1
|
Liu J, Pang SY, Zhou SY, He QY, Zhao RY, Qu Y, Yang Y, Guo ZN. Lipocalin-2 aggravates blood-brain barrier dysfunction after intravenous thrombolysis by promoting endothelial cell ferroptosis via regulating the HMGB1/Nrf2/HO-1 pathway. Redox Biol 2024; 76:103342. [PMID: 39265498 PMCID: PMC11415874 DOI: 10.1016/j.redox.2024.103342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/25/2024] [Accepted: 09/03/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND Disruption of the blood-brain barrier (BBB) is a major contributor to hemorrhagic transformation (HT) in patients with acute ischemic stroke (AIS) following intravenous thrombolysis (IVT). However, the clinical therapies aimed at BBB protection after IVT remain limited. METHODS One hundred patients with AIS who underwent IVT were enrolled (42 with HT and 58 without HT 24 h after IVT). Based on the cytokine chip, the serum levels of several AIS-related proteins, including LCN2, ferritin, matrix metalloproteinase-3, vascular endothelial-derived growth factor, and X-linked inhibitor of apoptosis, were detected upon admission, and their associations with HT were analyzed. After finding that LCN2 was related to HT in patients with IVT, we clarified whether the modulation of LCN2 influenced BBB dysfunction and HT after thrombolysis and investigated the potential mechanism. RESULTS In patients with AIS following IVT, logistic regression analysis showed that baseline serum LCN2 (p = 0.023) and ferritin (p = 0.046) levels were independently associated with HT. A positive correlation between serum LCN2 and ferritin levels was identified in patients with HT. In experimental studies, recombinant LCN2 (rLCN2) significantly aggravated BBB dysfunction and HT in the thromboembolic stroke rats after thrombolysis, whereas LCN2 inhibition by ZINC006440089 exerted opposite effects. Further mechanistic studies showed that, LCN2 promoted endothelial cell ferroptosis, accompanied by the induction of high mobility group box 1 (HMGB1) and the inhibition of nuclear translocation of nuclear factor E2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) proteins. Ferroptosis inhibitor ferrostatin-1 (fer-1) significantly restricted the LCN2-mediated BBB disruption. Transfection of LCN2 and HMGB1 siRNA inhibited the endothelial cell ferroptosis, and this effects was reversed by Nrf2 siRNA. CONCLUSION LCN2 aggravated BBB disruption after thrombolysis by promoting endothelial cell ferroptosis via regulating the HMGB1/Nrf2/HO-1 pathway, this may provide a promising therapeutic target for the prevention of HT after IVT.
Collapse
Affiliation(s)
- Jie Liu
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun, China
| | - Shu-Yan Pang
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun, China
| | - Sheng-Yu Zhou
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun, China
| | - Qian-Yan He
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun, China
| | - Ruo-Yu Zhao
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun, China
| | - Yang Qu
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun, China
| | - Yi Yang
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun, China; Neuroscience Research Center, Department of Neurology, First Hospital of Jilin University, Chang Chun, China.
| | - Zhen-Ni Guo
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun, China; Neuroscience Research Center, Department of Neurology, First Hospital of Jilin University, Chang Chun, China.
| |
Collapse
|
2
|
Shen L, Yang J, Zhu Z, Li W, Cui J, Gu L. Elevated Serum HMGB1 Levels and Their Association with Recurrence of Acute Ischaemic Stroke. J Inflamm Res 2024; 17:6887-6894. [PMID: 39372585 PMCID: PMC11451516 DOI: 10.2147/jir.s477415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/21/2024] [Indexed: 10/08/2024] Open
Abstract
Purpose The study aimed to investigate the correlation between baseline serum levels of high mobility group box 1 (HMGB1) and the recurrence of acute ischemic stroke (AIS). Patients and Methods A total of 544 AIS patients were enrolled and followed up monthly. Serum HMGB1 levels were measured using enzyme-linked immunosorbent assay (ELISA). The primary endpoint was the first recurrence of AIS. Results During a median follow-up period of 43 months, 62 of the 544 AIS patients experienced a recurrence. Both HMGB1 levels and national institute of health stroke scale (NIHSS) scores were significantly higher in the recurrence group compared to the no-recurrence group (p<0.05). According to the receiver operating characteristic curve analysis, the combination (0.855, 95% CI: 0.800-0.911) of HMGB1 (0.745, 95% CI: 0.663-0.826) and NIHSS (0.822, 95% CI: 0.758-0.886) had a higher value for predicting AIS recurrence than either of them (p<0.05). Kaplan-Meier analyses demonstrated that the cumulative survival without AIS recurrence was significantly lower in patients in the high HMGB1 level group than in the low HMGB1 level group (p<0.05). The multifactorial Cox analyses indicated that elevated baseline serum HMGB1 levels (HR: 7.489, 95% CI:4.383-12.795) were a highly effective predictor of recurrence in AIS. Conclusion Elevated baseline serum HMGB1 levels were found to be a highly effective predictor of recurrence in AIS.
Collapse
Affiliation(s)
- Liping Shen
- Department of Neurology, Jiangyin Hospital Affiliated to Nantong University, Jiangyin, Jiangsu, People’s Republic of China
| | - Jiangsheng Yang
- Department of Neurology, Jiangyin Hospital Affiliated to Nantong University, Jiangyin, Jiangsu, People’s Republic of China
| | - Zufu Zhu
- Department of Neurology, Jiangyin Hospital Affiliated to Nantong University, Jiangyin, Jiangsu, People’s Republic of China
| | - Weizhang Li
- Department of Neurology, Jiangyin Hospital Affiliated to Nantong University, Jiangyin, Jiangsu, People’s Republic of China
| | - Junyou Cui
- Department of Neurology, Jiangyin Hospital Affiliated to Nantong University, Jiangyin, Jiangsu, People’s Republic of China
| | - Lingyun Gu
- Department of Neurology, Jiangyin Hospital Affiliated to Nantong University, Jiangyin, Jiangsu, People’s Republic of China
| |
Collapse
|
3
|
Zaharia AL, Tutunaru D, Oprea VD, Tănase CE, Croitoru A, Stan B, Voinescu DC, Ionescu AM, Coadǎ CA, Lungu M. Thrombomodulin Serum Levels-A Predictable Biomarker for the Acute Onset of Ischemic Stroke. Curr Issues Mol Biol 2024; 46:677-688. [PMID: 38248346 PMCID: PMC10813863 DOI: 10.3390/cimb46010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/07/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
The early diagnosis of acute ischemic stroke (AIS) can be challenging in cases presenting with a scarcity of clinical signs, normal cerebral imaging in early stages and a lack of specific serum markers. Thrombomodulin has been shown to be associated with cerebrovascular ischemic events and can be considered an important biomarker for the acute onset of ischemic stroke. In our study, we compared the serum levels of thrombomodulin (sTM) between a relevant patient group of 70 AIS patients and a control group of patients without AIS admitted into the neurology department between June 2022 and May 2023. sTM levels were measured at 24 h and 48 h after patients' admissions into the hospital. There was a significant difference between the two groups (AIS: 23.2 ± 9.17 ng/mL vs. controls: 3.64 ± 1.72 ng/mL; p-value < 0.001). sTM values were correlated with the score of neurological deficits, with gender and dyslipidemia. The association of sTM values with the acute onset of AIS as an end point was significant, which allows rapid therapeutic interventions, even in the absence of a well-defined clinical syndrome (AUC = 0.99). Reanalysis of the patients after propensity score matching increased the power of sTM as a biomarker (AUC = 1). sTM represents a potentially useful biomarker to diagnose the onset of an AIS, even in scarce clinical presentations, which makes thrombomodulin a valuable indicator for early treatment initiation.
Collapse
Affiliation(s)
- Andrei-Lucian Zaharia
- “St. Apostle Andrei” Clinical Emergency County Hospital Galati, 800578 Galati, Romania; (A.-L.Z.); (A.C.); (B.S.); (D.C.V.); (M.L.)
- Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800216 Galati, Romania;
| | - Dana Tutunaru
- “St. Apostle Andrei” Clinical Emergency County Hospital Galati, 800578 Galati, Romania; (A.-L.Z.); (A.C.); (B.S.); (D.C.V.); (M.L.)
- Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800216 Galati, Romania;
| | - Violeta Diana Oprea
- “St. Apostle Andrei” Clinical Emergency County Hospital Galati, 800578 Galati, Romania; (A.-L.Z.); (A.C.); (B.S.); (D.C.V.); (M.L.)
- Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800216 Galati, Romania;
| | - Claudiu Elisei Tănase
- Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800216 Galati, Romania;
- “St. Joan” Pediatric Clinical Emergency Hospital Galati, 800487 Galati, Romania
| | - Ana Croitoru
- “St. Apostle Andrei” Clinical Emergency County Hospital Galati, 800578 Galati, Romania; (A.-L.Z.); (A.C.); (B.S.); (D.C.V.); (M.L.)
- Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800216 Galati, Romania;
| | - Bianca Stan
- “St. Apostle Andrei” Clinical Emergency County Hospital Galati, 800578 Galati, Romania; (A.-L.Z.); (A.C.); (B.S.); (D.C.V.); (M.L.)
- Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800216 Galati, Romania;
| | - Doina Carina Voinescu
- “St. Apostle Andrei” Clinical Emergency County Hospital Galati, 800578 Galati, Romania; (A.-L.Z.); (A.C.); (B.S.); (D.C.V.); (M.L.)
- Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800216 Galati, Romania;
| | - Ana-Maria Ionescu
- Faculty of Medicine and Pharmacy, Ovidius University of Constanța, 900470 Constanța, Romania;
| | - Camelia Alexandra Coadǎ
- Faculty of Medicine, “Iuliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Mihaiela Lungu
- “St. Apostle Andrei” Clinical Emergency County Hospital Galati, 800578 Galati, Romania; (A.-L.Z.); (A.C.); (B.S.); (D.C.V.); (M.L.)
- Faculty of Medicine and Pharmacy, “Dunarea de Jos” University of Galati, 800216 Galati, Romania;
| |
Collapse
|
4
|
Guo J, Yan YZ, Chen J, Duan Y, Zeng P. Identification of Hub Genes and Pathways of Middle Cerebral Artery Occlusion in Aged Rats Using the Gene Expression Omnibus Database. Crit Rev Immunol 2024; 44:1-12. [PMID: 38505917 DOI: 10.1615/critrevimmunol.2023051702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
Stroke remained the leading cause of disability in the world, and the most important non-modifiable risk factor was age. The treatment of stroke for elder patients faced multiple difficulties due to its complicated pathogenesis and mechanism. Therefore, we aimed to identify the potential differentially expressed genes (DEGs) and singnalling pathways for aged people of stroke. To compare the DEGs in the aged rats with or without middle cerebral artery occlusion (MCAO) and to analyse the important genes and the key signaling pathways involved in the development of cerebral ischaemia in aged rats. The Gene Expression Omnibus (GEO) analysis tool was used to analyse the DEGs in the GSE166162 dataset of aged MCAO rats compared with aged sham rats. Differential expression analysis was performed in aged MCAO rats and sham rats using limma. In addition, the 74 DEGs (such as Fam111a, Lcn2, Spp1, Lgals3 and Gpnmb were up-regulated; Egr2, Nr4a3, Arc, Klf4 and Nr4a1 were down-regulated) and potential compounds corresponding to the top 20 core genes in the Protein-Protein Interaction (PPI) network was constructed using the STRING database (version 12.0). Among these 30 compounds, resveratrol, cannabidiol, honokiol, fucoxanthin, oleandrin and tyrosol were significantly enriched. These DEGs were subjected to Gene Ontology (GO) function analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis to determine the most significantly enriched pathway in aged MCAO rats. Moreover, innate immune response, the complement and coagulation cascades signaling pathway, the IL-17 and other signaling pathways were significantly correlated with the aged MCAO rats. Our study indicates that multiple genes and pathological processes involved in the aged people of stroke. The immune response might be the key pathway in the intervention of cerebral infarction in aged people.
Collapse
Affiliation(s)
- Jing Guo
- School of Medicine, Jianghan University, Wuhan 430056, China
| | - Yi-Zhi Yan
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical College, University of South China, Hengyang 421001, China
| | - Jinglou Chen
- School of Medicine, Jianghan University, Wuhan 430056, China
| | - Yang Duan
- Department of Histology and Embryology, School of Basic Medicine, Hengyang Medical College, University of South China, Hengyang 421001, China
| | | |
Collapse
|
5
|
Zhao RY, Wei PJ, Sun X, Zhang DH, He QY, Liu J, Chang JL, Yang Y, Guo ZN. Role of lipocalin 2 in stroke. Neurobiol Dis 2023; 179:106044. [PMID: 36804285 DOI: 10.1016/j.nbd.2023.106044] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 01/22/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023] Open
Abstract
Stroke is the second leading cause of death worldwide; however, the treatment choices available to neurologists are limited in clinical practice. Lipocalin 2 (LCN2) is a secreted protein, belonging to the lipocalin superfamily, with multiple biological functions in mediating innate immune response, inflammatory response, iron-homeostasis, cell migration and differentiation, energy metabolism, and other processes in the body. LCN2 is expressed at low levels in the brain under normal physiological conditions, but its expression is significantly up-regulated in multiple acute stimulations and chronic pathologies. An up-regulation of LCN2 has been found in the blood/cerebrospinal fluid of patients with ischemic/hemorrhagic stroke, and could serve as a potential biomarker for the prediction of the severity of acute stroke. LCN2 activates reactive astrocytes and microglia, promotes neutrophil infiltration, amplifies post-stroke inflammation, promotes blood-brain barrier disruption, white matter injury, and neuronal death. Moreover, LCN2 is involved in brain injury induced by thrombin and erythrocyte lysates, as well as microvascular thrombosis after hemorrhage. In this paper, we review the role of LCN2 in the pathological processes of ischemic stroke; intracerebral hemorrhage; subarachnoid hemorrhage; and stroke-related brain diseases, such as vascular dementia and post-stroke depression, and their underlying mechanisms. We hope that this review will help elucidate the value of LCN2 as a therapeutic target in stroke.
Collapse
Affiliation(s)
- Ruo-Yu Zhao
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Chang Chun, China
| | - Peng-Ju Wei
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Xin Sun
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Chang Chun, China
| | - Dian-Hui Zhang
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Chang Chun, China
| | - Qian-Yan He
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Chang Chun, China
| | - Jie Liu
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Chang Chun, China
| | - Jun-Lei Chang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yi Yang
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Chang Chun, China; Neuroscience Research Center, the First Hospital of Jilin University, Chang Chun, China; Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China.
| | - Zhen-Ni Guo
- Stroke Center, Department of Neurology, the First Hospital of Jilin University, Chang Chun, China; Neuroscience Research Center, the First Hospital of Jilin University, Chang Chun, China; Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China.
| |
Collapse
|
6
|
Gomes DA, de Almeida Beltrão RL, de Oliveira Junior FM, da Silva Junior JC, de Arruda EPC, Lira EC, da Rocha MJA. Vasopressin and copeptin release during sepsis and septic shock. Peptides 2021; 136:170437. [PMID: 33181268 DOI: 10.1016/j.peptides.2020.170437] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 12/22/2022]
Abstract
Sepsis is defined as a potentially fatal organ dysfunction caused by a dysregulated host response to infection. Despite tremendous progress in the medical sciences, sepsis remains one of the leading causes of morbidity and mortality worldwide. The host response to sepsis and septic shock involves changes in the immune, autonomic, and neuroendocrine systems. Regarding neuroendocrine changes, studies show an increase in plasma vasopressin (AVP) concentrations followed by a decline, which may be correlated with septic shock. AVP is a peptide hormone derived from a larger precursor (preprohormone), along with two peptides, neurophysin II and copeptin. AVP is synthesized in the hypothalamus, stored and released from the neurohypophysis into the bloodstream by a wide range of stimuli. The measurement of AVP has limitations due to its plasma instability and short half-life. Copeptin is a more stable peptide than AVP, and its immunoassay is feasible. The blood concentrations of copeptin mirror those of AVP in many physiological states; paradoxically, during sepsis-related organ dysfunction, an uncoupling between copeptin and AVP blood levels appears to happen. In this review, we focus on clinical and experimental studies that analyzed AVP and copeptin blood concentrations over time in sepsis. The findings suggest that AVP and copeptin behave similarly in the early stages of sepsis; however, we did not find a proportional decrease in copeptin concentrations as seen with AVP during septic shock. Copeptin levels were higher in nonsurvivors than in survivors, suggesting that copeptin may work as a marker of severity or sepsis-related organ dysfunction.
Collapse
Affiliation(s)
- Dayane Aparecida Gomes
- Department of Physiology and Pharmacology, Bioscience Center, Federal University of Pernambuco, Brazil.
| | | | | | | | | | - Eduardo Carvalho Lira
- Department of Physiology and Pharmacology, Bioscience Center, Federal University of Pernambuco, Brazil
| | - Maria José Alves da Rocha
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Brazil
| |
Collapse
|