1
|
Jing XJ, Zhou X, Zan ZY, Luo J, Li F, Zhang H. The value of electroencephalography features in the prognostic evaluation of large hemispheric infarction patients at different time intervals. Neurol Sci 2025; 46:791-800. [PMID: 39382625 DOI: 10.1007/s10072-024-07785-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/24/2024] [Indexed: 10/10/2024]
Abstract
BACKGROUND Large Hemispheric Infarction (LHI) is a devastating disease with high mortality. This study aimed to use electroencephalography (EEG) to evaluate the death risk of LHI patients and identify suitable evaluation time. METHODS This study retrospectively collected clinical and EEG data from 73 LHI patients, dividing them into death and survival group at discharge. EEG data was classified as 1-5 days and 6-14 days after onset according to the time intervals of cerebral edema. Regression and receiver operator characteristic curve (ROC) analysis were applied to explore the impact of temporal changes in various EEG and clinical features on death. RESULTS The areas under ROC curve (AUC) of death prediction for non-α frequency on non-infarct side at 6-14 days after onset was significantly higher than that at 1-5 days (p = 0.004). And there was no significant difference between the AUC of seizure activity for death prediction at 1-5 days and 6-14 days (p = 0.418). Multivariate regression analysis revealed that non-α frequency on non-infarct side and seizure activity at 6-14 days after onset were the independent risk factors for the death of LHI patients. Additionally, above two EEG features significantly improved the death predictive efficacy of clinical features in LHI patients with the integrated discrimination improvement index (IDI) of 0.174 (p = 0.015) and the net reclassification improvement (NRI) of 1.314 (p<0.001). CONCLUSIONS Non-α frequency on non-infarct side and seizure activity were reliable indicators for death prediction. 6-14 days after onset was the better time window for death evaluation of LHI patients through EEG.
Collapse
Affiliation(s)
- Xiao-Jun Jing
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi Road, Chongqing, 400016, China
| | - Xin Zhou
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi Road, Chongqing, 400016, China
| | - Zhi-Yuan Zan
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi Road, Chongqing, 400016, China
| | - Jing Luo
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi Road, Chongqing, 400016, China.
| | - Feng Li
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi Road, Chongqing, 400016, China.
| | - Hua Zhang
- Department of Neurology, the First Affiliated Hospital of Chongqing Medical University, No. 1, Youyi Road, Chongqing, 400016, China.
| |
Collapse
|
2
|
Schulthess S, Friedl S, Narula G, Brandi G, Willms JF, Keller E, Bicciato G. Low frequency oscillations reflect neurovascular coupling and disappear after cerebral death. Sci Rep 2024; 14:11287. [PMID: 38760449 PMCID: PMC11101423 DOI: 10.1038/s41598-024-61819-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/09/2024] [Indexed: 05/19/2024] Open
Abstract
Spectrum power analysis in the low frequency oscillations (LFO) region of functional near infrared spectroscopy (fNIRS) is a promising method to deliver information about brain activation and therefore might be used for prognostication in patients with disorders of consciousness in the neurocritical care unit alongside with established methods. In this study, we measure the cortical hemodynamic response measured by fNIRS in the LFO region following auditory and somatosensory stimulation in healthy subjects. The significant hemodynamic reaction in the contralateral hemisphere correlation with the physiologic electric response suggests neurovascular coupling. In addition, we investigate power spectrum changes in steady state measurements of cerebral death patients and healthy subjects in the LFO region, the frequency of the heartbeat and respiration. The spectral power within the LFO region was lower in the patients with cerebral death compared to the healthy subjects, whereas there were no differences in spectral power for physiological activities such as heartbeat and respiration rate. This finding indicates the cerebral origin of our low frequency measurements. Therefore, LFO measurements are a potential method to detect brain activation in patients with disorders of consciousness and cerebral death. However, further studies in patients are needed to investigate its potential clinical use.
Collapse
Affiliation(s)
- Sven Schulthess
- Neurocritical Care Unit, Department of Neurosurgery, Institute of Intensive Care Medicine, University Hospital, University of Zurich, 8091, Zurich, Switzerland.
| | - Susanne Friedl
- Neurocritical Care Unit, Department of Neurosurgery, Institute of Intensive Care Medicine, University Hospital, University of Zurich, 8091, Zurich, Switzerland
| | - Gagan Narula
- Neurocritical Care Unit, Department of Neurosurgery, Institute of Intensive Care Medicine, University Hospital, University of Zurich, 8091, Zurich, Switzerland
| | - Giovanna Brandi
- Neurocritical Care Unit, Department of Neurosurgery, Institute of Intensive Care Medicine, University Hospital, University of Zurich, 8091, Zurich, Switzerland
| | - Jan Folkard Willms
- Neurocritical Care Unit, Department of Neurosurgery, Institute of Intensive Care Medicine, University Hospital, University of Zurich, 8091, Zurich, Switzerland
| | - Emanuela Keller
- Neurocritical Care Unit, Department of Neurosurgery, Institute of Intensive Care Medicine, University Hospital, University of Zurich, 8091, Zurich, Switzerland
| | - Giulio Bicciato
- Department of Neurology, University Hospital Zurich, University of Zurich, 8091, Zurich, Switzerland
| |
Collapse
|
3
|
Effect of transcranial direct-current stimulation on executive function and resting EEG after stroke: A pilot randomized controlled study. J Clin Neurosci 2022; 103:141-147. [PMID: 35872448 DOI: 10.1016/j.jocn.2022.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 05/28/2022] [Accepted: 07/12/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND The effects of transcranial direct current stimulation (tDCS) on post-stroke executive impairment (PSEI) remain controversial. Resting stateelectroencephalogram (EEG) can assist in the diagnosis and assessment of executive dysfunction. OBJECTIVES We aimed to use EEG to explore the effect of tDCS on executive function among stroke patients. METHODS Twenty-four patients with PSEI were randomly divided into experimental and control groups, which received real and sham stimulation, respectively. Anodal electrical stimulation was applied to the left dorsolateral prefrontal lobe (F3). The stimulation intensity was 2 mA for 20 min once daily for 7 days. Executive function was monitored using neuropsychological scales. RESULTS The experimental group outperformed the control group in clinical scale results, with significant differences in the following scores: symbol digital modalities test, TMT-A, TMT-B, and digital span test. In the left central zone, theta band power was significantly higher after anodal electrical stimulation than before. Analysis of the correlation between EEG power and psychometric scores revealed that the power change was positively correlated with the scores on the symbol digital modality test (r = 0.435, p < 0.05). CONCLUSION Anodal tDCS can enhance executive function in patients with PSEI, and tDCS-related improvements are related to the enhancement of theta power in the affected region.
Collapse
|
4
|
Relationship Between Brainstem Auditory Evoked Potentials and Clinical Function in Patients With Cerebral Infarction. J Clin Neurophysiol 2022; 39:383-389. [DOI: 10.1097/wnp.0000000000000773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
5
|
Vatinno AA, Simpson A, Ramakrishnan V, Bonilha HS, Bonilha L, Seo NJ. The Prognostic Utility of Electroencephalography in Stroke Recovery: A Systematic Review and Meta-Analysis. Neurorehabil Neural Repair 2022; 36:255-268. [PMID: 35311412 PMCID: PMC9007868 DOI: 10.1177/15459683221078294] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
BACKGROUND Improved ability to predict patient recovery would guide post-stroke care by helping clinicians personalize treatment and maximize outcomes. Electroencephalography (EEG) provides a direct measure of the functional neuroelectric activity in the brain that forms the basis for neuroplasticity and recovery, and thus may increase prognostic ability. OBJECTIVE To examine evidence for the prognostic utility of EEG in stroke recovery via systematic review/meta-analysis. METHODS Peer-reviewed journal articles that examined the relationship between EEG and subsequent clinical outcome(s) in stroke were searched using electronic databases. Two independent researchers extracted data for synthesis. Linear meta-regressions were performed across subsets of papers with common outcome measures to quantify the association between EEG and outcome. RESULTS 75 papers were included. Association between EEG and clinical outcomes was seen not only early post-stroke, but more than 6 months post-stroke. The most studied prognostic potential of EEG was in predicting independence and stroke severity in the standard acute stroke care setting. The meta-analysis showed that EEG was associated with subsequent clinical outcomes measured by the Modified Rankin Scale, National Institutes of Health Stroke Scale, and Fugl-Meyer Upper Extremity Assessment (r = .72, .70, and .53 from 8, 13, and 12 papers, respectively). EEG improved prognostic abilities beyond prediction afforded by standard clinical assessments. However, the EEG variables examined were highly variable across studies and did not converge. CONCLUSIONS EEG shows potential to predict post-stroke recovery outcomes. However, evidence is largely explorative, primarily due to the lack of a definitive set of EEG measures to be used for prognosis.
Collapse
Affiliation(s)
- Amanda A Vatinno
- Department of Health Sciences and Research, College of Health Professions, 2345Medical University of South Carolina (MUSC), Charleston, SC, USA
| | - Annie Simpson
- Department of Health Sciences and Research, College of Health Professions, 2345Medical University of South Carolina (MUSC), Charleston, SC, USA
- Department of Healthcare Leadership and Management, College of Health Professions, 2345MUSC, Charleston, SC, USA
| | | | - Heather S Bonilha
- Department of Health Sciences and Research, College of Health Professions, 2345Medical University of South Carolina (MUSC), Charleston, SC, USA
| | - Leonardo Bonilha
- Department of Neurology, College of Medicine, 2345MUSC, Charleston, SC, USA
| | - Na Jin Seo
- Ralph H. Johnson VA Medical Center, Charleston, SC, USA
- Department of Health Sciences and Research, 2345MUSC, Charleston, SC, USA
- Division of Occupational Therapy, Department of Rehabilitation Sciences, MUSC, Charleston, SC, USA
| |
Collapse
|
6
|
Foroushani HM, Hamzehloo A, Kumar A, Chen Y, Heitsch L, Slowik A, Strbian D, Lee JM, Marcus DS, Dhar R. Accelerating Prediction of Malignant Cerebral Edema After Ischemic Stroke with Automated Image Analysis and Explainable Neural Networks. Neurocrit Care 2021; 36:471-482. [PMID: 34417703 DOI: 10.1007/s12028-021-01325-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 08/02/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND Malignant cerebral edema is a devastating complication of stroke, resulting in deterioration and death if hemicraniectomy is not performed prior to herniation. Current approaches for predicting this relatively rare complication often require advanced imaging and still suffer from suboptimal performance. We performed a pilot study to evaluate whether neural networks incorporating data extracted from routine computed tomography (CT) imaging could enhance prediction of edema in a large diverse stroke cohort. METHODS An automated imaging pipeline retrospectively extracted volumetric data, including cerebrospinal fluid (CSF) volumes and the hemispheric CSF volume ratio, from baseline and 24 h CT scans performed in participants of an international stroke cohort study. Fully connected and long short-term memory (LSTM) neural networks were trained using serial clinical and imaging data to predict those who would require hemicraniectomy or die with midline shift. The performance of these models was tested, in comparison with regression models and the Enhanced Detection of Edema in Malignant Anterior Circulation Stroke (EDEMA) score, using cross-validation to construct precision-recall curves. RESULTS Twenty of 598 patients developed malignant edema (12 required surgery, 8 died). The regression model provided 95% recall but only 32% precision (area under the precision-recall curve [AUPRC] 0.74), similar to the EDEMA score (precision 28%, AUPRC 0.66). The fully connected network did not perform better (precision 33%, AUPRC 0.71), but the LSTM model provided 100% recall and 87% precision (AUPRC 0.97) in the overall cohort and the subgroup with a National Institutes of Health Stroke Scale (NIHSS) score ≥ 8 (p = 0.0001 vs. regression and fully connected models). Features providing the most predictive importance were the hemispheric CSF ratio and NIHSS score measured at 24 h. CONCLUSIONS An LSTM neural network incorporating volumetric data extracted from routine CT scans identified all cases of malignant cerebral edema by 24 h after stroke, with significantly fewer false positives than a fully connected neural network, regression model, and the validated EDEMA score. This preliminary work requires prospective validation but provides proof of principle that a deep learning framework could assist in selecting patients for surgery prior to deterioration.
Collapse
Affiliation(s)
- Hossein Mohammadian Foroushani
- Department of Electrical and Systems Engineering, Washington University in St. Louis McKelvey School of Engineering, 1 Brookings Drive, St. Louis, MO, 63130-4899, USA
| | - Ali Hamzehloo
- Department of Neurology, Washington University in St. Louis School of Medicine, 660 S Euclid Avenue, Campus, Box 8111, St. Louis, MO, 63110, USA
| | - Atul Kumar
- Department of Neurology, Washington University in St. Louis School of Medicine, 660 S Euclid Avenue, Campus, Box 8111, St. Louis, MO, 63110, USA
| | - Yasheng Chen
- Department of Neurology, Washington University in St. Louis School of Medicine, 660 S Euclid Avenue, Campus, Box 8111, St. Louis, MO, 63110, USA
| | - Laura Heitsch
- Department of Emergency Medicine, Washington University in St. Louis School of Medicine, 660 S. Euclid Ave, Campus, Box 8072, St. Louis, MO, 63110, USA
| | - Agnieszka Slowik
- Department of Neurology, Jagiellonian University Medical College, Kraków, Poland
| | - Daniel Strbian
- Department of Neurology, Helsinki University Hospital, Helsinki, Finland
| | - Jin-Moo Lee
- Department of Neurology, Washington University in St. Louis School of Medicine, 660 S Euclid Avenue, Campus, Box 8111, St. Louis, MO, 63110, USA
| | - Daniel S Marcus
- Department of Radiology, Washington University in St. Louis School of Medicine, 525 Scott Ave, Campus, Box 8225, St. Louis, MO, 63110, USA
| | - Rajat Dhar
- Department of Neurology, Washington University in St. Louis School of Medicine, 660 S Euclid Avenue, Campus, Box 8111, St. Louis, MO, 63110, USA.
| |
Collapse
|
7
|
Miryala A, Javali M, Mehta A, Pradeep R, Acharya P, Srinivasa R. Study of Short Latency Somatosensory and Brain Stem Auditory Evoked Potentials Patients with Acute Ischemic Stroke Involving Middle Cerebral Artery Territory. J Neurosci Rural Pract 2021; 12:478-482. [PMID: 34295101 PMCID: PMC8289523 DOI: 10.1055/s-0041-1727558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Background
The precise timings of evoked potentials in evaluating the functional outcome of stroke have remained indistinct. Few studies in the Indian context have studied the outcome of early prognosis of stroke utilizing evoked potentials.
Objective
The aim of this study was to determine somatosensory evoked potentials (SSEPs) and brain stem auditory evoked potentials (BAEPs), their timing and abnormalities in acute ischemic stroke involving the middle cerebral artery (MCA) territory and to correlate SSEP and BAEP with the functional outcome (National Institutes of Health Stroke Scale (NIHSS), modified Rankin scale (mRS) and Barthel’s index) at 3 months.
Methods
MCA territory involved acute ischemic stroke patients (
n
= 30) presenting consecutively to the hospital within 3 days of symptoms onset were included. Details about clinical symptoms, neurological examination, treatment, NIHSS score, mRS scores were collected at the time of admission. All patients underwent imaging of the brain and were subjected to SSEP and BAEP on two occasions, first at 1 to 3 days and second at 4 to 7 days from the onset of stroke. At 3 months of follow-up, NIHSS, mRS, and Barthel’s index were recorded.
Results
P37 and N20 amplitude had a strong negative correlation (at 1–3 and 4–7 days) with NIHSS at admission, NIHSS at 3 months, mRS at admission, and mRS at 3 months and a significant positive correlation with Barthel’s index (
p
< 0.0001). BAEP wave V had a negative correlation (at 1–3 and 4–7 days) with NIHSS at admission, NIHSS at 3 months, mRS at admission, and mRS at 3 months and a positive correlation with Barthel’s index (
p
< 0.0001).
Conclusion
SSEP abnormalities recorded on days 4 to 7 from onset of stroke are more significant than those recorded within 1 to 3 days of onset of stroke; hence, the timing of 4 to 7 days after stroke onset can be considered as better for predicting functional outcome.
Collapse
Affiliation(s)
- Abhishek Miryala
- Department of Neurology, MS Ramaiah Medical College & Hospital, Bengaluru, Karnataka, India
| | - Mahendra Javali
- Department of Neurology, MS Ramaiah Medical College & Hospital, Bengaluru, Karnataka, India
| | - Anish Mehta
- Department of Neurology, MS Ramaiah Medical College & Hospital, Bengaluru, Karnataka, India
| | - R Pradeep
- Department of Neurology, MS Ramaiah Medical College & Hospital, Bengaluru, Karnataka, India
| | - Purushottam Acharya
- Department of Neurology, MS Ramaiah Medical College & Hospital, Bengaluru, Karnataka, India
| | - Rangasetty Srinivasa
- Department of Neurology, MS Ramaiah Medical College & Hospital, Bengaluru, Karnataka, India
| |
Collapse
|
8
|
Müller GC, Loureiro SO, Pettenuzzo LF, Almeida RF, Ynumaru EY, Guazzelli PA, Meyer FS, Pasquetti MV, Ganzella M, Calcagnotto ME, Souza DO. Effects of intranasal guanosine administration on brain function in a rat model of ischemic stroke. Purinergic Signal 2021; 17:255-271. [PMID: 33834349 DOI: 10.1007/s11302-021-09766-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/21/2021] [Indexed: 12/11/2022] Open
Abstract
Ischemic stroke is a major cause of morbidity and mortality worldwide and only few affected patients are able to receive treatment, especially in developing countries. Detailed pathophysiology of brain ischemia has been extensively studied in order to discover new treatments with a broad therapeutic window and that are accessible to patients worldwide. The nucleoside guanosine (Guo) has been shown to have neuroprotective effects in animal models of brain diseases, including ischemic stroke. In a rat model of focal permanent ischemia, systemic administration of Guo was effective only when administered immediately after stroke induction. In contrast, intranasal administration of Guo (In-Guo) was effective even when the first administration was 3 h after stroke induction. In order to validate the neuroprotective effect in this larger time window and to investigate In-Guo neuroprotection under global brain dysfunction induced by ischemia, we used the model of thermocoagulation of pial vessels in Wistar rats. In our study, we have found that In-Guo administered 3 h after stroke was capable of preventing ischemia-induced dysfunction, such as bilateral suppression and synchronicity of brain oscillations and ipsilateral cell death signaling, and increased permeability of the blood-brain barrier. In addition, In-Guo had a long-lasting effect on preventing ischemia-induced motor impairment. Our data reinforce In-Guo administration as a potential new treatment for brain ischemia with a more suitable therapeutic window.
Collapse
Affiliation(s)
- Gabriel C Müller
- Graduate Program in Biological Science: Biochemistry, Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Samanta O Loureiro
- Graduate Program in Biological Science: Biochemistry, Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Letícia F Pettenuzzo
- Graduate Program in Biological Science: Biochemistry, Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Roberto F Almeida
- Biological Sciences Department, Universidade Federal de Ouro Preto, Ouro Preto, MG, Brazil
| | - Evandro Y Ynumaru
- Graduate Program in Biological Science: Biochemistry, Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Pedro A Guazzelli
- Graduate Program in Biological Science: Biochemistry, Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Fabíola S Meyer
- Graduate Program in Biological Science: Biochemistry, Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Mayara V Pasquetti
- Graduate Program in Biological Science: Biochemistry, Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Pla sticity Laboratory, Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Marcelo Ganzella
- Department of Neurobiology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| | - Maria Elisa Calcagnotto
- Graduate Program in Biological Science: Biochemistry, Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Pla sticity Laboratory, Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Department of Biochemistry, ICBS, UFRGS, R. Ramiro Barcelos 2600, Anexo 21111, Porto Alegre, RS, 90035-003, Brazil.
| | - Diogo O Souza
- Graduate Program in Biological Science: Biochemistry, Department of Biochemistry, ICBS, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
- Department of Biochemistry, ICBS, UFRGS, R. Ramiro Barcelos 2600, Anexo 21111, Porto Alegre, RS, 90035-003, Brazil.
| |
Collapse
|
9
|
Wu S, Yuan R, Wang Y, Wei C, Zhang S, Yang X, Wu B, Liu M. Early Prediction of Malignant Brain Edema After Ischemic Stroke. Stroke 2019; 49:2918-2927. [PMID: 30571414 DOI: 10.1161/strokeaha.118.022001] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Background and Purpose- Malignant brain edema after ischemic stroke has high mortality but limited treatment. Therefore, early prediction is important, and we systematically reviewed predictors and predictive models to identify reliable markers for the development of malignant edema. Methods- We searched Medline and Embase from inception to March 2018 and included studies assessing predictors or predictive models for malignant brain edema after ischemic stroke. Study quality was assessed by a 17-item tool. Odds ratios, mean differences, or standardized mean differences were pooled in random-effects modeling. Predictive models were descriptively analyzed. Results- We included 38 studies (3278 patients) with 24 clinical factors, 7 domains of imaging markers, 13 serum biomarkers, and 4 models. Generally, the included studies were small and showed potential publication bias. Malignant edema was associated with younger age (n=2075; mean difference, -4.42; 95% CI, -6.63 to -2.22), higher admission National Institutes of Health Stroke Scale scores (n=807, median 17-20 versus 5.5-15), and parenchymal hypoattenuation >50% of the middle cerebral artery territory on initial computed tomography (n=420; odds ratio, 5.33; 95% CI, 2.93-9.68). Revascularization (n=1600, odds ratio, 0.37; 95% CI, 0.24-0.57) were associated with a lower risk for malignant edema. Four predictive models all showed an overall C statistic >0.70, with a risk of overfitting. Conclusions- Younger age, higher National Institutes of Health Stroke Scale, and larger parenchymal hypoattenuation on computed tomography are reliable early predictors for malignant edema. Revascularization reduces the risk of malignant edema. Future studies with robust design are needed to explore optimal cutoff age and National Institutes of Health Stroke Scale scores and to validate and improve existing models.
Collapse
Affiliation(s)
- Simiao Wu
- From the Department of Neurology, West China Hospital, Sichuan University, Chengdu (S.W., R.Y., Y.W., C.W., S.Z., B.W., M.L.)
| | - Ruozhen Yuan
- From the Department of Neurology, West China Hospital, Sichuan University, Chengdu (S.W., R.Y., Y.W., C.W., S.Z., B.W., M.L.)
| | - Yanan Wang
- From the Department of Neurology, West China Hospital, Sichuan University, Chengdu (S.W., R.Y., Y.W., C.W., S.Z., B.W., M.L.)
| | - Chenchen Wei
- From the Department of Neurology, West China Hospital, Sichuan University, Chengdu (S.W., R.Y., Y.W., C.W., S.Z., B.W., M.L.)
| | - Shihong Zhang
- From the Department of Neurology, West China Hospital, Sichuan University, Chengdu (S.W., R.Y., Y.W., C.W., S.Z., B.W., M.L.)
| | - Xiaoyan Yang
- West China Biomedical Big Data Center, West China Hospital/West China School of Medicine, Sichuan University, Chengdu (X.Y.)
| | - Bo Wu
- From the Department of Neurology, West China Hospital, Sichuan University, Chengdu (S.W., R.Y., Y.W., C.W., S.Z., B.W., M.L.)
| | - Ming Liu
- From the Department of Neurology, West China Hospital, Sichuan University, Chengdu (S.W., R.Y., Y.W., C.W., S.Z., B.W., M.L.)
| |
Collapse
|
10
|
Noninvasive Neuromonitoring: Current Utility in Subarachnoid Hemorrhage, Traumatic Brain Injury, and Stroke. Neurocrit Care 2018; 27:122-140. [PMID: 28004334 DOI: 10.1007/s12028-016-0361-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Noninvasive neuromonitoring is increasingly being used to monitor the course of primary brain injury and limit secondary brain damage of patients in the neurocritical care unit. Proposed advantages over invasive neuromonitoring methods include a lower risk of infection and bleeding, no need for surgical installation, mobility and portability of some devices, and safety. The question, however, is whether noninvasive neuromonitoring is practical and trustworthy enough already. We searched the recent literature and reviewed English-language studies on noninvasive neuromonitoring in subarachnoid hemorrhage, traumatic brain injury, and ischemic and hemorrhagic stroke between the years 2010 and 2015. We found 88 studies that were eligible for review including the methods transcranial ultrasound, electroencephalography, evoked potentials, near-infrared spectroscopy, bispectral index, and pupillometry. Noninvasive neuromonitoring cannot yet completely replace invasive methods in most situations, but has great potential being complementarily integrated into multimodality monitoring, for guiding management, and for limiting the use of invasive devices and in-hospital transports for imaging.
Collapse
|
11
|
Petrovic J, Milosevic V, Zivkovic M, Stojanov D, Milojkovic O, Kalauzi A, Saponjic J. Slower EEG alpha generation, synchronization and "flow"-possible biomarkers of cognitive impairment and neuropathology of minor stroke. PeerJ 2017; 5:e3839. [PMID: 28970969 PMCID: PMC5623310 DOI: 10.7717/peerj.3839] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 09/01/2017] [Indexed: 11/20/2022] Open
Abstract
Background We investigated EEG rhythms, particularly alpha activity, and their relationship to post-stroke neuropathology and cognitive functions in the subacute and chronic stages of minor strokes. Methods We included 10 patients with right middle cerebral artery (MCA) ischemic strokes and 11 healthy controls. All the assessments of stroke patients were done both in the subacute and chronic stages. Neurological impairment was measured using the National Institute of Health Stroke Scale (NIHSS), whereas cognitive functions were assessed using the Montreal Cognitive Assessment (MoCA) and MoCA memory index (MoCA-MIS). The EEG was recorded using a 19 channel EEG system with standard EEG electrode placement. In particular, we analyzed the EEGs derived from the four lateral frontal (F3, F7, F4, F8), and corresponding lateral posterior (P3, P4, T5, T6) electrodes. Quantitative EEG analysis included: the group FFT spectra, the weighted average of alpha frequency (αAVG), the group probability density distributions of all conventional EEG frequency band relative amplitudes (EEG microstructure), the inter- and intra-hemispheric coherences, and the topographic distribution of alpha carrier frequency phase potentials (PPs). Statistical analysis was done using a Kruskal–Wallis ANOVA with a post-hoc Mann–Whitney U two-tailed test, and Spearman’s correlation. Results We demonstrated transient cognitive impairment alongside a slower alpha frequency (αAVG) in the subacute right MCA stroke patients vs. the controls. This slower alpha frequency showed no amplitude change, but was highly synchronized intra-hemispherically, overlying the ipsi-lesional hemisphere, and inter-hemispherically, overlying the frontal cortex. In addition, the disturbances in EEG alpha activity in subacute stroke patients were expressed as a decrease in alpha PPs over the frontal cortex and an altered “alpha flow”, indicating the sustained augmentation of inter-hemispheric interactions. Although the stroke induced slower alpha was a transient phenomenon, the increased alpha intra-hemispheric synchronization, overlying the ipsi-lesional hemisphere, the increased alpha F3–F4 inter-hemispheric synchronization, the delayed alpha waves, and the newly established inter-hemispheric “alpha flow” within the frontal cortex, remained as a permanent consequence of the minor stroke. This newly established frontal inter-hemispheric “alpha flow” represented a permanent consequence of the “hidden” stroke neuropathology, despite the fact that cognitive impairment has been returned to the control values. All the detected permanent changes at the EEG level with no cognitive impairment after a minor stroke could be a way for the brain to compensate for the lesion and restore the lost function. Discussion Our study indicates slower EEG alpha generation, synchronization and “flow” as potential biomarkers of cognitive impairment onset and/or compensatory post-stroke re-organizational processes.
Collapse
Affiliation(s)
- Jelena Petrovic
- Department of Neurobiology, Institute for Biological Research-Sinisa Stankovic, University of Belgrade, Belgrade, Serbia
| | - Vuk Milosevic
- Clinic of Neurology, Clinical Center Nis, Nis, Serbia
| | | | | | - Olga Milojkovic
- Clinic for Mental Health Protection, Clinical Center Nis, Nis, Serbia
| | - Aleksandar Kalauzi
- Department for Life Sciences, Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia
| | - Jasna Saponjic
- Department of Neurobiology, Institute for Biological Research-Sinisa Stankovic, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
12
|
Continuous electroencephalographic-monitoring in the ICU: an overview of current strengths and future challenges. Curr Opin Anaesthesiol 2017; 30:192-199. [PMID: 28151826 DOI: 10.1097/aco.0000000000000443] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
PURPOSE OF REVIEW In ICUs, numerous physiological parameters are continuously monitored and displayed. Yet, functional monitoring of the organ of primary concern, the brain, is not routinely performed. Despite the benefits of ICU use of continuous electroencephalographic (EEG)-monitoring (cEEG) is increasingly recognized, several issues nevertheless seem to hamper its widespread clinical implementation. RECENT FINDINGS Utilization of ICU cEEG has significantly improved detection and characterization of cerebral pathology, prognostication and clinical management in specific patient groups. Potential solutions to several remaining challenges are currently being established. Descriptive EEG-terminology is evolving, whereas logistical issues are dealt with using telemedicine and quantitative EEG trends, training of nonexpert personnel and development of specialized detection algorithms. These concerted solutions are advancing cEEG-registration towards cEEG-monitoring. Notwithstanding these advances, obstacles such as ambiguous EEG-interpretation and differences in treatment based on EEG-findings need yet to be overcome. SUMMARY In selected critically ill patient groups, ICU cEEG has clear benefits over (repeated) standard EEG or no functional brain monitoring at all and if available, cEEG should be used. However, several issues preventing optimal ICU cEEG usage persist and should be further explored.
Collapse
|
13
|
Scarpino M, Lanzo G, Carrai R, Lolli F, Migliaccio ML, Spalletti M, Peris A, Amantini A, Grippo A. Predictive patterns of sensory evoked potentials in comatose brain injured patients evolving to brain death. Neurophysiol Clin 2017; 47:19-29. [DOI: 10.1016/j.neucli.2016.11.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 11/22/2016] [Indexed: 10/20/2022] Open
|
14
|
Wang Y, Liu G, Hong D, Chen F, Ji X, Cao G. White matter injury in ischemic stroke. Prog Neurobiol 2016; 141:45-60. [PMID: 27090751 PMCID: PMC5677601 DOI: 10.1016/j.pneurobio.2016.04.005] [Citation(s) in RCA: 195] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 04/01/2016] [Accepted: 04/10/2016] [Indexed: 02/06/2023]
Abstract
Stroke is one of the major causes of disability and mortality worldwide. It is well known that ischemic stroke can cause gray matter injury. However, stroke also elicits profound white matter injury, a risk factor for higher stroke incidence and poor neurological outcomes. The majority of damage caused by stroke is located in subcortical regions and, remarkably, white matter occupies nearly half of the average infarct volume. Indeed, white matter is exquisitely vulnerable to ischemia and is often injured more severely than gray matter. Clinical symptoms related to white matter injury include cognitive dysfunction, emotional disorders, sensorimotor impairments, as well as urinary incontinence and pain, all of which are closely associated with destruction and remodeling of white matter connectivity. White matter injury can be noninvasively detected by MRI, which provides a three-dimensional assessment of its morphology, metabolism, and function. There is an urgent need for novel white matter therapies, as currently available strategies are limited to preclinical animal studies. Optimal protection against ischemic stroke will need to encompass the fortification of both gray and white matter. In this review, we discuss white matter injury after ischemic stroke, focusing on clinical features and tools, such as imaging, manifestation, and potential treatments. We also briefly discuss the pathophysiology of WMI and future research directions.
Collapse
Affiliation(s)
- Yuan Wang
- Department of Neurology, Xuanwu Hospital, Capital University of Medicine, Beijing 100053, China
| | - Gang Liu
- Department of Neurology, Xuanwu Hospital, Capital University of Medicine, Beijing 100053, China
| | - Dandan Hong
- Department of Bioengineering, University of Pittsburgh School of Engineering, United States
| | - Fenghua Chen
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, United States
| | - Xunming Ji
- Department of Neurosurgery, Xuanwu Hospital, Capital University of Medicine, Beijing 100053, China.
| | - Guodong Cao
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15260, United States; Geriatric Research Education and Clinical Centers, VA Pittsburgh Healthcare System, Pittsburgh, PA 15240, United States.
| |
Collapse
|
15
|
Somatosensory and Brainstem Auditory Evoked Potentials Assessed between 4 and 7 Days after Severe Stroke Onset Predict Unfavorable Outcome. BIOMED RESEARCH INTERNATIONAL 2015; 2015:196148. [PMID: 26798633 PMCID: PMC4698544 DOI: 10.1155/2015/196148] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 11/12/2015] [Accepted: 11/19/2015] [Indexed: 12/11/2022]
Abstract
Our objective was to explore the best predictive timing of short-latency somatosensory evoked potentials (SLSEP) and brainstem auditory evoked potentials (BAEP) for unfavorable outcomes in patients with early stage severe stroke. One hundred fifty-six patients with acute severe supratentorial stroke were monitored according to SLSEP, BAEP, and the Glasgow Coma Scale (GCS) at 1-3 days and 4-7 days after the onset of stroke. All patients were followed up for outcomes at 6 months after onset using the modified Rankin Scale (mRS), with a score of 5-6 considered unfavorable. The predictive values of SLSEP, BAEP, and the GCS at 1-3 days were compared with 4-7 days after onset. Our results show that, according to the analysis of prognostic authenticity, the predictive values of SLSEP and BAEP at 4-7 days after stroke onset improved when compared with the values at 1-3 days for unfavorable outcomes. Most of the patients with change of worsening evoked potentials from 1-3 days to 4-7 days after onset had unfavorable outcomes. In conclusion, SLSEP and BAEP assessed at 4-7 days after onset predicted unfavorable outcomes for acute severe stroke patients. The worsening values of SLSEP and BAEP between 1-3 days and 4-7 days also present a prognostic value.
Collapse
|
16
|
Abstract
To determine the optimal use and indications of electroencephalography (EEG) in critical care management of acute brain injury (ABI). An electronic literature search was conducted for articles in English describing electrophysiological monitoring in ABI from January 1990 to August 2013. A total of 165 studies were included. EEG is a useful monitor for seizure and ischemia detection. There is a well-described role for EEG in convulsive status epilepticus and cardiac arrest (CA). Data suggest EEG should be considered in all patients with ABI and unexplained and persistent altered consciousness and in comatose intensive care unit (ICU) patients without an acute primary brain condition who have an unexplained impairment of mental status. There remain uncertainties about certain technical details, e.g., the minimum duration of EEG studies, the montage, and electrodes. Data obtained from both EEG and EP studies may help estimate prognosis in ABI patients, particularly following CA and traumatic brain injury. Data supporting these recommendations is sparse, and high quality studies are needed. EEG is used to monitor and detect seizures and ischemia in ICU patients and indications for EEG are clear for certain disease states, however, uncertainty remains on other applications.
Collapse
|
17
|
Rabiller G, He JW, Nishijima Y, Wong A, Liu J. Perturbation of Brain Oscillations after Ischemic Stroke: A Potential Biomarker for Post-Stroke Function and Therapy. Int J Mol Sci 2015; 16:25605-40. [PMID: 26516838 PMCID: PMC4632818 DOI: 10.3390/ijms161025605] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 10/06/2015] [Accepted: 10/15/2015] [Indexed: 01/08/2023] Open
Abstract
Brain waves resonate from the generators of electrical current and propagate across brain regions with oscillation frequencies ranging from 0.05 to 500 Hz. The commonly observed oscillatory waves recorded by an electroencephalogram (EEG) in normal adult humans can be grouped into five main categories according to the frequency and amplitude, namely δ (1-4 Hz, 20-200 μV), θ (4-8 Hz, 10 μV), α (8-12 Hz, 20-200 μV), β (12-30 Hz, 5-10 μV), and γ (30-80 Hz, low amplitude). Emerging evidence from experimental and human studies suggests that groups of function and behavior seem to be specifically associated with the presence of each oscillation band, although the complex relationship between oscillation frequency and function, as well as the interaction between brain oscillations, are far from clear. Changes of brain oscillation patterns have long been implicated in the diseases of the central nervous system including ischemic stroke, in which the reduction of cerebral blood flow as well as the progression of tissue damage have direct spatiotemporal effects on the power of several oscillatory bands and their interactions. This review summarizes the current knowledge in behavior and function associated with each brain oscillation, and also in the specific changes in brain electrical activities that correspond to the molecular events and functional alterations observed after experimental and human stroke. We provide the basis of the generations of brain oscillations and potential cellular and molecular mechanisms underlying stroke-induced perturbation. We will also discuss the implications of using brain oscillation patterns as biomarkers for the prediction of stroke outcome and therapeutic efficacy.
Collapse
Affiliation(s)
- Gratianne Rabiller
- Department of Neurological Surgery, University of California at San Francisco and Department of Veterans Affairs Medical Center, 1700 Owens Street, San Francisco, CA 94158, USA.
- UCSF and SFVAMC, San Francisco, CA 94158, USA.
- Univ. de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux 33000, France.
- CNRS, Institut des Maladies Neurodégénératives, UMR 5293, Bordeaux 33000, France.
| | - Ji-Wei He
- Department of Neurological Surgery, University of California at San Francisco and Department of Veterans Affairs Medical Center, 1700 Owens Street, San Francisco, CA 94158, USA.
- UCSF and SFVAMC, San Francisco, CA 94158, USA.
| | - Yasuo Nishijima
- Department of Neurological Surgery, University of California at San Francisco and Department of Veterans Affairs Medical Center, 1700 Owens Street, San Francisco, CA 94158, USA.
- UCSF and SFVAMC, San Francisco, CA 94158, USA.
- Department of Neurosurgery, Tohoku University Graduate School of Medicine 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, Japan.
| | - Aaron Wong
- Department of Neurological Surgery, University of California at San Francisco and Department of Veterans Affairs Medical Center, 1700 Owens Street, San Francisco, CA 94158, USA.
- UCSF and SFVAMC, San Francisco, CA 94158, USA.
- Rice University, 6100 Main St, Houston, TX 77005, USA.
| | - Jialing Liu
- Department of Neurological Surgery, University of California at San Francisco and Department of Veterans Affairs Medical Center, 1700 Owens Street, San Francisco, CA 94158, USA.
- UCSF and SFVAMC, San Francisco, CA 94158, USA.
| |
Collapse
|
18
|
Maciel CB, Sheth KN. Malignant MCA Stroke: an Update on Surgical Decompression and Future Directions. Curr Atheroscler Rep 2015; 17:40. [DOI: 10.1007/s11883-015-0519-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
19
|
Rastogi V, Lamb DG, Williamson JB, Stead TS, Penumudi R, Bidari S, Ganti L, Heilman KM, Hedna VS. Hemispheric differences in malignant middle cerebral artery stroke. J Neurol Sci 2015; 353:20-7. [PMID: 25959980 DOI: 10.1016/j.jns.2015.04.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 04/21/2015] [Accepted: 04/23/2015] [Indexed: 11/17/2022]
Abstract
BACKGROUND We recently reported that left versus right hemisphere cerebral infarctions patients more frequently have worse outcomes. However our clinical experience led us to suspect that the incidence of malignant middle cerebral artery infarctions (MMCA) was higher in the right compared to the left hemispheric strokes. OBJECTIVE To determine whether laterality in MMCA stroke is an important determinant of stroke sequelae. METHODS A systematic search was performed for publications in PubMed using "malignant middle cerebral artery and infarction". A total of 73 relevant studies were abstracted. RESULTS MMCA laterality data were available for 2673 patients, with 1687 (63%) right hemispheric involvement, thus right being more commonly associated with MMCA (binomial test, p<0.05). While mortality rates were similar, right hemispheric MMCA (n=271) had mortality of 31% (n=85) whereas left hemispheric MMCA (n=144) had mortality of 36% (n=53), morbidity rates were worse on the right. CONCLUSION MMCA stroke appears to be more common on the right, and this laterality is also associated with significantly higher morbidity. Further prospective studies are needed to more completely understand the nature of this laterality as well as test possible new treatments to reduce mortality and morbidity associated with MMCA.
Collapse
Affiliation(s)
- Vaibhav Rastogi
- Department of Neurology, University of Florida College of Medicine, Gainesville, FL 32611, United States
| | - Damon G Lamb
- Department of Neurology, University of Florida College of Medicine, Gainesville, FL 32611, United States; Malcom Randall VAMC, Gainesville, FL 32608, United States
| | - John B Williamson
- Department of Neurology, University of Florida College of Medicine, Gainesville, FL 32611, United States; Malcom Randall VAMC, Gainesville, FL 32608, United States
| | - Thor S Stead
- Department of Neurology, University of Florida College of Medicine, Gainesville, FL 32611, United States
| | - Rachel Penumudi
- Department of Neurology, University of Florida College of Medicine, Gainesville, FL 32611, United States
| | - Sharathchandra Bidari
- Department of Radiology, University of Florida College of Medicine, Gainesville, FL 32611, United States
| | - Latha Ganti
- Lake City VAMC, NF/SGVHS, Lake City, FL 32025-5808, United States
| | - Kenneth M Heilman
- Department of Neurology, University of Florida College of Medicine, Gainesville, FL 32611, United States; Malcom Randall VAMC, Gainesville, FL 32608, United States
| | - Vishnumurthy S Hedna
- Department of Neurology, University of Florida College of Medicine, Gainesville, FL 32611, United States.
| |
Collapse
|
20
|
Ordek G, Proddutur A, Santhakumar V, Pfister BJ, Sahin M. Electrophysiological monitoring of injury progression in the rat cerebellar cortex. Front Syst Neurosci 2014; 8:197. [PMID: 25346664 PMCID: PMC4191519 DOI: 10.3389/fnsys.2014.00197] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 09/23/2014] [Indexed: 12/05/2022] Open
Abstract
The changes of excitability in affected neural networks can be used as a marker to study the temporal course of traumatic brain injury (TBI). The cerebellum is an ideal platform to study brain injury mechanisms at the network level using the electrophysiological methods. Within its crystalline morphology, the cerebellar cortex contains highly organized topographical subunits that are defined by two main inputs, the climbing (CFs) and mossy fibers (MFs). Here we demonstrate the use of cerebellar evoked potentials (EPs) mediated through these afferent systems for monitoring the injury progression in a rat model of fluid percussion injury (FPI). A mechanical tap on the dorsal hand was used as a stimulus, and EPs were recorded from the paramedian lobule (PML) of the posterior cerebellum via multi-electrode arrays (MEAs). Post-injury evoked response amplitudes (EPAs) were analyzed on a daily basis for 1 week and compared with pre-injury values. We found a trend of consistently decreasing EPAs in all nine animals, losing as much as 72 ± 4% of baseline amplitudes measured before the injury. Notably, our results highlighted two particular time windows; the first 24 h of injury in the acute period and day-3 to day-7 in the delayed period where the largest drops (~50% and 24%) were observed in the EPAs. In addition, cross-correlations of spontaneous signals between electrode pairs declined (from 0.47 ± 0.1 to 0.35 ± 0.04, p < 0.001) along with the EPAs throughout the week of injury. In support of the electrophysiological findings, immunohistochemical analysis at day-7 post-injury showed detectable Purkinje cell loss at low FPI pressures and more with the largest pressures used. Our results suggest that sensory evoked potentials (SEPs) recorded from the cerebellar surface can be a useful technique to monitor the course of cerebellar injury and identify the phases of injury progression even at mild levels.
Collapse
Affiliation(s)
- Gokhan Ordek
- Department of Biomedical Engineering, New Jersey Institute of Technology Newark, NJ, USA
| | - Archana Proddutur
- Department of Neurology and Neurosciences, Rutgers Biomedical and Health Sciences Newark, NJ, USA
| | | | - Bryan J Pfister
- Department of Biomedical Engineering, New Jersey Institute of Technology Newark, NJ, USA
| | - Mesut Sahin
- Department of Biomedical Engineering, New Jersey Institute of Technology Newark, NJ, USA
| |
Collapse
|
21
|
Zhang Y, Wang M, Su YY. The role of middle latency evoked potentials in early prediction of favorable outcomes among patients with severe ischemic brain injuries. J Neurol Sci 2014; 345:112-7. [PMID: 25070207 DOI: 10.1016/j.jns.2014.07.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 07/07/2014] [Accepted: 07/10/2014] [Indexed: 10/25/2022]
Abstract
OBJECTIVE To explore the role of middle latency evoked potentials (EPs) as predictors for favorable outcome in patients with severe ischemic brain injuries by comparing the prognostic ability of short latency somatosensory and auditory evoked potentials (SLSEP and BAEP) with middle latency somatosensory and auditory evoked potentials (MLSEP and MLAEP). METHODS MLSEP, MLAEP, SLSEP and BAEP were recorded in 112 patients with severe ischemic brain injuries (Glasgow Coma Scale ≤ 8). Among them, 83 patients suffered from cerebral ischemic stroke and 29 suffered from anoxic-ischemic encephalopathy after cardiopulmonary resuscitation between 1 and 7 days after the onset of stroke. Outcomes were reviewed 6 months later using the Glasgow Outcome Scale (GOS). A GOS score of 4-5 was considered as a good outcome while a score of 1-3 was considered as poor. RESULTS By using the prognostic authenticity analysis of predictors for good outcome, at least unilateral N20 of the SLSEP exit and at least unilateral N60 of the MLSEP exit showed the highest sensitivity which was 100% (95% CI: 86.7%-100%). The bilateral normal N60 showed a high specificity of 97.5% (95% CI: 90.4%-99.6%). It also showed the highest positive likelihood ratio of 6.25% (95% CI: 1.28%-30.59%), which was superior to N20 of SLSEP, V of BAEP, and Pa of MLAEP. The analysis demonstrated that the area under the curve for MLSEP grading was the highest (0.838) compared to that of SLSEP grading (0.784), MLAEP grading (0.659) and BAEP grading (0.621). CONCLUSIONS Compared with using N20 of SLSEP analysis alone, adding MLSEP improves the outcome prediction in patients with severe ischemic brain injuries. When an outcome is uncertain after initial evaluation using short-latency EPs, MLSEP is valuable to be used from the first week to further improve prognostication in these patients.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Miao Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ying Ying Su
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
22
|
Neugebauer H, Jüttler E. Hemicraniectomy for malignant middle cerebral artery infarction: current status and future directions. Int J Stroke 2014; 9:460-7. [PMID: 24725828 DOI: 10.1111/ijs.12211] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 09/08/2013] [Indexed: 12/01/2022]
Abstract
Malignant middle cerebral artery infarction is a life-threatening sub-type of ischemic stroke that may only be survived at the expense of permanent disability. Decompressive hemicraniectomy is an effective surgical therapy to reduce mortality and improve functional outcome without promoting most severe disability. Evidence derives from three European randomized controlled trials in patients up to 60 years. The recently finished DEcompressive Surgery for the Treatment of malignant INfarction of the middle cerebral arterY - II trial gives now high-level evidence for the effectiveness of decompressive hemicraniectomy in patients older than 60 years. Nevertheless, pressing issues persist that need to be answered in future clinical trials, e.g. the acceptable degree of disability in survivors of malignant middle cerebral artery infarction, the importance of aphasia, and the best timing for decompressive hemicraniectomy. This review provides an overview of the current diagnosis and treatment of malignant middle cerebral artery infarction with a focus on decompressive hemicraniectomy and outlines future perspectives.
Collapse
Affiliation(s)
- Hermann Neugebauer
- Department of Neurology, RKU - University and Rehabilitation Hospitals, Ulm, Germany
| | | |
Collapse
|
23
|
Claassen J, Taccone FS, Horn P, Holtkamp M, Stocchetti N, Oddo M. Recommendations on the use of EEG monitoring in critically ill patients: consensus statement from the neurointensive care section of the ESICM. Intensive Care Med 2013; 39:1337-51. [PMID: 23653183 DOI: 10.1007/s00134-013-2938-4] [Citation(s) in RCA: 269] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 04/14/2013] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Recommendations for EEG monitoring in the ICU are lacking. The Neurointensive Care Section of the ESICM assembled a multidisciplinary group to establish consensus recommendations on the use of EEG in the ICU. METHODS A systematic review was performed and 42 studies were included. Data were extracted using the PICO approach, including: (a) population, i.e. ICU patients with at least one of the following: traumatic brain injury, subarachnoid hemorrhage, intracerebral hemorrhage, stroke, coma after cardiac arrest, septic and metabolic encephalopathy, encephalitis, and status epilepticus; (b) intervention, i.e. EEG monitoring of at least 30 min duration; (c) control, i.e. intermittent vs. continuous EEG, as no studies compared patients with a specific clinical condition, with and without EEG monitoring; (d) outcome endpoints, i.e. seizure detection, ischemia detection, and prognostication. After selection, evidence was classified and recommendations developed using the GRADE system. RECOMMENDATIONS The panel recommends EEG in generalized convulsive status epilepticus and to rule out nonconvulsive seizures in brain-injured patients and in comatose ICU patients without primary brain injury who have unexplained and persistent altered consciousness. We suggest EEG to detect ischemia in comatose patients with subarachnoid hemorrhage and to improve prognostication of coma after cardiac arrest. We recommend continuous over intermittent EEG for refractory status epilepticus and suggest it for patients with status epilepticus and suspected ongoing seizures and for comatose patients with unexplained and persistent altered consciousness. CONCLUSIONS EEG monitoring is an important diagnostic tool for specific indications. Further data are necessary to understand its potential for ischemia assessment and coma prognostication.
Collapse
Affiliation(s)
- Jan Claassen
- Department of Neurology, Division of Critical Care Neurology, Columbia University Medical Center, New York, NY, USA
| | | | | | | | | | | |
Collapse
|