1
|
Yanus GA, Suspitsin EN, Imyanitov EN. The Spectrum of Disease-Associated Alleles in Countries with a Predominantly Slavic Population. Int J Mol Sci 2024; 25:9335. [PMID: 39273284 PMCID: PMC11394759 DOI: 10.3390/ijms25179335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/21/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
There are more than 260 million people of Slavic descent worldwide, who reside mainly in Eastern Europe but also represent a noticeable share of the population in the USA and Canada. Slavic populations, particularly Eastern Slavs and some Western Slavs, demonstrate a surprisingly high degree of genetic homogeneity, and, consequently, remarkable contribution of recurrent alleles associated with hereditary diseases. Along with pan-European pathogenic variants with clearly elevated occurrence in Slavic people (e.g., ATP7B c.3207C>A and PAH c.1222C>T), there are at least 52 pan-Slavic germ-line mutations (e.g., NBN c.657_661del and BRCA1 c.5266dupC) as well as several disease-predisposing alleles characteristic of the particular Slavic communities (e.g., Polish SDHD c.33C>A and Russian ARSB c.1562G>A variants). From a clinical standpoint, Slavs have some features of a huge founder population, thus providing a unique opportunity for efficient genetic studies.
Collapse
Affiliation(s)
- Grigoriy A Yanus
- Laboratory of Molecular Diagnostics, St. Petersburg State Pediatric Medical University, 194100 St. Petersburg, Russia
| | - Evgeny N Suspitsin
- Department of Medical Genetics, St. Petersburg State Pediatric Medical University, 194100 St. Petersburg, Russia
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St. Petersburg, Russia
| | - Evgeny N Imyanitov
- Department of Medical Genetics, St. Petersburg State Pediatric Medical University, 194100 St. Petersburg, Russia
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, 197758 St. Petersburg, Russia
| |
Collapse
|
2
|
De Mattei F, Ferrandes F, Gallone S, Canosa A, Calvo A, Chiò A, Vasta R. Epidemiology of Spinocerebellar Ataxias in Europe. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1176-1183. [PMID: 37698771 PMCID: PMC11102384 DOI: 10.1007/s12311-023-01600-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/20/2023] [Indexed: 09/13/2023]
Abstract
Spinocerebellar ataxias (SCAs) are a heterogenous group of rare neurodegenerative conditions sharing an autosomal dominant pattern of inheritance. More than 40 SCAs have been genetically determined. However, a systematic review of SCA epidemiology in Europe is still missing. Here we performed a narrative review of the literature on the epidemiology of the most common SCAs in Europe. PubMed, Embase, and MEDLINE were searched from inception until 1 April 2023. All English peer-reviewed articles published were considered and then filtered by abstract examination and subsequently by full text reading. A total of 917 original articles were retrieved. According to the inclusion criteria and after reviewing references for useful papers, a total of 35 articles were included in the review. Overall, SCA3 is the most frequent spinocerebellar ataxia in Europe. Its frequency is strikingly higher in Portugal, followed by Germany, France, and Netherlands. None or few cases were described in Italy, Russia, Poland, Serbia, Finland, and Norway. SCA1 and SCA2 globally displayed similar frequencies, and are more prevalent in Italy, United Kingdom, Poland, Serbia, and France.
Collapse
Affiliation(s)
- Filippo De Mattei
- ALS Center, Department of Neuroscience "Rita Levi Montalcini", University of Turin, Turin, Italy
| | - Fabio Ferrandes
- Aging Brain and Memory Clinic, Department of Neuroscience "Rita Levi Montalcini", University of Turin, Turin, Italy.
| | - Salvatore Gallone
- Neurology 1, AOU Città Della Salute E Della Scienza Di Torino, Turin, Italy
| | - Antonio Canosa
- ALS Center, Department of Neuroscience "Rita Levi Montalcini", University of Turin, Turin, Italy
- Neurology 1, AOU Città Della Salute E Della Scienza Di Torino, Turin, Italy
- Institute of Cognitive Science and Technologies, National Research Council, Rome, Italy
| | - Andrea Calvo
- ALS Center, Department of Neuroscience "Rita Levi Montalcini", University of Turin, Turin, Italy
- Neurology 1, AOU Città Della Salute E Della Scienza Di Torino, Turin, Italy
- Institute of Cognitive Science and Technologies, National Research Council, Rome, Italy
| | - Adriano Chiò
- ALS Center, Department of Neuroscience "Rita Levi Montalcini", University of Turin, Turin, Italy
- Neurology 1, AOU Città Della Salute E Della Scienza Di Torino, Turin, Italy
- Institute of Cognitive Science and Technologies, National Research Council, Rome, Italy
| | - Rosario Vasta
- ALS Center, Department of Neuroscience "Rita Levi Montalcini", University of Turin, Turin, Italy
| |
Collapse
|
3
|
Soloveva EV, Skleimova MM, Minaycheva LI, Garaeva AF, Zhigalina DI, Churkin EO, Okkel YV, Timofeeva OS, Petrov IA, Seitova GN, Lebedev IN, Stepanov VA. PGT-M for spinocerebellar ataxia type 1: development of a STR panel and a report of two clinical cases. J Assist Reprod Genet 2024; 41:1273-1283. [PMID: 38578603 PMCID: PMC11143087 DOI: 10.1007/s10815-024-03105-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/20/2024] [Indexed: 04/06/2024] Open
Abstract
PURPOSE To present the developed preimplantation genetic testing (PGT) for spinocerebellar ataxia type 1 (SCA1) and the outcomes of IVF with PGT. METHODS PGT was performed for two unrelated couples from the Republic of Sakha (Yakutia) with the risk of SCA1 in one spouse. We have developed a system for PGT of a monogenic disease (PGT-M) for SCA1, which includes the analysis of a panel of 11 polymorphic STR markers linked to the ATXN1 gene and a pathogenic variant of the ATXN1 gene using nested PCR and fragment analysis. IVF/ICSI programs were performed according to standard protocols. Multiple displacement amplification (MDA) was used for whole genome amplification (WGA) and array comparative genomic hybridization (aCGH) for aneuploidy testing (PGT-A). RESULTS Eight STRs were informative for the first couple and ten for the second. Similarity of the haplotypes carrying pathogenic variants of the ATXN1 gene was noted. In the first case, during IVF/ICSI-PGT, three embryos reached the blastocyst stage and were biopsied. One embryo was diagnosed as normal by maternal STR haplotype and the ATXN1 allele. PGT-A revealed euploidy. The embryo transfer resulted in a singleton pregnancy, and a healthy boy was born. Postnatal diagnosis confirmed normal ATXN1. In the second case, two blastocysts were biopsied. Both were diagnosed as normal by PGT-M, but PGT-A revealed aneuploidy. CONCLUSION Birth of a healthy child after PGT for SCA1 was the first case of successful preimplantation prevention of SCA1 for the Yakut couple and the first case of successful PGT for SCA1 in Russia.
Collapse
Affiliation(s)
- Elena V Soloveva
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia.
| | - Maria M Skleimova
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Larisa I Minaycheva
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Anna F Garaeva
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Daria I Zhigalina
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Egor O Churkin
- ART Center of the Siberian State Medical University of the Ministry of Health of Russia, Tomsk, Russia
| | - Yulia V Okkel
- ART Center of the Siberian State Medical University of the Ministry of Health of Russia, Tomsk, Russia
| | - Oksana S Timofeeva
- ART Center of the Siberian State Medical University of the Ministry of Health of Russia, Tomsk, Russia
- Department of Obstetrics and Gynecology of the Siberian State Medical University of the Ministry of Health of Russia, Tomsk, Russia
| | - Ilya A Petrov
- ART Center of the Siberian State Medical University of the Ministry of Health of Russia, Tomsk, Russia
- Department of Obstetrics and Gynecology of the Siberian State Medical University of the Ministry of Health of Russia, Tomsk, Russia
| | - Gulnara N Seitova
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Igor N Lebedev
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| | - Vadim A Stepanov
- Research Institute of Medical Genetics, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| |
Collapse
|
4
|
Dulski J, Al-Shaikh RH, Sulek A, Kasprzak J, Sławek J, Wszolek ZK. First report on spinocerebellar ataxia type 3 (Machado-Joseph disease) in Poland. Parkinsonism Relat Disord 2022; 105:39-42. [PMID: 36334556 DOI: 10.1016/j.parkreldis.2022.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 10/14/2022] [Accepted: 10/23/2022] [Indexed: 11/06/2022]
Abstract
Spinocerebellar ataxia type 3 (SCA3; Machado-Joseph disease, MJD) is the most common autosomal-dominant form of genetic ataxia worldwide. However, it has never been reported in Eastern Europe. This letter presents the first three families with SCA3 from Poland and discusses the practical implications of the disease for clinicians.
Collapse
Affiliation(s)
- Jarosław Dulski
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA; Division of Neurological and Psychiatric Nursing, Faculty of Health Sciences, Medical University of Gdansk, Gdansk, Poland; Neurology Department, St Adalbert Hospital, Copernicus PL Ltd., Gdansk, Poland
| | | | - Anna Sulek
- Department of Genetics, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Jakub Kasprzak
- Neurology Department, St Adalbert Hospital, Copernicus PL Ltd., Gdansk, Poland
| | - Jarosław Sławek
- Division of Neurological and Psychiatric Nursing, Faculty of Health Sciences, Medical University of Gdansk, Gdansk, Poland; Neurology Department, St Adalbert Hospital, Copernicus PL Ltd., Gdansk, Poland
| | | |
Collapse
|
5
|
Dong X, Cong S. The emerging roles of long non-coding RNAs in polyglutamine diseases. J Cell Mol Med 2021; 25:8095-8102. [PMID: 34318578 PMCID: PMC8419158 DOI: 10.1111/jcmm.16808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/02/2021] [Accepted: 07/08/2021] [Indexed: 11/30/2022] Open
Abstract
Polyglutamine (polyQ) diseases are characterized by trinucleotide repeat amplifications within genes, thus resulting in the formation of polyQ peptides, selective neuronal degeneration and possibly death due to neurodegenerative diseases (NDDs). Long non-coding RNAs (lncRNAs), which exceed 200 nucleotides in length, have been shown to play important roles in several pathological processes of NDDs, including polyQ diseases. Some lncRNAs have been consistently identified to be specific to polyQ diseases, and circulating lncRNAs are among the most promising novel candidates in the search for non-invasive biomarkers for the diagnosis and prognosis of polyQ diseases. In this review, we describe the emerging roles of lncRNAs in polyQ diseases and provide an overview of the general biology of lncRNAs, their implications in pathophysiology and their potential roles as future biomarkers and applications for therapy.
Collapse
Affiliation(s)
- Xiaoyu Dong
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuyan Cong
- Department of Neurology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
6
|
Vishwakarma P, Agarwal S, Dean DD, Muthuswamy S, Mandal K. Molecular spectrum, family screening and genetic counselling of Spinocerebellar Ataxia (SCA) cases in an Indian scenario. J Neurogenet 2021; 35:370-380. [PMID: 34159894 DOI: 10.1080/01677063.2021.1940172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Spinocerebellar Ataxia (SCA) is a heterogeneous adult-onset disorder with an autosomal dominant inheritance pattern mainly caused by triplet repeat expansions. Clinical diagnosis of SCA is based on phenotypic features followed by confirmation through molecular diagnosis. To identify status of repeat range in Indian SCA cases and provide extended family screening, we enrolled 70 clinical SCA suspects. For molecular diagnosis, multiplex PCR (M-PCR) was used for common Indian SCA subtypes 1, 2, 3, 6, 7, 10, 12 and 17. TP-PCR was further used in SCA2, 7 and 10 to identify larger expansions. Eighteen out of 70 SCA suspects (25%) were found to be positive for various SCA subtypes- (5 SCA1 (28%), 6 SAC2 (34%), 2 SCA3 (12%), 3 SCA7 (16%) and one each for SCA6 (1%) and SCA17 (1%) subtypes). Genetic counselling and extended family screening were offered to all positive cases and yielded additional nine cases. We have established M-PCR and TP-PCR to detect the CAG repeat expansion in SCA suspects. This method can confirm SCA subtypes in a reliable, rapid and cost-effective way. Genetic characterization of SCA-related genes has great clinical relevance, as it could provide additional information and guidance to clinicians and family members regarding prognosis.
Collapse
Affiliation(s)
- Priyanka Vishwakarma
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| | - Sarita Agarwal
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| | - Deepika Delsa Dean
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| | | | - Kausik Mandal
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| |
Collapse
|
7
|
Sun H, Shen XR, Fang ZB, Jiang ZZ, Wei XJ, Wang ZY, Yu XF. Next-Generation Sequencing Technologies and Neurogenetic Diseases. Life (Basel) 2021; 11:life11040361. [PMID: 33921670 PMCID: PMC8072598 DOI: 10.3390/life11040361] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/05/2021] [Accepted: 04/16/2021] [Indexed: 12/18/2022] Open
Abstract
Next-generation sequencing (NGS) technology has led to great advances in understanding the causes of Mendelian and complex neurological diseases. Owing to the complexity of genetic diseases, the genetic factors contributing to many rare and common neurological diseases remain poorly understood. Selecting the correct genetic test based on cost-effectiveness, coverage area, and sequencing range can improve diagnosis, treatments, and prevention. Whole-exome sequencing and whole-genome sequencing are suitable methods for finding new mutations, and gene panels are suitable for exploring the roles of specific genes in neurogenetic diseases. Here, we provide an overview of the classifications, applications, advantages, and limitations of NGS in research on neurological diseases. We further provide examples of NGS-based explorations and insights of the genetic causes of neurogenetic diseases, including Charcot-Marie-Tooth disease, spinocerebellar ataxias, epilepsy, and multiple sclerosis. In addition, we focus on issues related to NGS-based analyses, including interpretations of variants of uncertain significance, de novo mutations, congenital genetic diseases with complex phenotypes, and single-molecule real-time approaches.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xue-Fan Yu
- Correspondence: ; Tel.: +86-157-5430-1836
| |
Collapse
|
8
|
Lin CC, Ashizawa T, Kuo SH. Collaborative Efforts for Spinocerebellar Ataxia Research in the United States: CRC-SCA and READISCA. Front Neurol 2020; 11:902. [PMID: 32982927 PMCID: PMC7479060 DOI: 10.3389/fneur.2020.00902] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022] Open
Abstract
Spinocerebellar ataxias are progressive neurodegenerative disorders primarily affecting the cerebellum. Although the first disease-causing gene was identified nearly 30 years ago, there is no known cure to date, and only a few options exist for symptomatic treatment, with modest effects. The recently developed tools in molecular biology, such as CRISPR/Cas9 and antisense oligonucleotides, can directly act on the disease mechanisms at the genomic or RNA level in disease models. In a nutshell, we are finally just one step away from clinical trials with therapies targeting the underlying genetic cause. However, we still face the challenges for rare neurodegenerative diseases: difficulty in obtaining a large cohort size for sufficient statistical power and the need for biomarkers and clinical outcome assessments (COA) with adequate sensitivity to reflect progression or treatment responses. To overcome these obstacles, ataxia experts form research networks for clinical trial readiness. In this review, we retrace our steps of the collaborative efforts among ataxia researchers in the United States over the years to study and treat these relentless disorders and the future directions of such research networks.
Collapse
Affiliation(s)
- Chih-Chun Lin
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, United States
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, United States
| | - Tetsuo Ashizawa
- Department of Neurology, Houston Methodist Research Institute, Houston, TX, United States
| | - Sheng-Han Kuo
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, United States
- Initiative for Columbia Ataxia and Tremor, Columbia University, New York, NY, United States
| |
Collapse
|
9
|
Scott SSDO, Pedroso JL, Barsottini OGP, França-Junior MC, Braga-Neto P. Natural history and epidemiology of the spinocerebellar ataxias: Insights from the first description to nowadays. J Neurol Sci 2020; 417:117082. [PMID: 32791425 DOI: 10.1016/j.jns.2020.117082] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/29/2020] [Accepted: 08/03/2020] [Indexed: 01/03/2023]
Abstract
Spinocerebellar ataxias (SCAs) are a heterogeneous group of autosomal dominant inherited diseases that share the degeneration of the cerebellum and its connections as their main feature. We performed a detailed description of the natural history of the main SCAs, focusing on epidemiology, progression, haplotype analysis and its correlation with founder effect, and perspective of future treatments. References for this review were identified by an in-depth literature search on PubMed and selected on the basis of relevance to the topic and on the authors' judgment. More than 40 SCAs have been described so far. SCA3 is the most common subtype worldwide, followed by SCA2 and 6. To evaluate the natural history and to estimate the progression of the main SCAs, consortiums were created all over the globe. Clinical rating scales have been developed to provide an accurate estimation of cerebellar clinical deficits, evaluating cerebellar and non-cerebellar signs. Natural history studies revealed that SCA1 patients' functional status worsened significantly faster than in other SCA subtypes, followed by SCA3, SCA2, SCA6, and SCA10. Number of CAG repeats, age of onset, and ataxia severity at baseline are strong contributors to the risk of death in most SCAs. Understanding the natural history of SCAs is extremely important. Although these are rare diseases, the impact they have on the affected individual are enormous. The advances in the field of genetics are helping understand neuronal functions and dysfunctions and allowing the study and development of possible therapies.
Collapse
Affiliation(s)
| | - José Luiz Pedroso
- Department of Neurology, Ataxia Unit, Universidade Federal de São Paulo, R. Sena Madureira1500, São Paulo/SP, Brazil
| | | | | | - Pedro Braga-Neto
- Division of Neurology, Department of Clinical Medicine, Universidade Federal do Ceará, R. Alexandre Baraúna 949, Fortaleza/CE, Brazil; Center of Health Sciences, Universidade Estadual do Ceará, Av. Dr. Silas Manguba 1700, Fortaleza/CE, Brazil.
| |
Collapse
|
10
|
Deng Y, Fu J, Zhong Y, Zhang M, Qi X. First finding of familial spinal cerebellar Ataxia11 in China: clinical, imaging and genetic features. Neurol Sci 2019; 41:155-160. [PMID: 31485862 DOI: 10.1007/s10072-019-04052-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 08/19/2019] [Indexed: 01/11/2023]
Abstract
BACKGROUND Spinal cerebellar ataxia 11 (SCA11) is a rare disease, characterized by progressive cerebellar ataxia, abnormal eye sign. Four families have been reported in the past. We report on China's first family with spinocerebellar ataxia 11. METHODS A careful investigation of the clinical manifestations, brain imaging, and exome and Sanger sequencing were utilized to identify pathogenic genetic variants in a three-generation pedigree that includes 5 affected individuals. RESULTS The proband and affected members began to develop cerebellar ataxia, dysarthria, nystagmus, and strabismus at approximately age 40 for no apparent reason. The lifespan of patients in the family is shortened. Brain MRIs showed cerebellar atrophy and slight atrophy of the bulbar medulla. Electromyography showed extensive neurogenic damage. Sensory evoked potentials of lower limbs showed damage to the spinal-brainstem-cortical conduction pathway. Genetic analysis revealed a novel point mutation (c.3290T>C) in the TTBK2 gene encoding tau-microtubule kinase 2, which led to an amino acid exchange (p.Val1097Ala). The missense mutation segregated with the phenotype. The mutation has a very low mutation rate in the population, the variant amino acids are highly conserved among species, and protein function damage prediction at the mutation site is detrimental and is highly likely to cause protein damage. The pathogenicity prediction of the mutation site shows that it is likely to cause disease. This variation is consistent with the diagnosis of SCA11. CONCLUSION The first SCA11-affected family in China was characterized by gait instability, movement disorders and dysarthria with obvious cerebellar atrophy. The pathogenic allele was a c.3290T>C mutation in the TTBK2 gene.
Collapse
Affiliation(s)
- Yan Deng
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, China
| | - Jie Fu
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, China
| | - YuQin Zhong
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, China
| | - Ming Zhang
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, China
| | - Xueliang Qi
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, China.
| |
Collapse
|
11
|
Kourkouta E, Weij R, González-Barriga A, Mulder M, Verheul R, Bosgra S, Groenendaal B, Puoliväli J, Toivanen J, van Deutekom JCT, Datson NA. Suppression of Mutant Protein Expression in SCA3 and SCA1 Mice Using a CAG Repeat-Targeting Antisense Oligonucleotide. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 17:601-614. [PMID: 31394429 PMCID: PMC6695277 DOI: 10.1016/j.omtn.2019.07.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/26/2019] [Accepted: 07/08/2019] [Indexed: 10/26/2022]
Abstract
Spinocerebellar ataxia type 3 (SCA3) and type 1 (SCA1) are dominantly inherited neurodegenerative disorders that are currently incurable. Both diseases are caused by a CAG-repeat expansion in exon 10 of the Ataxin-3 and exon 8 of the Ataxin-1 gene, respectively, encoding an elongated polyglutamine tract that confers toxic properties to the resulting proteins. We have previously shown lowering of the pathogenic polyglutamine protein in Huntington's disease mouse models using (CUG)7, a CAG repeat-targeting antisense oligonucleotide. Here we evaluated the therapeutic capacity of (CUG)7 for SCA3 and SCA1, in vitro in patient-derived cell lines and in vivo in representative mouse models. Repeated intracerebroventricular (CUG)7 administration resulted in a significant reduction of mutant Ataxin-3 and Ataxin-1 proteins throughout the brain of SCA3 and SCA1 mouse models, respectively. Furthermore, in both a SCA3 patient cell line and the MJD84.2 mouse model, (CUG)7 induced formation of a truncated Ataxin-3 protein species lacking the polyglutamine stretch, likely arising from (CUG)7-mediated exon 10 skipping. In contrast, skipping of exon 8 of Ataxin-1 did not significantly contribute to the Ataxin-1 protein reduction observed in (CUG)7-treated SCA1154Q/2Q mice. These findings support the therapeutic potential of a single CAG repeat-targeting AON for the treatment of multiple polyglutamine disorders.
Collapse
Affiliation(s)
| | - Rudie Weij
- BioMarin Nederland BV, Leiden, the Netherlands
| | | | | | | | | | | | | | - Jussi Toivanen
- Charles River Discovery Research Services, Kuopio, Finland
| | | | | |
Collapse
|
12
|
Shuvaev AN, Belozor OS, Smolnikova MV, Yakovleva DA, Shuvaev AN, Kazantseva OM, Pozhilenkova EA, Mozhei OI, Kasparov S. Population genetics of spinoсerebellar ataxias caused by polyglutamine expansions. Vavilovskii Zhurnal Genet Selektsii 2019. [DOI: 10.18699/vj19.516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Hereditary disorders of the neuronal system are some of the most important problems of medicine in the XXI century. The most interesting representatives of this group are highly prevalent polyglutamine spinocerebellar ataxias (SCAs). It has a basement for quick progression of expansion among different groups all over the World. These diseases are SCA1, 2, 3, 6, 7 and 17, which phenotypically belong to one group due to similarities in clinics and genetics. The substrate of these genetic conditions is CAG trinucleotide repeat of Ataxin genes which may expand in the course of reproduction. For this reason a characteristic feature of these diseases is not only an increase in patient numbers, but also a qualitative change in the progression of their neurological symptoms. All these aspects are reflected in the structure of the incidence of polyglutamine SCAs, both at the global level and at the level of individual population groups. However, most scientific reports that describe the population genetics of polyglutamine SCAs are limited to quantitative indicators of a specific condition in a certain area, while the history of the occurrence and principles of the distribution of polyglutamine SCAs are poorly understood. This prevents long-term predictions of the dynamics of the disease and development of strategies for controlling the spread of mutations in the populations. In this paper we make a detailed analysis of the polyglutamine SCAs population genetics, both in the whole world and specifically in theRussian Federation. We note that for a better analysis it would be necessary to cover a wider range of populations in Africa, Asia andSouth America, which will be possible with the development of new methods for molecular genetics. Development of new methods of detection of polyglutamine SCAs will allow the scientists to better understand how they lead to the brain disease, the means of their spread in the population and to develop better methods for therapy and prevention of these diseases.
Collapse
Affiliation(s)
- A. N. Shuvaev
- Krasnoyarsk State Medical University named after V.F. Voino-Yasenetsky, Research Institute of Molecular Medicine and Pathobiochemistry
| | - O. S. Belozor
- Krasnoyarsk State Medical University named after V.F. Voino-Yasenetsky, Research Institute of Molecular Medicine and Pathobiochemistry
| | - M. V. Smolnikova
- Krasnoyarsk State Medical University named after V.F. Voino-Yasenetsky, Research Institute of Molecular Medicine and Pathobiochemistry;
Federal Research Center “Krasnoyarsk Science Center” of the Siberian Branch of the Russian Academy of Sciences, Scientific Research Institute of Medical Problems of the North
| | | | | | | | - E. A. Pozhilenkova
- Krasnoyarsk State Medical University named after V.F. Voino-Yasenetsky, Research Institute of Molecular Medicine and Pathobiochemistry
| | | | - S. Kasparov
- Immanuel Kant Baltic Federal University;
University of Bristol
| |
Collapse
|
13
|
Sayan S, Kotan D, Gündoğdu-Eken A, Şahbaz I, Koçoğlu C, Başak AN. Phenotypic and Genotypic Analysis of Hereditary Ataxia Patients in Sakarya City, Turkey. ACTA ACUST UNITED AC 2019; 56:106-109. [PMID: 31223241 DOI: 10.5152/npa.2017.20525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 02/12/2017] [Indexed: 11/22/2022]
Abstract
Introduction Hereditary ataxias are a group of heterogeneous diseases in regard to their clinical and genetic characteristics. Ataxia that progresses slowly may be accompanied by pyramidal and extrapyramidal findings, articulation disorders, ophthalmic movement disorders, neuropathic complaints, cognitive and behavioral abnormalies, and epilepsy. Definitive diagnosis in hereditary ataxias is based on molecular assays. History, clinical examination, laboratory and neuroimaging assist diagnosis. In our study, thirty-seven patients of suspected hereditary ataxia were examined with their clinical and genetic aspects, and the results compared with literature. Method Our study included 37 patients in 22 families who presented to our center between 2010-2016, and whose familial history and phenotypic features indicated hereditary ataxia. The patients were studied for clinical findings, family tree, neuroimaging, and laboratory findings. Advanced genetic investigations were performed on peripheral venous blood samples for hereditary ataxia. Results Of the 37 patients included in our study, 21 were females and 16 were males. Genetic analyses resulted in spinocerebellar ataxia (SCA) in four families (10 patients), Friedrich ataxia (FA) in three families (eight patients), and recessive ataxia due to point mutation in one family (two patients). SCA subtyping revealed SCA 1, 2, 6 and 8 in our patients. The remaining 16 patients included in our study could not be solved so far and are under investigation. Conclusion Hereditary ataxias are rare neurodegenerative disorders. Large genetic pool, ethnic and local differences complicate diagnosing even further. Our study contributes to the literature by reflecting phenotypic and genotypic characteristics of hereditary SCA patients in our region and reporting rare hereditary ataxia genotypes.
Collapse
Affiliation(s)
- Saadet Sayan
- Department of Neurology, SB Sakarya University Research and Training Hospital, Sakarya, Turkey
| | - Dilcan Kotan
- Department of Neurology, Sakarya University Faculty of Medicine, Sakarya, Turkey
| | - Aslı Gündoğdu-Eken
- Suna and İnan Kıraç Foundation; Department of Molecular Biology and Genetics, Boğaziçi University, İstanbul, Turkey
| | - Irmak Şahbaz
- Suna and İnan Kıraç Foundation; Department of Molecular Biology and Genetics, Boğaziçi University, İstanbul, Turkey
| | - Cemile Koçoğlu
- Suna and İnan Kıraç Foundation; Department of Molecular Biology and Genetics, Boğaziçi University, İstanbul, Turkey
| | - A Nazlı Başak
- Suna and İnan Kıraç Foundation; Department of Molecular Biology and Genetics, Boğaziçi University, İstanbul, Turkey
| |
Collapse
|
14
|
Martins Junior CR, Borba FCD, Martinez ARM, Rezende TJRD, Cendes IL, Pedroso JL, Barsottini OGP, França Júnior MC. Twenty-five years since the identification of the first SCA gene: history, clinical features and perspectives for SCA1. ARQUIVOS DE NEURO-PSIQUIATRIA 2019; 76:555-562. [PMID: 30231129 DOI: 10.1590/0004-282x20180080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 06/04/2018] [Indexed: 11/21/2022]
Abstract
Spinocerebellar ataxias (SCA) are a clinically and genetically heterogeneous group of monogenic diseases that share ataxia and autosomal dominant inheritance as the core features. An important proportion of SCAs are caused by CAG trinucleotide repeat expansions in the coding region of different genes. In addition to genetic heterogeneity, clinical features transcend motor symptoms, including cognitive, electrophysiological and imaging aspects. Despite all the progress in the past 25 years, the mechanisms that determine how neuronal death is mediated by these unstable expansions are still unclear. The aim of this article is to review, from an historical point of view, the first CAG-related ataxia to be genetically described: SCA 1.
Collapse
Affiliation(s)
| | - Fabrício Castro de Borba
- Universidade de Campinas, Faculdade de Ciências Médicas, Departamento de Neurologia, Campinas SP, Brasil
| | | | | | - Iscia Lopes Cendes
- Universidade de Campinas, Faculdade de Ciências Médicas, Departamento de Genética Médica, Campinas SP, Brasil
| | - José Luiz Pedroso
- Universidade Federal de São Paulo, Unidade de Ataxia, Departamento de Neurologia, São Paulo SP, Brasil
| | | | | |
Collapse
|
15
|
Repeat length variations in polyglutamine disease-associated genes affect body mass index. Int J Obes (Lond) 2018; 43:440-449. [PMID: 30120431 DOI: 10.1038/s41366-018-0161-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 05/15/2018] [Accepted: 06/15/2018] [Indexed: 11/08/2022]
Abstract
BACKGROUND The worldwide prevalence of obesity, a major risk factor for numerous debilitating chronic disorders, is increasing rapidly. Although a substantial amount of the variation in body mass index (BMI) is estimated to be heritable, the largest meta-analysis of genome-wide association studies (GWAS) to date explained only ~2.7% of the variation. To tackle this 'missing heritability' problem of obesity, here we focused on the contribution of DNA repeat length polymorphisms which are not detectable by GWAS. SUBJECTS AND METHODS We determined the cytosine-adenine-guanine (CAG) repeat length in the nine known polyglutamine disease-associated genes (ATXN1, ATXN2, ATXN3, CACNA1A, ATXN7, TBP, HTT, ATN1 and AR) in two large cohorts consisting of 12,457 individuals and analyzed their association with BMI, using generalized linear mixed-effect models. RESULTS We found a significant association between BMI and the length of CAG repeats in seven polyglutamine disease-associated genes (including ATXN1, ATXN2, ATXN3, CACNA1A, ATXN7, TBP and AR). Importantly, these repeat variations could account for 0.75% of the total BMI variation. CONCLUSIONS Our findings incriminate repeat polymorphisms as an important novel class of genetic risk factors of obesity and highlight the role of the brain in its pathophysiology.
Collapse
|