1
|
Pagali SR, Kumar R, LeMahieu AM, Basso MR, Boeve BF, Croarkin PE, Geske JR, Hassett LC, Huston J, Kung S, Lundstrom BN, Petersen RC, St Louis EK, Welker KM, Worrell GA, Pascual-Leone A, Lapid MI. Efficacy and safety of transcranial magnetic stimulation on cognition in mild cognitive impairment, Alzheimer's disease, Alzheimer's disease-related dementias, and other cognitive disorders: a systematic review and meta-analysis. Int Psychogeriatr 2024:1-49. [PMID: 38329083 PMCID: PMC11306417 DOI: 10.1017/s1041610224000085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
OBJECTIVE We aim to analyze the efficacy and safety of TMS on cognition in mild cognitive impairment (MCI), Alzheimer's disease (AD), AD-related dementias, and nondementia conditions with comorbid cognitive impairment. DESIGN Systematic review, Meta-Analysis. SETTING We searched MEDLINE, Embase, Cochrane database, APA PsycINFO, Web of Science, and Scopus from January 1, 2000, to February 9, 2023. PARTICIPANTS AND INTERVENTIONS RCTs, open-label, and case series studies reporting cognitive outcomes following TMS intervention were included. MEASUREMENT Cognitive and safety outcomes were measured. Cochrane Risk of Bias for RCTs and MINORS (Methodological Index for Non-Randomized Studies) criteria were used to evaluate study quality. This study was registered with PROSPERO (CRD42022326423). RESULTS The systematic review included 143 studies (n = 5,800 participants) worldwide, encompassing 94 RCTs, 43 open-label prospective, 3 open-label retrospective, and 3 case series. The meta-analysis included 25 RCTs in MCI and AD. Collectively, these studies provide evidence of improved global and specific cognitive measures with TMS across diagnostic groups. Only 2 studies (among 143) reported 4 adverse events of seizures: 3 were deemed TMS unrelated and another resolved with coil repositioning. Meta-analysis showed large effect sizes on global cognition (Mini-Mental State Examination (SMD = 0.80 [0.26, 1.33], p = 0.003), Montreal Cognitive Assessment (SMD = 0.85 [0.26, 1.44], p = 0.005), Alzheimer's Disease Assessment Scale-Cognitive Subscale (SMD = -0.96 [-1.32, -0.60], p < 0.001)) in MCI and AD, although with significant heterogeneity. CONCLUSION The reviewed studies provide favorable evidence of improved cognition with TMS across all groups with cognitive impairment. TMS was safe and well tolerated with infrequent serious adverse events.
Collapse
Affiliation(s)
- Sandeep R Pagali
- Division of Hospital Internal Medicine, Mayo Clinic, Rochester, MI, USA
- Division of Community Internal Medicine, Geriatrics, and Palliative Care, Mayo Clinic, Rochester, MI, USA
| | - Rakesh Kumar
- Department of Psychiatry and Psychology, Mayo Clinic School of Graduate Medical Education, Mayo Clinic College of Medicine and Science, Rochester, MI, USA
| | - Allison M LeMahieu
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MI, USA
| | - Michael R Basso
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MI, USA
| | | | - Paul E Croarkin
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MI, USA
| | - Jennifer R Geske
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MI, USA
| | | | - John Huston
- Department of Radiology (Huston and Welker), Mayo Clinic, Rochester, MI, USA
| | - Simon Kung
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MI, USA
| | | | | | | | - Kirk M Welker
- Department of Radiology (Huston and Welker), Mayo Clinic, Rochester, MI, USA
| | | | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research and Deanna, Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Roslindale, MA, USA
- Department of Neurology, Harvard Medical School, Cambridge, MA, USA
| | - Maria I Lapid
- Division of Community Internal Medicine, Geriatrics, and Palliative Care, Mayo Clinic, Rochester, MI, USA
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MI, USA
| |
Collapse
|
2
|
Jellinger KA. Pathomechanisms of cognitive and behavioral impairment in corticobasal degeneration. J Neural Transm (Vienna) 2023; 130:1509-1522. [PMID: 37659990 DOI: 10.1007/s00702-023-02691-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/23/2023] [Indexed: 09/04/2023]
Abstract
Corticobasal degeneration (CBD) is a rare, sporadic, late-onset progressive neurodegenerative disorder of unknown etiology, clinically characterized by an akinetic-rigid syndrome, behavior and personality disorders, language problems (aphasias), apraxia, executive and cognitive abnormalities and limb dystonia. The syndrome is not specific, as clinical features of pathologically proven CBD include several phenotypes. This 4-repeat (4R) tauopathy is morphologically featured by often asymmetric frontoparietal atrophy, ballooned/achromatic neurons containing filamentous 4R-tau aggregates in cortex and striatum, thread-like processes that are more widespread than in progressive supranuclear palsy (PSP), pathognomonic "astroglial plaques", and numerous inclusions in both astrocytes and oligodendroglia ("coiled bodies") in the white matter. Cognitive deficits in CBD are frequent initial presentations before onset of motor symptoms, depending on the phenotypic variant. They predominantly include executive and visuospatial dysfunction, sleep disorders and language deficits with usually preserved memory domains. Neuroimaging studies showed heterogenous locations of brain atrophy, particularly contralateral to the dominant symptoms, with disruption of striatal connections to prefrontal cortex and basal ganglia circuitry. Asymmetric hypometabolism, mainly involving frontal and parietal regions, is associated with brain cholinergic deficits, and dopaminergic nigrostriatal degeneration. Widespread alteration of cortical and subcortical structures causing heterogenous changes in various brain functional networks support the concept that CBD, similar to PSP, is a brain network disruption disorder. Putative pathogenic factors are hyperphosphorylated tau-pathology, neuroinflammation and oxidative injury, but the basic mechanisms of cognitive impairment in CBD, as in other degenerative movement disorders, are complex and deserve further elucidation as a basis for early diagnosis and adequate treatment of this fatal disorder.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, 1150, Vienna, Austria.
| |
Collapse
|
3
|
Jabbari B, Comtesse SM. Botulinum Toxin Treatment of Motor Disorders in Parkinson Disease-A Systematic Review. Toxins (Basel) 2023; 15:toxins15020081. [PMID: 36828396 PMCID: PMC9960770 DOI: 10.3390/toxins15020081] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 01/19/2023] Open
Abstract
This review provides an up-to-date literature account on the efficacy of Botulinum toxin treatment for common motor disorders of Parkinson Disease. The reviewed disorders include the common motor disorders in PD such as tremor, focal foot dystonia, rigidity and freezing of gait (FOG). In the area of Parkinson tremor, two newly described evaluation/injection techniques (Yale method in USA and Western University method in Canada) offer efficacy with low incidence of hand and finger weakness as side effects. Blinded studies conducted on foot dystonia of PD indicate that botulinum toxin injections into toe flexors are efficacious in alleviating this form of dystonia. Small, blinded studies suggest improvement of Parkinson rigidity after botulinum toxin injection; proof of this claim, however, requires information from larger, blinded clinical trials. In FOG, the improvement reported in open label studies could not be substantiated in blinded investigations. However, there is room for further controlled studies that include the proximal lower limb muscles in the injection plan and/or use higher doses of the injected toxin for this indication.
Collapse
Affiliation(s)
- Bahman Jabbari
- Department of Neurology, Yale University School of Medicine, New Haven, CT 06519, USA
- Correspondence:
| | | |
Collapse
|
4
|
Toprak G, Hanoglu L, Cakir T, Guntekin B, Velioglu HA, Yulug B. DLPF Targeted Repetitive Transcranial Magnetic Stimulation Improves Brain Glucose Metabolism Along with the Clinical and Electrophysiological Parameters in CBD Patients. Endocr Metab Immune Disord Drug Targets 2022; 22:415-424. [PMID: 35100961 DOI: 10.2174/1871530322666220131120349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/24/2021] [Accepted: 07/14/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Corticobasal Degeneration (CBD) is a rare neurological disease caused by the pathological accumulation of tau protein. The primary pathological features of CBD include progressive neurodegenerative processes resulting in remarkable frontoparietal and basal ganglia atrophy. OBJECTIVE Like in many other neurodegenerative disorders, there is still no effective disease-modifying drug therapy in CBD. Therefore, the development of new treatment methods is of great importance. In this study, we aimed to assess the stimulating effects of high-frequency DLPFC rTMS on the motor, cognitive and behavioral disturbances in four CBD patients. METHODS Four (three females, one male) CBD patients who had been diagnosed as CBD were enrolled in this study. Patients were evaluated before and after the rTMS procedure regarding the motor, neuropsychometric and behavioral tests. The results of statistical analysis of behavioral and neuropsychometric evaluation were assessed via SPSS 18.0 package program. Data are expressed as mean, standard deviation. Before and after values of the groups were compared with the Wilcoxon sign rank test, and p<0.05 was considered significant. RESULTS We have provided strong preliminary evidence that the improvement in clinical parameters was associated with the normalizations of the theta activity and glucose metabolism. CONCLUSION Our current results are consistent with some previous trials showing a strong association between DLPFC targeted rTMS and electrophysiological normalizations in the left DLPFC.
Collapse
Affiliation(s)
- Guven Toprak
- Department of Clinical Electrophysiology, Neuroimaging and Neuromodulation, Istanbul Medipol University, Istanbul, Turkey
| | - Lutfu Hanoglu
- Department of Neurology, Istanbul Medipol University School of Medicine, Istanbul, Turkey
| | - Tansel Cakir
- Department of Nuclear Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Bahar Guntekin
- Department of Clinical Electrophysiology, Neuroimaging and Neuromodulation, Istanbul Medipol University, Istanbul, Turkey
| | - Halil Aziz Velioglu
- Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden.,Health Sciences and Technology Research Institute (SABITA), Regenerative and Restorative Medicine Research Center (REMER), Functional Imaging and Cognitive-Affective Neuroscience Lab (fINCAN), Istanbul Medipol University, Istanbul, Turkey
| | - Burak Yulug
- Department of Neurology, Alanya Alaaddin Keykubat University School of Medicine, Alanya/Antalya, Turkey
| |
Collapse
|
5
|
Ferrazzoli D, Ortelli P, Iansek R, Volpe D. Rehabilitation in movement disorders: From basic mechanisms to clinical strategies. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:341-355. [PMID: 35034747 DOI: 10.1016/b978-0-12-819410-2.00019-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Movement disorders encompass a variety of conditions affecting the nervous system at multiple levels. The pathologic processes underlying movement disorders alter the normal neural functions and could lead to aberrant neuroplastic changes and to clinical phenomenology that is not expressed only through mere motor symptoms. Given this complexity, the responsiveness to pharmacologic and surgical therapies is often disappointing. Growing evidence supports the efficacy of neurorehabilitation for the treatment of movement disorders. Specific form of training involving both goal-based practice and aerobic training could drive and modulate neuroplasticity in order to restore the circuitries dysfunctions and to achieve behavioral gains. This chapter provides an overview of the alterations expressed in some movement disorders in terms of clinical signs and symptoms and plasticity, and suggests which ones and why tailored rehabilitation strategies should be adopted for the management of the different movement disorders.
Collapse
Affiliation(s)
- Davide Ferrazzoli
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Vipiteno-Sterzing, Italy; Department of Parkinson's Disease, Fresco Parkinson Center, Movement Disorders and Brain Injury Rehabilitation, "Moriggia-Pelascini" Hospital-Gravedona ed Uniti, Como, Italy
| | - Paola Ortelli
- Department of Parkinson's Disease, Fresco Parkinson Center, Movement Disorders and Brain Injury Rehabilitation, "Moriggia-Pelascini" Hospital-Gravedona ed Uniti, Como, Italy; Department of Parkinson's Disease, Fresco Parkinson Center, Movement Disorders and Brain Injury Rehabilitation, "Moriggia-Pelascini" Hospital-Gravedona ed Uniti, Como, Italy
| | - Robert Iansek
- Clinical Research Centre for Movement Disorders and Gait, National Parkinson Foundation Center of Excellence, Monash Health, Cheltenham, VIC, Australia; School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| | - Daniele Volpe
- Department of Rehabilitation, Fresco Parkinson Center, Villa Margherita, S. Stefano Riabilitazione, Vicenza, Italy
| |
Collapse
|
6
|
Therapeutic Application of rTMS in Atypical Parkinsonian Disorders. Behav Neurol 2022; 2021:3419907. [PMID: 34976231 PMCID: PMC8718319 DOI: 10.1155/2021/3419907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 12/03/2021] [Indexed: 11/25/2022] Open
Abstract
The terms atypical parkinsonian disorders (APDs) and Parkinson plus syndromes are mainly used to describe the four major entities of sporadic neuronal multisystem degeneration: progressive supranuclear palsy (PSP), corticobasal degeneration (CBD), multiple system atrophy (MSA), and dementia with Lewy bodies (LBD). APDs are characterized by a variety of symptoms and a lack of disease modifying therapies; their treatment thus remains mainly symptomatic. Brain stimulation via repetitive transcranial magnetic stimulation (rTMS) is a safe and noninvasive intervention using a magnetic coil, and it is considered an alternative therapy in various neuropsychiatric pathologies. In this paper, we review the available studies that investigate the efficacy of rTMS in the treatment of these APDs and Parkinson plus syndromes. Τhe majority of the studies have shown beneficial effects on motor and nonmotor symptoms, but research is still at a preliminary phase, with large, double-blind studies lacking in the literature.
Collapse
|
7
|
Sanches C, Stengel C, Godard J, Mertz J, Teichmann M, Migliaccio R, Valero-Cabré A. Past, Present, and Future of Non-invasive Brain Stimulation Approaches to Treat Cognitive Impairment in Neurodegenerative Diseases: Time for a Comprehensive Critical Review. Front Aging Neurosci 2021; 12:578339. [PMID: 33551785 PMCID: PMC7854576 DOI: 10.3389/fnagi.2020.578339] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/07/2020] [Indexed: 12/14/2022] Open
Abstract
Low birth rates and increasing life expectancy experienced by developed societies have placed an unprecedented pressure on governments and the health system to deal effectively with the human, social and financial burden associated to aging-related diseases. At present, ∼24 million people worldwide suffer from cognitive neurodegenerative diseases, a prevalence that doubles every five years. Pharmacological therapies and cognitive training/rehabilitation have generated temporary hope and, occasionally, proof of mild relief. Nonetheless, these approaches are yet to demonstrate a meaningful therapeutic impact and changes in prognosis. We here review evidence gathered for nearly a decade on non-invasive brain stimulation (NIBS), a less known therapeutic strategy aiming to limit cognitive decline associated with neurodegenerative conditions. Transcranial Magnetic Stimulation and Transcranial Direct Current Stimulation, two of the most popular NIBS technologies, use electrical fields generated non-invasively in the brain to long-lastingly enhance the excitability/activity of key brain regions contributing to relevant cognitive processes. The current comprehensive critical review presents proof-of-concept evidence and meaningful cognitive outcomes of NIBS in eight of the most prevalent neurodegenerative pathologies affecting cognition: Alzheimer's Disease, Parkinson's Disease, Dementia with Lewy Bodies, Primary Progressive Aphasias (PPA), behavioral variant of Frontotemporal Dementia, Corticobasal Syndrome, Progressive Supranuclear Palsy, and Posterior Cortical Atrophy. We analyzed a total of 70 internationally published studies: 33 focusing on Alzheimer's disease, 19 on PPA and 18 on the remaining neurodegenerative pathologies. The therapeutic benefit and clinical significance of NIBS remains inconclusive, in particular given the lack of a sufficient number of double-blind placebo-controlled randomized clinical trials using multiday stimulation regimes, the heterogeneity of the protocols, and adequate behavioral and neuroimaging response biomarkers, able to show lasting effects and an impact on prognosis. The field remains promising but, to make further progress, research efforts need to take in account the latest evidence of the anatomical and neurophysiological features underlying cognitive deficits in these patient populations. Moreover, as the development of in vivo biomarkers are ongoing, allowing for an early diagnosis of these neuro-cognitive conditions, one could consider a scenario in which NIBS treatment will be personalized and made part of a cognitive rehabilitation program, or useful as a potential adjunct to drug therapies since the earliest stages of suh diseases. Research should also integrate novel knowledge on the mechanisms and constraints guiding the impact of electrical and magnetic fields on cerebral tissues and brain activity, and incorporate the principles of information-based neurostimulation.
Collapse
Affiliation(s)
- Clara Sanches
- Cerebral Dynamics, Plasticity and Rehabilitation Group, FRONTLAB Team, CNRS UMR 7225, INSERM U 1127, Institut du Cerveau, Sorbonne Universités, Paris, France
| | - Chloé Stengel
- Cerebral Dynamics, Plasticity and Rehabilitation Group, FRONTLAB Team, CNRS UMR 7225, INSERM U 1127, Institut du Cerveau, Sorbonne Universités, Paris, France
| | - Juliette Godard
- Cerebral Dynamics, Plasticity and Rehabilitation Group, FRONTLAB Team, CNRS UMR 7225, INSERM U 1127, Institut du Cerveau, Sorbonne Universités, Paris, France
| | - Justine Mertz
- Cerebral Dynamics, Plasticity and Rehabilitation Group, FRONTLAB Team, CNRS UMR 7225, INSERM U 1127, Institut du Cerveau, Sorbonne Universités, Paris, France
| | - Marc Teichmann
- Cerebral Dynamics, Plasticity and Rehabilitation Group, FRONTLAB Team, CNRS UMR 7225, INSERM U 1127, Institut du Cerveau, Sorbonne Universités, Paris, France
- National Reference Center for Rare or Early Onset Dementias, Department of Neurology, Institute of Memory and Alzheimer’s Disease, Pitié-Salpêtrière Hospital, Assistance Publique -Hôpitaux de Paris, Paris, France
| | - Raffaella Migliaccio
- Cerebral Dynamics, Plasticity and Rehabilitation Group, FRONTLAB Team, CNRS UMR 7225, INSERM U 1127, Institut du Cerveau, Sorbonne Universités, Paris, France
- National Reference Center for Rare or Early Onset Dementias, Department of Neurology, Institute of Memory and Alzheimer’s Disease, Pitié-Salpêtrière Hospital, Assistance Publique -Hôpitaux de Paris, Paris, France
| | - Antoni Valero-Cabré
- Cerebral Dynamics, Plasticity and Rehabilitation Group, FRONTLAB Team, CNRS UMR 7225, INSERM U 1127, Institut du Cerveau, Sorbonne Universités, Paris, France
- Laboratory for Cerebral Dynamics Plasticity & Rehabilitation, Boston University School of Medicine, Boston, MA, United States
- Cognitive Neuroscience and Information Technology Research Program, Open University of Catalonia, Barcelona, Spain
| |
Collapse
|
8
|
Nasri A, Ben Djebara M, Sghaier I, Mrabet S, Zidi S, Gargouri A, Kacem I, Gouider R. Atypical parkinsonian syndromes in a North African tertiary referral center. Brain Behav 2021; 11:e01924. [PMID: 33179436 PMCID: PMC7821582 DOI: 10.1002/brb3.1924] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 09/06/2020] [Accepted: 10/14/2020] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Data on epidemiology of atypical parkinsonian syndromes (APS) in North African countries are limited. Our objective was to study the epidemiological features of APS in a Tunisian population. METHODS We conducted a 17-year retrospective cross-sectional descriptive study in the Department of Neurology at Razi University Hospital. We included all patients responding to consensus diagnosis criteria of APS. We recorded demographic and clinical data. Group differences were assessed with a post hoc ANOVA with a Bonferroni error correction. RESULTS We included 464 APS patients. Hospital prevalence of APS among all parkinsonism cases was 20.6%. Mean annual increase of incidence defined as newly diagnosed APS cases per year reached 38.8%/year. APS were divided into 4 etiological subgroups: dementia with Lewy bodies (DLB; 56.7%); progressive supranuclear palsy(PSP; 16.2%); multiple system atrophy (MSA; 14.6%); and finally corticobasal syndrome (CBS; 12.5%). Sex-ratio was 1.2. This male predominance was found in all subgroups except MSA (p = .013). Mean age at onset was 68.5 years, most belated in DLB (69.7 years; p < .001). Young-onset parkinsonism (<40 years) was found only in MSA subgroup (p = .031). Parkinsonism was of late onset (>70 years) in 50.7% of patients and was significantly associated with DLB subgroup (p = .013). Inaugural parkinsonism was associated with CBS and MSA (p = .0497), and gait disorders at disease onset were associated with PSP and MSA (p = .0062). Cognitive and mood disorders were more marked in DLB and most preserved in MSA. Consanguinity was more marked in CBS (p = .037), and family history of dementia and psychiatric diseases was more common in DLB. Thirty-seven families with similar cases of APS were identified. CONCLUSIONS This is the largest African epidemiological study on APS. In our population, APS were frequent and dominated by DLB. The age of onset of parkinsonism was the most decisive feature for differential diagnosis.
Collapse
Affiliation(s)
- Amina Nasri
- Neurology Department, LR18SP03, Clinical Investigation Center (CIC) "Neurosciences and Mental Health"Razi University HospitalTunisTunisia
- Faculty of Medicine of TunisUniversity of Tunis El ManarTunisTunisia
| | - Mouna Ben Djebara
- Neurology Department, LR18SP03, Clinical Investigation Center (CIC) "Neurosciences and Mental Health"Razi University HospitalTunisTunisia
- Faculty of Medicine of TunisUniversity of Tunis El ManarTunisTunisia
| | - Ikram Sghaier
- Neurology Department, LR18SP03, Clinical Investigation Center (CIC) "Neurosciences and Mental Health"Razi University HospitalTunisTunisia
| | - Saloua Mrabet
- Neurology Department, LR18SP03, Clinical Investigation Center (CIC) "Neurosciences and Mental Health"Razi University HospitalTunisTunisia
- Faculty of Medicine of TunisUniversity of Tunis El ManarTunisTunisia
| | - Sabrina Zidi
- Neurology Department, LR18SP03, Clinical Investigation Center (CIC) "Neurosciences and Mental Health"Razi University HospitalTunisTunisia
| | - Amina Gargouri
- Neurology Department, LR18SP03, Clinical Investigation Center (CIC) "Neurosciences and Mental Health"Razi University HospitalTunisTunisia
- Faculty of Medicine of TunisUniversity of Tunis El ManarTunisTunisia
| | - Imen Kacem
- Neurology Department, LR18SP03, Clinical Investigation Center (CIC) "Neurosciences and Mental Health"Razi University HospitalTunisTunisia
- Faculty of Medicine of TunisUniversity of Tunis El ManarTunisTunisia
| | - Riadh Gouider
- Neurology Department, LR18SP03, Clinical Investigation Center (CIC) "Neurosciences and Mental Health"Razi University HospitalTunisTunisia
- Faculty of Medicine of TunisUniversity of Tunis El ManarTunisTunisia
| |
Collapse
|
9
|
Caixeta L, Caixeta VDM, Nogueira YL, Aversi-Ferreira TA. Pharmacological interventions in corticobasal degeneration: a review. Dement Neuropsychol 2020; 14:243-247. [PMID: 32973978 PMCID: PMC7500816 DOI: 10.1590/1980-57642020dn14-030006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Corticobasal degeneration (CBD) is a sporadic tauopathy that presents with a
varied combination of motor, cognitive, and behavioral features, making its
diagnosis difficult. CBD has high morbidity and poor prognosis, with no
effective therapy at present. We searched the PubMed/MEDLINE database for
articles published from 1990 to 2019, using the keywords “corticobasal
degeneration” AND “treatment.” The PRISMA method was adopted. Retrieved articles
were characterized as having one of two methodological approaches: (1) studies
aimed at primary tauopathy treatment and (2) symptomatic management. Review
articles (based on CBD expert groups), case reports, case series, and pilot
clinical trials were selected. Few attempts have been made to study drug options
and drug efficacy in CBD systematically, and an effective treatment is not yet
available. Treatment is symptomatic and based on similarity with other diseases
due to the scarcity of studies specifically addressing CBD. CBD seems not to
spark interest in more clinical trials for its low prevalence and reliability in
clinical diagnosis.
Collapse
Affiliation(s)
- Leonardo Caixeta
- Department of Neurology, School of Medicine, Universidade Federal de Goiás - Goiânia, GO, Brazil.,Dementia Outpatient Clinic, Hospital das Clínicas, Universidade Federal de Goiás - Goiânia, GO, Brazil
| | - Victor de Melo Caixeta
- Department of Neurology, School of Medicine, Universidade Federal de Goiás - Goiânia, GO, Brazil.,Dementia Outpatient Clinic, Hospital das Clínicas, Universidade Federal de Goiás - Goiânia, GO, Brazil.,ASMIGO Hospital, Neuropsychology Research Center - Goiânia, GO, Brazil
| | | | - Tales Alexandre Aversi-Ferreira
- Laboratory of Biomathematics and Physical Anthropology, Department of Structural Biology, Institute of Biomedical Sciences, Universidade Federal de Alfenas - Alfenas, Brazil
| |
Collapse
|
10
|
Saranza GM, Whitwell JL, Kovacs GG, Lang AE. Corticobasal degeneration. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 149:87-136. [PMID: 31779825 DOI: 10.1016/bs.irn.2019.10.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Corticobasal degeneration (CBD) is a rare neurodegenerative disease characterized by the predominance of pathological 4 repeat tau deposition in various cell types and anatomical regions. Corticobasal syndrome (CBS) is one of the clinical phenotypes associated with CBD pathology, manifesting as a progressive asymmetric akinetic-rigid, poorly levodopa-responsive parkinsonism, with cerebral cortical dysfunction. CBD can manifest as several clinical phenotypes, and similarly, CBS can also have a pathologic diagnosis other than CBD. This chapter discusses the clinical manifestations of pathologically confirmed CBD cases, the current diagnostic criteria, as well as the pathologic and neuroimaging findings of CBD/CBS. At present, therapeutic options for CBD remain symptomatic. Further research is needed to improve the clinical diagnosis of CBD, as well as studies on disease-modifying therapies for this relentlessly progressive neurodegenerative disorder.
Collapse
Affiliation(s)
- Gerard M Saranza
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, Ontario, Canada
| | | | - Gabor G Kovacs
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, Ontario, Canada; Tanz Centre for Research in Neurodegenerative Disease and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada; Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Anthony E Lang
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, Ontario, Canada; Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Marsili L, Bologna M, Kojovic M, Berardelli A, Espay AJ, Colosimo C. Dystonia in atypical parkinsonian disorders. Parkinsonism Relat Disord 2019; 66:25-33. [PMID: 31443953 DOI: 10.1016/j.parkreldis.2019.07.030] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/19/2019] [Accepted: 07/22/2019] [Indexed: 02/06/2023]
Abstract
Dystonia is common in the classic atypical parkinsonian disorders such as multiple system atrophy, progressive supranuclear palsy and corticobasal degeneration, and to a lesser extent in dementia with Lewy bodies. Its clinical phenomenology, including body distribution, timing of appearance, severity, and relationship to dopaminergic and other medications may vary considerably within and between atypical parkinsonian disorders. From a pathophysiological standpoint, the coexistence of dystonia with parkinsonism challenges the functional model of the basal ganglia. Clinical recognition of specific dystonic features may assist in the differential diagnosis of atypical parkinsonian disorders and in distinguishing them from Parkinson's disease. The presence of dystonia in atypical parkinsonian disorders informs management decisions. Reduction or withdrawal of levodopa should be considered if there is a close relationship between the onset of dystonia with periods of high dopaminergic tone. Botulinum neurotoxin may be considered in focal presentations. We here provide an updated overview of dystonia arising in the setting of atypical parkinsonian disorders, summarizing relevant clinical and clinicopathological studies, underlying pathophysiological mechanisms, diagnostic clues and potential pitfalls in the diagnosis. Finally, we suggest a tailored therapeutic approach for the management of these patients.
Collapse
Affiliation(s)
- Luca Marsili
- Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, USA
| | - Matteo Bologna
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy; IRCCS Neuromed, Pozzilli (IS), Italy
| | - Maja Kojovic
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Alfredo Berardelli
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy; IRCCS Neuromed, Pozzilli (IS), Italy
| | - Alberto J Espay
- Gardner Family Center for Parkinson's Disease and Movement Disorders, Department of Neurology, University of Cincinnati, Cincinnati, OH, USA
| | - Carlo Colosimo
- Department of Neurology, Santa Maria University Hospital, Terni, Italy.
| |
Collapse
|
12
|
Moretti DV. Available and future treatments for atypical parkinsonism. A systematic review. CNS Neurosci Ther 2019; 25:159-174. [PMID: 30294976 PMCID: PMC6488913 DOI: 10.1111/cns.13068] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 09/01/2018] [Accepted: 09/05/2018] [Indexed: 01/02/2023] Open
Abstract
AIMS Success in treating patients with atypical parkinsonian syndromes, namely progressive supranuclear palsy (PSP), cortico-basal degeneration (CBD), multiple system atrophy (MSA), Parkinson's disease with dementia (PDD), and Lewy body dementia with (LBD), remains exceedingly low. The present work overviews the most influential research literature collected on MEDLINE, ISI Web of Science, Cochrane Library, and Scopus for available treatment in atypical parkinsonisms without time restriction. DISCUSSION Transdermal rotigotine, autologous mesenchymal stem cells, tideglusib, and coenzyme Q10 along with donepezil, rivastigmine, memantine, and the deep brain stimulation have shown some benefits in alleviating symptoms in APS. Moreover, many new clinical trials are ongoing testing microtubule stabilizer, antitau monoclonal antibody, tau acetylation inhibition, cell replacement, selective serotonin reuptake inhibitor, active immunization, inhibition of toxic α-synuclein oligomers formation, and inhibition of microglia. CONCLUSION A detailed knowledge of the pathological mechanism underlying the disorders is needed, and disease-modifying therapies are required to offer better therapeutic options to physician and caregivers of APS patients.
Collapse
|
13
|
Olfati N, Shoeibi A, Litvan I. Progress in the treatment of Parkinson-Plus syndromes. Parkinsonism Relat Disord 2019; 59:101-110. [DOI: 10.1016/j.parkreldis.2018.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 09/27/2018] [Accepted: 10/01/2018] [Indexed: 01/04/2023]
|
14
|
Bang MH, Kwon J, Kim HS. Three Cases of Gait Improvement after Rehabilitation Management in Corticobasal Syndrome. BRAIN & NEUROREHABILITATION 2017. [DOI: 10.12786/bn.2017.10.e16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Myeong Hwan Bang
- Department of Physical Medicine and Rehabilitation, National Health Insurance Service Ilsan Hospital, Goyang, Korea
| | - Junbeom Kwon
- Department of Rehabilitation Medicine and Research Institute, Yonsei University College of Medicine, Seoul, Korea
| | - Hyoung Seop Kim
- Department of Physical Medicine and Rehabilitation, National Health Insurance Service Ilsan Hospital, Goyang, Korea
| |
Collapse
|
15
|
Lamb R, Rohrer JD, Lees AJ, Morris HR. Progressive Supranuclear Palsy and Corticobasal Degeneration: Pathophysiology and Treatment Options. Curr Treat Options Neurol 2016; 18:42. [PMID: 27526039 PMCID: PMC4985534 DOI: 10.1007/s11940-016-0422-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
OPINION STATEMENT There are currently no disease-modifying treatments for progressive supranuclear palsy (PSP) or corticobasal degeneration (CBD), and no approved pharmacological or therapeutic treatments that are effective in controlling their symptoms. The use of most pharmacological treatment options are based on experience in other disorders or from non-randomized historical controls, case series, or expert opinion. Levodopa may provide some improvement in symptoms of Parkinsonism (specifically bradykinesia and rigidity) in PSP and CBD; however, evidence is conflicting and where present, benefits are often negligible and short lived. In fact, "poor" response to levodopa forms part of the NINDS-SPSP criteria for the diagnosis of PSP and consensus criteria for the diagnosis of CBD (Lang Mov Disord. 20 Suppl 1:S83-91, 2005; Litvan et al. Neurology. 48:119-25, 1997; Armstrong et al. Neurology. 80(5):496-503, 2013). There is some evidence that intrasalivery gland botulinum toxin is useful in managing problematic sialorrhea and that intramuscular botulinum toxin and baclofen are helpful in reducing dystonia, including blepharospasm. Benzodiazepines may also be useful in managing dystonia. Myoclonus may be managed using levetiracetam and benzodiazepines. Pharmacological agents licensed for Alzheimer's disease (such as acetylcholinesterase inhibitors and N-Methyl-D-aspartate receptor antagonists) have been used off-label in PSP, CBD, and other tauopathies with the aim of improving cognition; however, there is limited evidence that they are effective and risk of adverse effects may outweigh benefits. The use of atypical antipsychotics for behavioural symptoms is not recommended in the elderly or those with demetia associated conditions and most antipsychotics will worsen Parkinsonism. Antidepressants may be useful for behavioral symptoms and depression but are often poorly tolerated due to adverse effects. In the absence of an effective drug treatment to target the underlying cause of CBD and PSP, management should focus on optimizing quality of life, relieving symptoms and assisting patients with their activities of daily living (ADL). Patients should be managed by a multidisciplinary team consisting of neurologists, physiotherapists (PT), occupational therapists (OT), speech and language therapists (SALT), dieticians, ophthalmologists, psychologists, and palliative care specialists.
Collapse
Affiliation(s)
- Ruth Lamb
- Department of Clinical Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
| | - Jonathan D. Rohrer
- Dementia Research Centre, UCL Institute of Neurology, University College London, London, UK
| | - Andrew J. Lees
- Department of Molecular Neuroscience, Queen Square Brain Bank for Neurological Disorders, University College London, London, UK
| | - Huw R. Morris
- Department of Clinical Neuroscience, UCL Institute of Neurology, Queen Square, London, UK
| |
Collapse
|
16
|
Suppa A, Di Stasio F, Marsili L, Upadhyay N, Belvisi D, Conte A, Modugno N, Colosimo C, Berardelli A. Primary motor cortex LTP/LTD-like plasticity in probable corticobasal syndrome. J Neurophysiol 2016; 115:717-27. [DOI: 10.1152/jn.00755.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 11/10/2015] [Indexed: 11/22/2022] Open
Abstract
Whether the primary motor cortex (M1) contributes to the pathophysiology of corticobasal syndrome (CBS) remains unclear. In this study in patients with probable CBS, we tested whether M1 plasticity contributes to the pathophysiology of symptoms in the contralateral “less affected” limb, manifesting only parkinsonism, and in the contralateral “more affected” limb, manifesting parkinsonism plus other motor and nonmotor symptoms. In Experiment 1, we applied intermittent/continuous theta-burst stimulation (iTBS/cTBS) over the M1 contralateral to the less affected limb in 17 patients. In Experiment 2, we applied iTBS/cTBS over the M1 contralateral to the more affected limb in 14 of the 17 patients. We measured iTBS/cTBS-induced plasticity as reflected by motor-evoked potential (MEP) changes. Data were compared with those obtained in 17 healthy subjects (HS). In Experiment 1, TBS over the M1 contralateral to the less affected limb disclosed reduced plasticity in patients than in HS. In Experiment 2, in 5 of 14 patients we recorded abnormally low-amplitude MEPs, preventing the evaluation of plasticity in the M1 contralateral to the more affected limb. In the remaining nine patients, TBS disclosed abnormal plasticity characterized by high intersubject variability. In these nine patients, the response to TBS correlated with specific patients' clinical features. In the present study in patients with probable CBS, we have demonstrated heterogeneous abnormalities of M1 that contribute to the pathophysiology of this condition.
Collapse
Affiliation(s)
- Antonio Suppa
- Department of Neurology and Psychiatry, “Sapienza” University of Rome, Rome, Italy; and
- Neuromed Institute, “Sapienza” University of Rome, Rome, Italy
| | | | - Luca Marsili
- Department of Neurology and Psychiatry, “Sapienza” University of Rome, Rome, Italy; and
| | - Neeraj Upadhyay
- Department of Neurology and Psychiatry, “Sapienza” University of Rome, Rome, Italy; and
| | - Daniele Belvisi
- Department of Neurology and Psychiatry, “Sapienza” University of Rome, Rome, Italy; and
- Neuromed Institute, “Sapienza” University of Rome, Rome, Italy
| | - Antonella Conte
- Department of Neurology and Psychiatry, “Sapienza” University of Rome, Rome, Italy; and
- Neuromed Institute, “Sapienza” University of Rome, Rome, Italy
| | - Nicola Modugno
- Neuromed Institute, “Sapienza” University of Rome, Rome, Italy
| | - Carlo Colosimo
- Department of Neurology and Psychiatry, “Sapienza” University of Rome, Rome, Italy; and
| | - Alfredo Berardelli
- Department of Neurology and Psychiatry, “Sapienza” University of Rome, Rome, Italy; and
- Neuromed Institute, “Sapienza” University of Rome, Rome, Italy
| |
Collapse
|