, Department of Psychosis Studies, Institute of Psychiatry Psychology and Neuroscience, De Crespigny Park 16, SE58AF London, UK; OASIS Prodromal Team SLaM NHS Foundation Trust, London, UK
| | - S Borgwardt
- University of Basel, Department of Psychiatry (UPK), Wilhelm Klein-Strasse 27, 4056 Basel, Switzerland; University of Basel, Department of Clinical Research (DKF), 4031 Basel, Switzerland; King's College London, Department of Psychosis Studies, Institute of Psychiatry Psychology and Neuroscience, De Crespigny Park 16, SE58AF London, UK.
| |
Collapse
|
15
|
Abstract
Multiple sclerosis (MS) is a common disease of the central nervous system, with various clinical symptoms and a heterogeneous disease course. MRI can depict focal and diffuse manifestations of the disease, and accurately measure progression over time. The precise pathogenesis of MS is unknown. Nevertheless, genetic influences have been found for susceptibility to MS in linkage and association studies. More recent genome-wide association studies have revealed other genes to be related to disease susceptibility and severity, explaining part of the variability in symptoms, radiological manifestations and disease course. Studies relating genetics and imaging in MS are discussed in this paper.
Collapse
|
16
|
Tauhid S, Neema M, Healy BC, Weiner HL, Bakshi R. MRI phenotypes based on cerebral lesions and atrophy in patients with multiple sclerosis. J Neurol Sci 2014; 346:250-4. [PMID: 25220114 DOI: 10.1016/j.jns.2014.08.047] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 07/29/2014] [Accepted: 08/29/2014] [Indexed: 12/20/2022]
Abstract
BACKGROUND While disease categories (i.e. clinical phenotypes) of multiple sclerosis (MS) are established, there remains MRI heterogeneity among patients within those definitions. MRI-defined lesions and atrophy show only moderate inter-correlations, suggesting that they represent partly different processes in MS. We assessed the ability of MRI-based categorization of cerebral lesions and atrophy in individual patients to identify distinct phenotypes. METHODS We studied 175 patients with MS [age (mean ± SD) 42.7 ± 9.1 years, 124 (71%) women, Expanded Disability Status (EDSS) score 2.5 ± 2.3, n = 18 (10%) clinically isolated demyelinating syndrome (CIS), n=115 (66%) relapsing-remitting (RR), and n = 42 (24%) secondary progressive (SP)]. Brain MRI measures included T2 hyperintense lesion volume (T2LV) and brain parenchymal fraction (to assess whole brain atrophy). Medians were used to create bins for each parameter, with patients assigned a low or high severity score. RESULTS Four MRI phenotype categories emerged: Type I = low T2LV/mild atrophy [n = 67 (38%); CIS = 14, RR = 47, SP = 6]; Type II = high T2LV/mild atrophy [n = 21 (12%); RR = 19, SP = 2]; Type III = low T2LV/high atrophy [n = 21 (12%); CIS = 4, RR = 16, SP = 1]; and Type IV = high T2LV/high atrophy [n = 66 (38%); RR = 33, S P = 33]. Type IV was the most disabled and was the only group showing a correlation between T2LV vs. BPF and MRI vs. EDSS score (all p < 0.05). CONCLUSIONS We described MRI-categorization based on the relationship between lesions and atrophy in individual patients to identify four phenotypes in MS. Most patients have congruent extremes related to the degree of lesions and atrophy. However, many have a dissociation. Longitudinal studies will help define the stability of these patterns and their role in risk stratification.
Collapse
Affiliation(s)
- Shahamat Tauhid
- Department of Neurology, Brigham and Women's Hospital, Laboratory for Neuroimaging Research, Partners MS Center, Harvard Medical School, Boston, MA, USA
| | - Mohit Neema
- Department of Neurology, Brigham and Women's Hospital, Laboratory for Neuroimaging Research, Partners MS Center, Harvard Medical School, Boston, MA, USA
| | - Brian C Healy
- Department of Neurology, Brigham and Women's Hospital, Laboratory for Neuroimaging Research, Partners MS Center, Harvard Medical School, Boston, MA, USA
| | - Howard L Weiner
- Department of Neurology, Brigham and Women's Hospital, Laboratory for Neuroimaging Research, Partners MS Center, Harvard Medical School, Boston, MA, USA
| | - Rohit Bakshi
- Department of Neurology, Brigham and Women's Hospital, Laboratory for Neuroimaging Research, Partners MS Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
17
|
Weiss S, Mori F, Rossi S, Centonze D. Disability in multiple sclerosis: When synaptic long-term potentiation fails. Neurosci Biobehav Rev 2014; 43:88-99. [DOI: 10.1016/j.neubiorev.2014.03.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 02/11/2014] [Accepted: 03/31/2014] [Indexed: 12/13/2022]
|
18
|
Huang CC, Liu ME, Chou KH, Yang AC, Hung CC, Hong CJ, Tsai SJ, Lin CP. Effect of BDNF Val66Met polymorphism on regional white matter hyperintensities and cognitive function in elderly males without dementia. Psychoneuroendocrinology 2014; 39:94-103. [PMID: 24275008 DOI: 10.1016/j.psyneuen.2013.09.027] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 09/30/2013] [Accepted: 09/30/2013] [Indexed: 12/26/2022]
Abstract
White matter lesions, also termed White Matter Hyperintensities (WMH), on T2-weighted MR images, are common in the elderly population. Of note, their presence is often accompanied with cognitive decline and the risk of dementia. Even though previous brain ischemia and WM lesion studies have been conducted and indicated that brain-derived neurotrophic factor (BDNF) might protect against neuronal cell death, the interaction between regional WMH volume and the BDNF Val66Met polymorphism on the cognitive performance of healthy elderly population remains unclear. To investigate the genetic effect of BDNF on cognitive function and regional WMH in the healthy elderly population, 90 elderly men, without dementia, with a mean age of 80.6 ± 5.6 y/o were recruited to undergo cognitive tests, structural magnetic resonance imaging (MRI) scans, and genotyping of BDNF alleles. Compared with Met homozygotes, Val homozygotes showed significantly inferior short-term memory (STM) performance (P = .001). A tendency toward dose-dependent effects of the Val allele on WMH volume was found, and Val homozygotes showed larger WMH volume in the temporal (P = .035), the occipital (P = .006), and the global WMH volume (P = .025) than others. Significant interaction effects of BDNF genotypes with temporal WMH volume on STM performance was observed (F1,89 = 4.306, P = .041). Val homozygotes presented steeper negative correlation compared to Met carriers. Mediation analysis also demonstrated that WMH in temporal, limbic, and subcortical regions might mediate the relationship between BDNF's genetic effect and STM performance. Our findings supported the hypothesis that the BDNF Val66Met polymorphism may affect susceptibility to regional WMH volume and such genotype-by-WMH interaction effect is correlated with cognitive decline in non-demented elderly males, in which the Met allele plays a protective role.
Collapse
Affiliation(s)
- Chu-Chung Huang
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan; Brain Connectivity Lab, Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan
| | - Mu-En Liu
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Kun-Hsien Chou
- Brain Connectivity Lab, Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan; Brain Research Center, National Yang-Ming University, Taiwan
| | - Albert C Yang
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan; Center for Dynamical Biomarkers and Translational Medicine, National Central University, Chungli, Taiwan
| | - Chia-Chun Hung
- Brain Connectivity Lab, Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan; Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan; Department of Psychiatry, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Chen-Jee Hong
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan; Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Shih-Jen Tsai
- Department of Psychiatry, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan.
| | - Ching-Po Lin
- Department of Biomedical Imaging and Radiological Sciences, National Yang-Ming University, Taipei, Taiwan; Brain Connectivity Lab, Institute of Neuroscience, National Yang-Ming University, Taipei, Taiwan; Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan; Brain Research Center, National Yang-Ming University, Taiwan.
| |
Collapse
|
19
|
Yusup A, Upur H, Abla A, Upur H. Association study of gene polymorphisms and depression with abnormal humor in traditional Uighur medicine. Altern Ther Health Med 2013; 13:332. [PMID: 24274373 PMCID: PMC4222500 DOI: 10.1186/1472-6882-13-332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 11/21/2013] [Indexed: 01/01/2023]
Abstract
Background According to the humor theory of Traditional Uighur Medicine (TUM), a same disease is classified into different abnormal humor types and corresponding methods are applied to treat the diseases according to the type of abnormal humor characteristics. To date the biological foundation of classification of diseases by humor theory has been little studied and the mechanism of action is still unclear. In the present study, we aimed to investigate the association between some related gene polymorphisms and depression with abnormal humor in TUM. Methods 201 cases of depression patients in a Uighur population were divided into two groups as: 107 cases of depression patients with abnormal black bile (ABB), 94 cases of depression patients with none abnormal black bile (nABB), and 50 healthy people were served as control group. Venous blood was used to isolate DNA samples, and the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) technique was used for genotyping of single nucleotide polymorphisms (SNPs). Polymorphisms in the serotonin 2A (5-HT2A) receptor gene, brain derived neurotrophic factor (BDNF), serotonin 1A (5-HT1A) receptor gene were investigated in each groups, respectively. Results The 5-HT2A A-1438G, 5-HT2A T102C, BDNF Val66Met, and 5-HT1A C-1019G gene polymorphisms showed significant association with ABB. However, no difference between nABB and controls was found for those genotype distribution and allele frequency. Moreover, the T102C and A1438G SNPs in the 5-HT2A receptor gene polymorphisms were in linkage disequilibrium. In addition, the OR associated with the combination of Val66Met-Val/Val genotype plus the presence of -1019C allele was 8.393 for ABB compared with controls (OR 8.393; 95% CI 1.807 ~ 38.991; P= 0.003). Moreover, the OR associated with the presence of -Met plus -1019C alleles was 12.194 for ABB compared with controls (OR 12.194; 95% CI 1.433 ~ 103.776; P= 0.005). The OR associated with the presence of -1438C/C plus Val/Val genotypes was 7.738 for ABB compared with controls (OR 7.738; 95% CI 1.566 ~ 38.241; P= 0.005). Conclusion It was concluded that there were significant relationship between the gene polymorphisms and classification of depression with abnormal humor in TUM. The 5-HT2A A-1438G, 5-HT2A T102C, BDNF Val66Met, and 5-HT1A C-1019G gene polymorphisms might predict the incidence of depression with ABB.
Collapse
|
20
|
Fera F, Passamonti L, Cerasa A, Gioia MC, Liguori M, Manna I, Valentino P, Quattrone A. The BDNF Val66Met polymorphism has opposite effects on memory circuits of multiple sclerosis patients and controls. PLoS One 2013; 8:e61063. [PMID: 23593393 PMCID: PMC3623818 DOI: 10.1371/journal.pone.0061063] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Accepted: 03/05/2013] [Indexed: 12/15/2022] Open
Abstract
Episodic memory deficits are frequent symptoms in Multiple Sclerosis and have been associated with dysfunctions of the hippocampus, a key region for learning. However, it is unclear whether genetic factors that influence neural plasticity modulate episodic memory in MS. We thus studied how the Brain Derived Neurotrophic Factor Val(66)Met genotype, a common polymorphism influencing the hippocampal function in healthy controls, impacted on brain networks underlying episodic memory in patients with Multiple Sclerosis. Functional magnetic resonance imaging was used to assess how the Brain Derived Neurotrophic Factor Val(66)Met polymorphism modulated brain regional activity and functional connectivity in 26 cognitively unimpaired Multiple Sclerosis patients and 25 age- and education-matched healthy controls while performing an episodic memory task that included encoding and retrieving visual scenes. We found a highly significant group by genotype interaction in the left posterior hippocampus, bilateral parahippocampus, and left posterior cingulate cortex. In particular, Multiple Sclerosis patients homozygous for the Val(66) allele, relative to Met(66) carriers, showed greater brain responses during both encoding and retrieval while the opposite was true for healthy controls. Furthermore, a robust group by genotype by task interaction was detected for the functional connectivity between the left posterior hippocampus and the ipsilateral posterior cingulate cortex. Here, greater hippocampus-posterior cingulate cortex connectivity was observed in Multiple Sclerosis Met(66) carriers relative to Val(66) homozygous during retrieval (but not encoding) while, again, the reverse was true for healthy controls. The Val(66)Met polymorphism has opposite effects on hippocampal circuitry underlying episodic memory in Multiple Sclerosis patients and healthy controls. Enhancing the knowledge of how genetic factors influence cognitive functions may improve the clinical management of memory deficits in patients with Multiple Sclerosis.
Collapse
Affiliation(s)
- Francesco Fera
- Università degli Studi “Magna Graecia”, Dipartimento di Scienze Mediche e Chirurgiche, Catanzaro, Italia
- * E-mail: (FF); (LP)
| | - Luca Passamonti
- Università degli Studi “Magna Graecia”, Dipartimento di Scienze Mediche e Chirurgiche, Catanzaro, Italia
- Consiglio Nazionale delle Ricerche, Unità di Ricerca Neuroimmagini, Catanzaro, Italia
- * E-mail: (FF); (LP)
| | - Antonio Cerasa
- Consiglio Nazionale delle Ricerche, Unità di Ricerca Neuroimmagini, Catanzaro, Italia
| | - Maria Cecilia Gioia
- Consiglio Nazionale delle Ricerche, Unità di Ricerca Neuroimmagini, Catanzaro, Italia
| | - Maria Liguori
- Consiglio Nazionale delle Ricerche, Istituto di Scienze Neurologiche, Mangone (CS), Italia
| | - Ida Manna
- Consiglio Nazionale delle Ricerche, Istituto di Scienze Neurologiche, Mangone (CS), Italia
| | - Paola Valentino
- Università degli Studi “Magna Graecia”, Dipartimento di Scienze Mediche e Chirurgiche, Catanzaro, Italia
| | - Aldo Quattrone
- Università degli Studi “Magna Graecia”, Dipartimento di Scienze Mediche e Chirurgiche, Catanzaro, Italia
| |
Collapse
|
21
|
Abstract
The BDNF Val(66)Met polymorphism, a possible risk variant for mental disorders, is a potent modulator of neural plasticity in humans and has been linked to deficits in gray matter structure, function, and cognition. The impact of the variant on brain white matter structure, however, is controversial and remains poorly understood. Here, we used diffusion tensor imaging to examine the effects of BDNF Val(66)Met genotype on white matter microstructure in a sample of 85 healthy Caucasian adults. We demonstrate decreases of fractional anisotropy and widespread increases in radial diffusivity in Val/Val homozygotes compared with Met-allele carriers, particularly in prefrontal and occipital pathways. These data provide an independent confirmation of prior imaging genetics work, are consistent with complex effects of the BDNF Val(66)Met polymorphism on human brain structure, and may serve to generate hypotheses about variation in white matter microstructure in mental disorders associated with this variant.
Collapse
|
22
|
Lühder F, Gold R, Flügel A, Linker RA. Brain-derived neurotrophic factor in neuroimmunology: lessons learned from multiple sclerosis patients and experimental autoimmune encephalomyelitis models. Arch Immunol Ther Exp (Warsz) 2013; 61:95-105. [PMID: 23283517 DOI: 10.1007/s00005-012-0211-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Accepted: 12/20/2012] [Indexed: 02/07/2023]
Abstract
The concept of neuroprotective autoimmunity implies that immune cells, especially autoantigen-specific T cells, infiltrate the central nervous system (CNS) after injury and contribute to neuroregeneration and repair by secreting soluble factors. Amongst others, neurotrophic factors and neurotrophins such as brain-derived neurotropic factor (BDNF) are considered to play an important role in this process. New data raise the possibility that this concept could also be extended to neuroinflammatory diseases such as multiple sclerosis (MS) where autoantigen-specific T cells infiltrate the CNS, causing axonal/neuronal damage on the one hand, but also providing neuroprotective support on the other hand. In this review, we summarize the current knowledge on BDNF levels analyzed in MS patients in different compartments and its correlation with clinical parameters. Furthermore, new approaches in experimental animal models are discussed that attempt to decipher the functional relevance of BDNF in autoimmune demyelination.
Collapse
Affiliation(s)
- Fred Lühder
- Department of Neuroimmunology, Institute for Multiple Sclerosis Research and The Hertie Foundation, University Medical Center Göttingen, Waldweg 33, 37073 Göttingen, Germany.
| | | | | | | |
Collapse
|