1
|
Klein CJ, Triplett JD, Murray DL, Gorsh AP, Shelly S, Dubey D, Pinto MV, Ansell SM, Skolka MP, Swart G, Mauermann ML, Mills JR. Optimizing Anti-Myelin-Associated Glycoprotein and IgM-Gammopathy Testing for Neuropathy Treatment Evaluation. Neurology 2024; 103:e210000. [PMID: 39499873 DOI: 10.1212/wnl.0000000000210000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Patients with typical anti-myelin-associated glycoprotein (anti-MAG) neuropathy have IgM-gammopathy, mimic distal chronic inflammatory demyelinating polyradiculoneuropathy (CIDP), and are treatment resistant. Anti-MAG patients go unrecognized when IgM-gammopathy is undetected or with atypical phenotypes. We investigated an optimal anti-MAG titration cutoff for excluding CIDP and the impact of IgM-gammopathy detection on neuropathy treatment evaluation without anti-MAG antibodies. METHODS European Academy of Neurology/Peripheral Nerve Society 2021 guidelines were used to assess patients with neuropathy using anti-MAG Bühlmann titration units (BTU) and IgM-gammopathy with Mass-Fix (mass spectrophotometry) and serum protein immunofixation electrophoresis (SPIEP). The immunotherapy outcome was reviewed by inflammatory neuropathy cause and treatment (INCAT) and summated compound muscle action potential (CMAP) nerve conduction changes. RESULTS Seven hundred and fifty-two patients (average age: 63.8 years, female: 31%) were identified over 30 months: (1) typical anti-MAG neuropathy (n = 104); (2) atypical anti-MAG neuropathy (n = 13); (3) distal or sensory-predominant CIDP (n = 25), including 7 without IgM-gammopathy; (4) typical CIDP (n = 47), including 36 without IgM-gammopathy; (5) axonal IgM-gammopathy-associated neuropathy (n = 104); and (6) IgM-gammopathy-negative, anti-MAG-negative axonal neuropathies (n = 426); and (7) without neuropathy (n = 33) anti-MAG negative. IgM-gammopathy was evaluated by Mass-Fix (n = 493), SPIEP (n = 355), or both (n = 96). Mass-Fix detected 4 additional IgM-gammopathies (3%, 4/117) among patients with anti-MAG antibodies and 7 additional patients (2%, 7/376) without anti-MAG not detected by SPIEP testing. Immunotherapy follow-up was available in 123 (mean: 23 months, range: 3-120 months) including 47 with CIDP (28 without IgM-gammopathy) and 76 non-CIDP (5 without IgM-gammopathy, 45 anti-MAG positive). Treatments included IVIG (n = 89), rituximab (n = 80), and ibrutinib or zanubrutinib (n = 24). An optimal anti-MAG-positive cutoff was identified at ≥1,500 BTU (78% sensitivity, 96% specificity) and at ≥10,000 BTU (74% sensitivity, 100% specificity) for typical anti-MAG neuropathy. Improvements in INCAT scores (p < 0.0001) and summated CMAP (p = 0.0028) were associated with negative anti-MAG (<1,500 BTU, n = 78) and absence of IgM-gammopathy (n = 34). Among 47 patients with electrodiagnostically confirmed CIDP, all anti-MAG negative, the presence of IgM-gammopathy (n = 19) also correlated with a worse treatment response (INCAT scores p = 0.035, summated CMAP p = 0.049). DISCUSSION A cutoff of 10,000 BTU seems optimal for typical anti-MAG neuropathy while ≥1,500 BTU reduces the likelihood of immune-treatable CIDP. Mass-Fix improves IgM-gammopathy detection in anti-MAG and other IgM-gammopathy neuropathies. Patients with IgM-gammopathy lacking MAG antibodies show reduced treatment response.
Collapse
Affiliation(s)
- Christopher J Klein
- From the Department of Neurology (C.J.K., D.D., M.V.P., M.P.S., G.S., M.L.M.), Mayo Clinic, Rochester, MN; Department of Neurology (J.D.T.), Royal Adelaide Hospital, Adelaide, South Australia; Department of Laboratory Medicine and Pathology Mayo Clinic (D.L.M., J.R.M., S.S.), Rochester, MN; Department of Neurology (S.S.), Rambam Medical Center, Haifa, Israel; and Department of Hematology Mayo Clinic Foundation (S.M.A.), Rochester, MN
| | - James D Triplett
- From the Department of Neurology (C.J.K., D.D., M.V.P., M.P.S., G.S., M.L.M.), Mayo Clinic, Rochester, MN; Department of Neurology (J.D.T.), Royal Adelaide Hospital, Adelaide, South Australia; Department of Laboratory Medicine and Pathology Mayo Clinic (D.L.M., J.R.M., S.S.), Rochester, MN; Department of Neurology (S.S.), Rambam Medical Center, Haifa, Israel; and Department of Hematology Mayo Clinic Foundation (S.M.A.), Rochester, MN
| | - David L Murray
- From the Department of Neurology (C.J.K., D.D., M.V.P., M.P.S., G.S., M.L.M.), Mayo Clinic, Rochester, MN; Department of Neurology (J.D.T.), Royal Adelaide Hospital, Adelaide, South Australia; Department of Laboratory Medicine and Pathology Mayo Clinic (D.L.M., J.R.M., S.S.), Rochester, MN; Department of Neurology (S.S.), Rambam Medical Center, Haifa, Israel; and Department of Hematology Mayo Clinic Foundation (S.M.A.), Rochester, MN
| | - Amy P Gorsh
- From the Department of Neurology (C.J.K., D.D., M.V.P., M.P.S., G.S., M.L.M.), Mayo Clinic, Rochester, MN; Department of Neurology (J.D.T.), Royal Adelaide Hospital, Adelaide, South Australia; Department of Laboratory Medicine and Pathology Mayo Clinic (D.L.M., J.R.M., S.S.), Rochester, MN; Department of Neurology (S.S.), Rambam Medical Center, Haifa, Israel; and Department of Hematology Mayo Clinic Foundation (S.M.A.), Rochester, MN
| | - Shahar Shelly
- From the Department of Neurology (C.J.K., D.D., M.V.P., M.P.S., G.S., M.L.M.), Mayo Clinic, Rochester, MN; Department of Neurology (J.D.T.), Royal Adelaide Hospital, Adelaide, South Australia; Department of Laboratory Medicine and Pathology Mayo Clinic (D.L.M., J.R.M., S.S.), Rochester, MN; Department of Neurology (S.S.), Rambam Medical Center, Haifa, Israel; and Department of Hematology Mayo Clinic Foundation (S.M.A.), Rochester, MN
| | - Divyanshu Dubey
- From the Department of Neurology (C.J.K., D.D., M.V.P., M.P.S., G.S., M.L.M.), Mayo Clinic, Rochester, MN; Department of Neurology (J.D.T.), Royal Adelaide Hospital, Adelaide, South Australia; Department of Laboratory Medicine and Pathology Mayo Clinic (D.L.M., J.R.M., S.S.), Rochester, MN; Department of Neurology (S.S.), Rambam Medical Center, Haifa, Israel; and Department of Hematology Mayo Clinic Foundation (S.M.A.), Rochester, MN
| | - Marcus V Pinto
- From the Department of Neurology (C.J.K., D.D., M.V.P., M.P.S., G.S., M.L.M.), Mayo Clinic, Rochester, MN; Department of Neurology (J.D.T.), Royal Adelaide Hospital, Adelaide, South Australia; Department of Laboratory Medicine and Pathology Mayo Clinic (D.L.M., J.R.M., S.S.), Rochester, MN; Department of Neurology (S.S.), Rambam Medical Center, Haifa, Israel; and Department of Hematology Mayo Clinic Foundation (S.M.A.), Rochester, MN
| | - Stephen M Ansell
- From the Department of Neurology (C.J.K., D.D., M.V.P., M.P.S., G.S., M.L.M.), Mayo Clinic, Rochester, MN; Department of Neurology (J.D.T.), Royal Adelaide Hospital, Adelaide, South Australia; Department of Laboratory Medicine and Pathology Mayo Clinic (D.L.M., J.R.M., S.S.), Rochester, MN; Department of Neurology (S.S.), Rambam Medical Center, Haifa, Israel; and Department of Hematology Mayo Clinic Foundation (S.M.A.), Rochester, MN
| | - Michael P Skolka
- From the Department of Neurology (C.J.K., D.D., M.V.P., M.P.S., G.S., M.L.M.), Mayo Clinic, Rochester, MN; Department of Neurology (J.D.T.), Royal Adelaide Hospital, Adelaide, South Australia; Department of Laboratory Medicine and Pathology Mayo Clinic (D.L.M., J.R.M., S.S.), Rochester, MN; Department of Neurology (S.S.), Rambam Medical Center, Haifa, Israel; and Department of Hematology Mayo Clinic Foundation (S.M.A.), Rochester, MN
| | - Grace Swart
- From the Department of Neurology (C.J.K., D.D., M.V.P., M.P.S., G.S., M.L.M.), Mayo Clinic, Rochester, MN; Department of Neurology (J.D.T.), Royal Adelaide Hospital, Adelaide, South Australia; Department of Laboratory Medicine and Pathology Mayo Clinic (D.L.M., J.R.M., S.S.), Rochester, MN; Department of Neurology (S.S.), Rambam Medical Center, Haifa, Israel; and Department of Hematology Mayo Clinic Foundation (S.M.A.), Rochester, MN
| | - Michelle L Mauermann
- From the Department of Neurology (C.J.K., D.D., M.V.P., M.P.S., G.S., M.L.M.), Mayo Clinic, Rochester, MN; Department of Neurology (J.D.T.), Royal Adelaide Hospital, Adelaide, South Australia; Department of Laboratory Medicine and Pathology Mayo Clinic (D.L.M., J.R.M., S.S.), Rochester, MN; Department of Neurology (S.S.), Rambam Medical Center, Haifa, Israel; and Department of Hematology Mayo Clinic Foundation (S.M.A.), Rochester, MN
| | - John R Mills
- From the Department of Neurology (C.J.K., D.D., M.V.P., M.P.S., G.S., M.L.M.), Mayo Clinic, Rochester, MN; Department of Neurology (J.D.T.), Royal Adelaide Hospital, Adelaide, South Australia; Department of Laboratory Medicine and Pathology Mayo Clinic (D.L.M., J.R.M., S.S.), Rochester, MN; Department of Neurology (S.S.), Rambam Medical Center, Haifa, Israel; and Department of Hematology Mayo Clinic Foundation (S.M.A.), Rochester, MN
| |
Collapse
|
2
|
van Doorn IN, Eftimov F, Wieske L, van Schaik IN, Verhamme C. Challenges in the Early Diagnosis and Treatment of Chronic Inflammatory Demyelinating Polyradiculoneuropathy in Adults: Current Perspectives. Ther Clin Risk Manag 2024; 20:111-126. [PMID: 38375075 PMCID: PMC10875175 DOI: 10.2147/tcrm.s360249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/14/2024] [Indexed: 02/21/2024] Open
Abstract
Diagnosing Chronic Inflammatory Demyelinating Polyneuropathy (CIDP) poses numerous challenges. The heterogeneous presentations of CIDP variants, its mimics, and the complexity of interpreting electrodiagnostic criteria are just a few of the many reasons for misdiagnoses. Early recognition and treatment are important to reduce the risk of irreversible axonal damage, which may lead to permanent disability. The diagnosis of CIDP is based on a combination of clinical symptoms, nerve conduction study findings that indicate demyelination, and other supportive criteria. In 2021, the European Academy of Neurology (EAN) and the Peripheral Nerve Society (PNS) published a revision on the most widely adopted guideline on the diagnosis and treatment of CIDP. This updated guideline now includes clinical and electrodiagnostic criteria for CIDP variants (previously termed atypical CIDP), updated supportive criteria, and sensory criteria as an integral part of the electrodiagnostic criteria. Due to its many rules and exceptions, this guideline is complex and misinterpretation of nerve conduction study findings remain common. CIDP is treatable with intravenous immunoglobulins, corticosteroids, and plasma exchange. The choice of therapy should be tailored to the individual patient's situation, taking into account the severity of symptoms, potential side effects, patient autonomy, and past treatments. Treatment responses should be evaluated as objectively as possible using disability and impairment scales. Applying these outcome measures consistently in clinical practice aids in recognizing the effectiveness (or lack thereof) of a treatment and facilitates timely consideration of alternative diagnoses or treatments. This review provides an overview of the current perspectives on the diagnostic process and first-line treatments for managing the disease.
Collapse
Affiliation(s)
- Iris N van Doorn
- Department of Neurology and Clinical Neurophysiology, Amsterdam Neuroscience and University of Amsterdam, Amsterdam UMC, location AMC, the Netherlands
| | - Filip Eftimov
- Department of Neurology and Clinical Neurophysiology, Amsterdam Neuroscience and University of Amsterdam, Amsterdam UMC, location AMC, the Netherlands
| | - Luuk Wieske
- Department of Neurology and Clinical Neurophysiology, Amsterdam Neuroscience and University of Amsterdam, Amsterdam UMC, location AMC, the Netherlands
- Department of Clinical Neurophysiology, Sint Antonius Hospital, Nieuwegein, the Netherlands
| | - Ivo N van Schaik
- Department of Neurology and Clinical Neurophysiology, Amsterdam Neuroscience and University of Amsterdam, Amsterdam UMC, location AMC, the Netherlands
- Sanquin Blood Supply Foundation, Amsterdam, the Netherlands
| | - Camiel Verhamme
- Department of Neurology and Clinical Neurophysiology, Amsterdam Neuroscience and University of Amsterdam, Amsterdam UMC, location AMC, the Netherlands
| |
Collapse
|
3
|
Collet R, Caballero-Ávila M, Querol L. Clinical and pathophysiological implications of autoantibodies in autoimmune neuropathies. Rev Neurol (Paris) 2023; 179:831-843. [PMID: 36907709 DOI: 10.1016/j.neurol.2023.02.064] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/28/2023] [Accepted: 02/02/2023] [Indexed: 03/13/2023]
Abstract
Autoimmune neuropathies are a heterogeneous group of rare and disabling diseases in which the immune system targets peripheral nervous system antigens and that respond to immune therapies. This review focuses on Guillain-Barré syndrome, chronic inflammatory demyelinating polyneuropathy, multifocal motor neuropathy, polyneuropathy associated with IgM monoclonal gammopathy, and autoimmune nodopathies. Autoantibodies targeting gangliosides, proteins in the node of Ranvier, and myelin-associated glycoprotein have been described in these disorders, defining subgroups of patients with similar clinical features and response to therapy. This topical review describes the role of these autoantibodies in the pathogenesis of autoimmune neuropathies and their clinical and therapeutic importance.
Collapse
Affiliation(s)
- R Collet
- Department of Neurology, Hospital Santa Creu i Sant Pau, Barcelona, Spain
| | - M Caballero-Ávila
- Department of Neurology, Hospital Santa Creu i Sant Pau, Barcelona, Spain; Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - L Querol
- Department of Neurology, Hospital Santa Creu i Sant Pau, Barcelona, Spain; Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro para la Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain.
| |
Collapse
|
4
|
Lubarski K, Mania A, Michalak S, Osztynowicz K, Mazur-Melewska K, Figlerowicz M. The Coexistence of Antibodies to Neuronal Cell and Synaptic Receptor Proteins, Gangliosides and Selected Neurotropic Pathogens in Neurologic Disorders in Children. Diagnostics (Basel) 2023; 13:diagnostics13071274. [PMID: 37046492 PMCID: PMC10093427 DOI: 10.3390/diagnostics13071274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/25/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023] Open
Abstract
Various primarily non-autoimmune neurological disorders occur synchronously with autoantibodies against tissues in the nervous system. We aimed to assess serum and cerebrospinal fluid (CSF) autoantibodies in children with neurologic disorders. To find new diagnostic tools, we compared the laboratory and clinical findings between the distinguished groups. Retrospectively, 508 patients were divided into six subgroups: neuroinfections, pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections, neurologic autoimmune and demyelinating diseases, epilepsy, pervasive developmental disorders and other patients. We analysed serum anti-aquaporin-4, antiganglioside, neuronal antinuclear and cytoplasmic antibodies, as well as antibodies against surface neuronal and synaptic antigens in the CSF and serum. We involved available demographic and clinical data. Autoantibodies appeared in 165 (32.3%) children, with 24 showing multiple types of them. The most common were anti-neuroendothelium (anti-NET), anti-N-Methyl-D-Aspartate receptor (anti-NMDAr), anti-glial fibrillary acidic protein and anti-myelin antibodies bothering 46/463 (9.9%), 32/343 (9.4%), 27/463 (5.8%) and 27/463 (5.8%), respectively. Anti-NET and anti-NMDAr antibodies appeared more frequently in children with autoimmunity (p = 0.017; p < 0.001, respectively), increasing the autoimmune disease risk (OR = 2.18, 95% CI 1.13–13.97; OR = 3.91, 95% CI 1.86–8.22, respectively). Similar pathomechanisms appeared in diseases of different aetiology with clinical spectrums mimicking each other, so we proposed the model helping to diagnose autoimmune disease. We proved the influence of age, living place and medical history on the final diagnosis.
Collapse
Affiliation(s)
- Karol Lubarski
- Department of Infectious Diseases and Child Neurology, Poznan University of Medical Sciences, 27/33 Szpitalna St., 60-572 Poznan, Poland
| | - Anna Mania
- Department of Infectious Diseases and Child Neurology, Poznan University of Medical Sciences, 27/33 Szpitalna St., 60-572 Poznan, Poland
| | - Sławomir Michalak
- Department of Neurology, Division of Neurochemistry and Neuropathology, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355 Poznan, Poland
| | - Krystyna Osztynowicz
- Department of Neurology, Division of Neurochemistry and Neuropathology, Poznan University of Medical Sciences, 49 Przybyszewskiego St., 60-355 Poznan, Poland
| | - Katarzyna Mazur-Melewska
- Department of Infectious Diseases and Child Neurology, Poznan University of Medical Sciences, 27/33 Szpitalna St., 60-572 Poznan, Poland
| | - Magdalena Figlerowicz
- Department of Infectious Diseases and Child Neurology, Poznan University of Medical Sciences, 27/33 Szpitalna St., 60-572 Poznan, Poland
- Correspondence:
| |
Collapse
|
5
|
Antibody testing in neuropathy associated with anti-Myelin-Associated Glycoprotein antibodies: where we are after 40 years. Curr Opin Neurol 2021; 34:625-630. [PMID: 34267053 DOI: 10.1097/wco.0000000000000975] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW The diagnosis of Myelin-Associated Glycoprotein (MAG) neuropathy is based on the presence of elevated titers of IgM anti-MAG antibodies, which are typically associated with IgM monoclonal gammopathy, and a slowly progressive, distal demyelinating phenotype. The condition, however, can be under or over diagnosed in patients with mildly elevated antibody titers, absent monoclonal gammopathy, or an atypical presentation. The purpose of this paper is to examine recent advances in our understanding of the currently available anti-MAG antibody assays, their reliability, and their use in deciding treatment or monitoring the response to therapy. RECENT FINDINGS Higher titers of anti-MAG antibodies are more likely to be associated with the typical MAG phenotype or response to therapy. Mildly elevated antibody levels can occur in patients with chronic inflammatory demyelinating polyneuropathy. Testing for cross-reactivity with HNK1 can add to the specificity of the antibody assays. Patients with MAG neuropathy can present with an atypical phenotype and in the absence of a detectable monoclonal gammopathy. SUMMARY Assays for anti-MAG antibodies by Enzyme-Linked Immunosorbent Assay can be improved by testing for antibody binding at multiple serum dilutions, the inclusion of antigen-negative microwells as internal controls for each sample, testing for cross-reactivity with HNK1, and formal validation. The diagnosis needs to be considered in patients with demyelinating neuropathy, even in the absence of a monoclonal gammopathy or typical phenotype. The change in antibody levels needs to be considered in evaluating the response to therapy with B-cell depleting agents.
Collapse
|
6
|
Van den Bergh PYK, van Doorn PA, Hadden RDM, Avau B, Vankrunkelsven P, Allen JA, Attarian S, Blomkwist-Markens PH, Cornblath DR, Eftimov F, Goedee HS, Harbo T, Kuwabara S, Lewis RA, Lunn MP, Nobile-Orazio E, Querol L, Rajabally YA, Sommer C, Topaloglu HA. European Academy of Neurology/Peripheral Nerve Society guideline on diagnosis and treatment of chronic inflammatory demyelinating polyradiculoneuropathy: Report of a joint Task Force-Second revision. Eur J Neurol 2021; 28:3556-3583. [PMID: 34327760 DOI: 10.1111/ene.14959] [Citation(s) in RCA: 192] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To revise the 2010 consensus guideline on chronic inflammatory demyelinating polyradiculoneuropathy (CIDP). METHODS Seventeen disease experts, a patient representative, and two Cochrane methodologists constructed 12 Population/Intervention/Comparison/Outcome (PICO) questions regarding diagnosis and treatment to guide the literature search. Data were extracted and summarized in GRADE summary of findings (for treatment PICOs) or evidence tables (for diagnostic PICOs). RESULTS Statements were prepared according to the GRADE Evidence-to-Decision frameworks. Typical CIDP and CIDP variants were distinguished. The previous term "atypical CIDP" was replaced by "CIDP variants" because these are well characterized entities (multifocal, focal, distal, motor, or sensory CIDP). The levels of diagnostic certainty were reduced from three (definite, probable, possible CIDP) to only two (CIDP and possible CIDP), because the diagnostic accuracy of criteria for probable and definite CIDP did not significantly differ. Good Practice Points were formulated for supportive criteria and investigations to be considered to diagnose CIDP. The principal treatment recommendations were: (a) intravenous immunoglobulin (IVIg) or corticosteroids are strongly recommended as initial treatment in typical CIDP and CIDP variants; (b) plasma exchange is strongly recommended if IVIg and corticosteroids are ineffective; (c) IVIg should be considered as first-line treatment in motor CIDP (Good Practice Point); (d) for maintenance treatment, IVIg, subcutaneous immunoglobulin or corticosteroids are recommended; (e) if the maintenance dose of any of these is high, consider either combination treatments or adding an immunosuppressant or immunomodulatory drug (Good Practice Point); and (f) if pain is present, consider drugs against neuropathic pain and multidisciplinary management (Good Practice Point).
Collapse
Affiliation(s)
- Peter Y K Van den Bergh
- Neuromuscular Reference Centre, Department of Neurology, University Hospital Saint-Luc, Brussels, Belgium
| | - Pieter A van Doorn
- Department of Neurology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | | | - Bert Avau
- Cochrane Belgium, CEBAM, Leuven, Belgium and CEBaP, Belgian Red Cross, Mechelen, Belgium
| | | | - Jeffrey A Allen
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Shahram Attarian
- Centre de Référence des Maladies Neuromusculaires et de la SLA, APHM, CHU Timone, Marseille, France
| | | | - David R Cornblath
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Filip Eftimov
- Department of Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - H Stephan Goedee
- Department of Neuromuscular Disorders, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Thomas Harbo
- Department of Neurology, Århus University Hospital, Århus, Denmark
| | - Satoshi Kuwabara
- Department of Neurology, Chiba University Hospital, Chiba, Japan
| | - Richard A Lewis
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Michael P Lunn
- Department of Neurology and MRC Centre for Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, London, UK
| | - Eduardo Nobile-Orazio
- Neuromuscular and Neuroimmunology Service, IRCCS Humanitas Clinical and Research Center, Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Luis Querol
- Neuromuscular Diseases Unit-Neurology Department, Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
| | - Yusuf A Rajabally
- Regional Neuromuscular Service, Neurology, Queen Elizabeth Hospital Birmingham, Birmingham, UK
| | - Claudia Sommer
- Neurology Clinic, University Hospital Würzburg, Würzburg, Germany
| | | |
Collapse
|
7
|
Van den Bergh PYK, van Doorn PA, Hadden RDM, Avau B, Vankrunkelsven P, Allen JA, Attarian S, Blomkwist-Markens PH, Cornblath DR, Eftimov F, Goedee HS, Harbo T, Kuwabara S, Lewis RA, Lunn MP, Nobile-Orazio E, Querol L, Rajabally YA, Sommer C, Topaloglu HA. European Academy of Neurology/Peripheral Nerve Society guideline on diagnosis and treatment of chronic inflammatory demyelinating polyradiculoneuropathy: Report of a joint Task Force-Second revision. J Peripher Nerv Syst 2021; 26:242-268. [PMID: 34085743 DOI: 10.1111/jns.12455] [Citation(s) in RCA: 195] [Impact Index Per Article: 65.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/14/2022]
Abstract
To revise the 2010 consensus guideline on chronic inflammatory demyelinating polyradiculoneuropathy (CIDP). Seventeen disease experts, a patient representative, and two Cochrane methodologists constructed 12 Population/Intervention/Comparison/Outcome (PICO) questions regarding diagnosis and treatment to guide the literature search. Data were extracted and summarized in GRADE summary of findings (for treatment PICOs) or evidence tables (for diagnostic PICOs). Statements were prepared according to the GRADE Evidence-to-Decision frameworks. Typical CIDP and CIDP variants were distinguished. The previous term "atypical CIDP" was replaced by "CIDP variants" because these are well characterized entities (multifocal, focal, distal, motor, or sensory CIDP). The levels of diagnostic certainty were reduced from three (definite, probable, possible CIDP) to only two (CIDP and possible CIDP), because the diagnostic accuracy of criteria for probable and definite CIDP did not significantly differ. Good Practice Points were formulated for supportive criteria and investigations to be considered to diagnose CIDP. The principal treatment recommendations were: (a) intravenous immunoglobulin (IVIg) or corticosteroids are strongly recommended as initial treatment in typical CIDP and CIDP variants; (b) plasma exchange is strongly recommended if IVIg and corticosteroids are ineffective; (c) IVIg should be considered as first-line treatment in motor CIDP (Good Practice Point); (d) for maintenance treatment, IVIg, subcutaneous immunoglobulin or corticosteroids are recommended; (e) if the maintenance dose of any of these is high, consider either combination treatments or adding an immunosuppressant or immunomodulatory drug (Good Practice Point); and (f) if pain is present, consider drugs against neuropathic pain and multidisciplinary management (Good Practice Point).
Collapse
Affiliation(s)
- Peter Y K Van den Bergh
- Neuromuscular Reference Centre, Department of Neurology, University Hospital Saint-Luc, Brussels, Belgium
| | - Pieter A van Doorn
- Department of Neurology, Erasmus MC, University Medical Center, Rotterdam, The Netherlands
| | | | - Bert Avau
- Cochrane Belgium, CEBAM, Leuven, Belgium and CEBaP, Belgian Red Cross, Mechelen, Belgium
| | | | - Jeffrey A Allen
- Department of Neurology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Shahram Attarian
- Centre de Référence des Maladies Neuromusculaires et de la SLA, APHM, CHU Timone, Marseille, France
| | | | - David R Cornblath
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Filip Eftimov
- Department of Neurology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - H Stephan Goedee
- Department of Neuromuscular Disorders, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Thomas Harbo
- Department of Neurology, Århus University Hospital, Århus, Denmark
| | - Satoshi Kuwabara
- Department of Neurology, Chiba University Hospital, Chiba, Japan
| | - Richard A Lewis
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Michael P Lunn
- Department of Neurology and MRC Centre for Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, London, UK
| | - Eduardo Nobile-Orazio
- Neuromuscular and Neuroimmunology Service, IRCCS Humanitas Clinical and Research Center, Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Luis Querol
- Neuromuscular Diseases Unit-Neurology Department, Hospital de la Santa Creu I Sant Pau, Barcelona, Spain
| | - Yusuf A Rajabally
- Regional Neuromuscular Service, Neurology, Queen Elizabeth Hospital Birmingham, Birmingham, UK
| | - Claudia Sommer
- Neurology Clinic, University Hospital Würzburg, Würzburg, Germany
| | | |
Collapse
|
8
|
Matà S, Torricelli S, Barilaro A, Grippo A, Forleo P, Del Mastio M, Sorbi S. Polyneuropathy and monoclonal gammopathy of undetermined significance (MGUS); update of a clinical experience. J Neurol Sci 2021; 423:117335. [PMID: 33647732 DOI: 10.1016/j.jns.2021.117335] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 10/22/2022]
Abstract
BACKGROUND AND PURPOSE Polyneuropathies associated with monoclonal gammopathy of undetermined significance (MGUS) encompass a group of phenotypically and immunologically heterogeneous neuropathies. While the best characterized is that associated with anti-myelin glycoprotein (MAG) antibodies, there are phenotypical and immunological neuropathy variants that still lack a clear classification. We analyzed a significant number of patients, in order to better evaluate the distribution of neuropathy phenotypes and to look for some common characteristics. METHODS Clinical, neurophysiological, and laboratory data from 87 consecutive MGUS patients with peripheral neuropathy were analyzed and compared among patient groups with different MGUS classes and autoantibody reactivity. RESULTS Anti-MAG neuropathy cases account for the most homogeneous group with regard to clinical and neurophysiological findings. Patients with anti-gangliosides or sulfatide (GS) antibodies, despite a marked phenotype heterogeneity, still share several common features, including a younger age at diagnosis, a more severe disease, and a prompt and sustained response to both immunoglobulin and rituximab therapies, mostly requiring chronic administration of immune treatment. CONCLUSIONS Although heterogeneous, MGUS-associated, anti-GS antibody positive neuropathies have important similar features possibly resulting from a similar biological background.
Collapse
Affiliation(s)
- Sabrina Matà
- SOD Neurologia 1, Dipartimento Neuromuscolo-Scheletrico e degli Organi di Senso, Azienda Ospedaliero Universitaria Careggi, Florence, Italy.
| | - Sara Torricelli
- Department of Neuroscience, Psychology, Drug Research and Child Health and Centro di Ricerca, University of Florence, Florence, Italy.
| | - Alessandro Barilaro
- SOD Neurologia 2, Dipartimento Neuromuscolo-Scheletrico e degli Organi di Senso, Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| | - Antonello Grippo
- SOD Neurofisiopatologia, Dipartimento Neuromuscolo-Scheletrico e degli Organi di Senso, Azienda Ospedaliero Universitaria Careggi, Florence, Italy.
| | - Paolo Forleo
- SOD Neurologia 1, Dipartimento Neuromuscolo-Scheletrico e degli Organi di Senso, Azienda Ospedaliero Universitaria Careggi, Florence, Italy.
| | - Monica Del Mastio
- SOD Neurologia 1, Dipartimento Neuromuscolo-Scheletrico e degli Organi di Senso, Azienda Ospedaliero Universitaria Careggi, Florence, Italy
| | - Sandro Sorbi
- Department of Neuroscience, Psychology, Drug Research and Child Health and Centro di Ricerca, University of Florence, Florence, Italy; IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy.
| |
Collapse
|
9
|
Eftimov F, Lucke IM, Querol LA, Rajabally YA, Verhamme C. Diagnostic challenges in chronic inflammatory demyelinating polyradiculoneuropathy. Brain 2020; 143:3214-3224. [PMID: 33155018 PMCID: PMC7719025 DOI: 10.1093/brain/awaa265] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/07/2020] [Accepted: 06/17/2020] [Indexed: 12/11/2022] Open
Abstract
Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) consists of a spectrum of autoimmune diseases of the peripheral nerves, causing weakness and sensory symptoms. Diagnosis often is challenging, because of the heterogeneous presentation and both mis- and underdiagnosis are common. Nerve conduction study (NCS) abnormalities suggestive of demyelination are mandatory to fulfil the diagnostic criteria. On the one hand, performance and interpretation of NCS can be difficult and none of these demyelinating findings are specific for CIDP. On the other hand, not all patients will be detected despite the relatively high sensitivity of NCS abnormalities. The electrodiagnostic criteria can be supplemented with additional diagnostic tests such as CSF examination, MRI, nerve biopsy, and somatosensory evoked potentials. However, the evidence for each of these additional diagnostic tests is limited. Studies are often small without the use of a clinically relevant control group. None of the findings are specific for CIDP, meaning that the results of the diagnostic tests should be carefully interpreted. In this update we will discuss the pitfalls in diagnosing CIDP and the value of newly introduced diagnostic tests such as nerve ultrasound and testing for autoantibodies, which are not yet part of the guidelines.
Collapse
Affiliation(s)
- Filip Eftimov
- Department of Neurology and Clinical Neurophysiology, Amsterdam Neuroscience, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Ilse M Lucke
- Department of Neurology and Clinical Neurophysiology, Amsterdam Neuroscience, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Luis A Querol
- Department of Neurology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
- Centro para la Investigación en Red en Enfermedades Raras (CIBERER), Madrid, Spain
| | | | - Camiel Verhamme
- Department of Neurology and Clinical Neurophysiology, Amsterdam Neuroscience, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
10
|
Relevance of anti-HNK1 antibodies in the management of anti-MAG neuropathies. J Neurol 2019; 266:1973-1979. [DOI: 10.1007/s00415-019-09367-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Revised: 05/05/2019] [Accepted: 05/07/2019] [Indexed: 12/14/2022]
|
11
|
Pascual-Goñi E, Martín-Aguilar L, Lleixà C, Martínez-Martínez L, Simón-Talero MJ, Díaz-Manera J, Cortés-Vicente E, Rojas-García R, Moga E, Juárez C, Illa I, Querol L. Clinical and laboratory features of anti-MAG neuropathy without monoclonal gammopathy. Sci Rep 2019; 9:6155. [PMID: 30992531 PMCID: PMC6468000 DOI: 10.1038/s41598-019-42545-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/02/2019] [Indexed: 11/09/2022] Open
Abstract
Antibodies against myelin-associated glycoprotein (MAG) almost invariably appear in the context of an IgM monoclonal gammopathy associated neuropathy. Very few cases of anti-MAG neuropathy lacking IgM-monoclonal gammopathy have been reported. We investigated the presence of anti-MAG antibodies in 69 patients fulfilling diagnostic criteria for CIDP. Anti-MAG antibodies were tested by ELISA and confirmed by immunohistochemistry. We identified four (5.8%) anti-MAG positive patients without detectable IgM-monoclonal gammopathy. In two of them, IgM-monoclonal gammopathy was detected at 3 and 4-year follow-up coinciding with an increase in anti-MAG antibodies titers. In conclusion, anti-MAG antibody testing should be considered in chronic demyelinating neuropathies, even if IgM-monoclonal gammopathy is not detectable.
Collapse
Affiliation(s)
- Elba Pascual-Goñi
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Lorena Martín-Aguilar
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Cinta Lleixà
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Laura Martínez-Martínez
- Department of Immunology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Manuel J Simón-Talero
- Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jordi Díaz-Manera
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro para la Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain
| | - Elena Cortés-Vicente
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro para la Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain
| | - Ricard Rojas-García
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro para la Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain
| | - Esther Moga
- Department of Immunology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Cándido Juárez
- Department of Immunology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Isabel Illa
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain.,Centro para la Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain
| | - Luis Querol
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain. .,Centro para la Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Madrid, Spain.
| |
Collapse
|
12
|
News on the journal Neurological Sciences in 2017. Neurol Sci 2018; 39:15-21. [PMID: 29327225 DOI: 10.1007/s10072-017-3241-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|