1
|
Hossain MK, Chae HJ. Medical cannabis: From research breakthroughs to shifting public perceptions and ensuring safe use. Integr Med Res 2024; 13:101094. [PMID: 39640076 PMCID: PMC11617882 DOI: 10.1016/j.imr.2024.101094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/15/2024] [Accepted: 10/18/2024] [Indexed: 12/07/2024] Open
Abstract
The landscape of medical cannabis has evolved dramatically over the past few decades. Once stigmatized and illegal in most parts of the world, cannabis is now recognized for its potential therapeutic benefits, supported by an expanding body of scientific research. However, the transition from prohibition to medical recognition is shaped by complex interactions among scientific advancements, public perception and regulatory frameworks for its legalization. This review examines the recent breakthroughs in medical cannabis research, explores the shifting public perceptions and the stigma associated with its use and discusses strategies for enhancing the safety of medical cannabis. We also synthesize the connections between scientific research, public perception and safety considerations in the uses of medical cannabis, providing a comprehensive understanding of how these elements influence each other and shape the future of medical cannabis use for patient adherence.
Collapse
Affiliation(s)
| | - Han Jung Chae
- School of Pharmacy, Jeonbuk National University, Jeonju, Republic of Korea
- Korea Medical Cannabis Research Association, Jeonbuk National University, Jeonju, Republic of Korea
- Non-Clinical Evaluation Center (NCEC), Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju, Republic of Korea
| |
Collapse
|
2
|
Salpekar JA, Ertenu DD. Common Ground: We Can Comprehensively Treat Pediatric Epilepsy and Psychiatric Comorbidities. Epilepsy Curr 2024; 24:381-386. [PMID: 39544724 PMCID: PMC11558754 DOI: 10.1177/15357597241250159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024] Open
Abstract
Epilepsy and psychiatric illness have been long studied and today are better accepted as co-occurring than as discrete illnesses that are independent even if associated. Common pathophysiology may not be easily explained, but clearly exists given the significant overrepresentation of psychiatric illness among individuals with epilepsy. Conditions like autism spectrum disorder, anxiety, depression, and attention deficit hyperactivity disorder are prevalent in pediatric epilepsy much more than expected, even in the context of chronic neurologic disease. The interplay between pediatric epilepsy and neuropsychiatric symptoms represents a complex clinical circumstance that is not well subtended by the chasm-like division of labor between psychiatrists and neurologists. The unfortunate result is that children and families often experience care that is fractured and at worst, counterproductive for their quality of life. A neuropsychiatric paradigm is essential to address epilepsy and its intrinsic psychiatric symptoms. Practical strategies will be discussed to address this challenge.
Collapse
Affiliation(s)
- Jay A. Salpekar
- Department of Psychiatry, Johns Hopkins University School of Medicine, Kennedy Krieger Institute, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Kennedy Krieger Institute, Baltimore, MD, USA
- Neuropsychiatry Center, Kennedy Krieger Institute, Baltimore, MD, USA
| | - D. Dilara Ertenu
- Neuropsychiatry Center, Kennedy Krieger Institute, Baltimore, MD, USA
| |
Collapse
|
3
|
Hafida EG, Rachid S, Halima G, Najib K. CBD's potential impact on Parkinson's disease: An updated overview. Open Med (Wars) 2024; 19:20241075. [PMID: 39479465 PMCID: PMC11524397 DOI: 10.1515/med-2024-1075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 09/16/2024] [Accepted: 10/04/2024] [Indexed: 11/02/2024] Open
Abstract
Background Parkinson's disease (PD) is primarily known as a motor disorder; however, its debilitating non-motor symptoms have a significant impact on patients' quality of life. The current standard treatment, l-DOPA, is used to relieve motor symptoms, but prolonged use is often associated with severe side effects. This creates an urgent need for effective alternatives targeting both motor and non-motor symptoms. Objectives Over the past decade, Cannabis sativa and its cannabinoids have been widely studied across various health conditions. Among these compounds, cannabidiol (CBD), a non-psychoactive component, is garnering growing interest due to its multi-targeted pleiotropic properties. This work aims to provide a comprehensive overview of CBD's efficacy in PD. Methods This review compiles data on both motor and non-motor symptoms of PD, integrating results from preclinical animal studies and available clinical trials. Results Preclinical research has demonstrated promising results regarding CBD's potential benefits in PD; however, the total number of clinical trials is limited (with only seven studies to date), making it difficult to draw definitive conclusions on its efficacy. Conclusions While preclinical findings suggest that CBD may have therapeutic potential in PD, the limited number of clinical trials highlights the need for further research. This review emphasizes the gaps that need to be addressed in future studies to fully understand CBD's role in treating both motor and non-motor symptoms of PD.
Collapse
Affiliation(s)
- El Ghachi Hafida
- Neurosciences, Pharmacology, and Environment Unit (NPEU), Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco
| | - Soulimani Rachid
- LCOMS/Neurotoxicologie Alimentaire et Bioactivité, Université de Lorraine, 57000, Metz, France
| | - Gamrani Halima
- Neurosciences, Pharmacology, and Environment Unit (NPEU), Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh, Morocco
| | - Kissani Najib
- Department of Neurology, Faculty of Medicine and Pharmacy, University Hospital Mohamed VI, Medical Research Center, University Cadi Ayyad, 40000, Marrakesh, Morocco
| |
Collapse
|
4
|
Kumar M, Mehan S, Kumar A, Sharma T, Khan Z, Tiwari A, Das Gupta G, Narula AS. Therapeutic efficacy of Genistein in activation of neuronal AC/cAMP/CREB/PKA and mitochondrial ETC-Complex pathways in experimental model of autism: Evidence from CSF, blood plasma and brain analysis. Brain Res 2024; 1846:149251. [PMID: 39384128 DOI: 10.1016/j.brainres.2024.149251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/10/2024] [Accepted: 09/22/2024] [Indexed: 10/11/2024]
Abstract
Autism is a complex neurodevelopmental condition characterized by repetitive behaviors, impaired social communication, and various associated conditions such as depression and anxiety. Its multifactorial etiology includes genetic, environmental, dietary, and gastrointestinal contributions. Pathologically, Autism is linked to mitochondrial dysfunction, oxidative stress, neuroinflammation, and neurotransmitter imbalances involving GABA, glutamate, dopamine, and oxytocin. Propionic acid (PRPA) is a short-chain fatty acid produced by gut bacteria, influencing central nervous system functions. Elevated PRPA levels can exacerbate Autism-related symptoms by disrupting metabolic processes and crossing the blood-brain barrier. Our research investigates the neuroprotective potential of Genistein (GNT), an isoflavone compound with known benefits in neuropsychiatric and neurodegenerative disorders, through modulation of the AC/cAMP/CREB/PKA signaling pathway and mitochondrial ETC complex (I-IV) function. In silico analyses revealed GNT's high affinity for these targets. Subsequent in vitro and in vivo experiments using a PRPA-induced rat model of autism demonstrated that GNT (40 and 80 mg/kg., orally) significantly improves locomotion, neuromuscular coordination, and cognitive functions in PRPA-treated rodents. Behavioral assessments showed reduced immobility in the forced swim test, enhanced Morris water maze performance, and restored regular locomotor activity. On a molecular level, GNT restored levels of key signaling molecules (AC, cAMP, CREB, PKA) and mitochondrial complexes (I-V), disrupted by PRPA exposure. Additionally, GNT reduced neuroinflammation and apoptosis, normalized neurotransmitter levels, and improved the complete blood count profile. Histopathological analyses confirmed that GNT ameliorated PRPA-induced brain injuries, restored normal brain morphology, reduced demyelination, and promoted neurogenesis. The study supports GNT's potential in autism treatment by modulating neural pathways, reducing inflammation, and restoring neurotransmitter balance.
Collapse
Affiliation(s)
- Manjeet Kumar
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India; Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India; Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India.
| | - Aakash Kumar
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India; Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Tarun Sharma
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India; Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Zuber Khan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India; Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Aarti Tiwari
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India; Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India
| | - Ghanshyam Das Gupta
- Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab 144603, India; Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, India
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC 27516, USA
| |
Collapse
|
5
|
Alexandri F, Papadopoulou L, Tsolaki A, Papantoniou G, Athanasiadis L, Tsolaki M. The Effect of Cannabidiol 3% on Neuropsychiatric Symptoms in Dementia - Six-Month Follow-Up. Clin Gerontol 2024; 47:800-807. [PMID: 37153956 DOI: 10.1080/07317115.2023.2209563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
OBJECTIVES To investigate the beneficial outcomes of giving cannabidiol (CBD) 3% over a six-month period in the BPSD, the management of which is a crucial issue for everyday clinical praxis and to compare the progress in BPSD of patients who receive Cannabidiol 3% with those who follow usual medical treatment (UMT) in everyday clinical praxis. METHODS A total of 20 PwD with severe BPSD were recruited from the database of Alzheimer Hellas with NPI score >30. Ten of them were assigned to UMT, while ten were assigned to a six-month treatment with CBD drops. The follow-up assessment was performed with NPI, both clinically and by structured telephone interview. RESULTS The follow-up assessment with NPI showed significant improvement of the BPSD in all our patients who received CBD, and no or limited improvement in the second group, regardless of the underlying neuropathology of dementia. CONCLUSIONS We suggest that CBD may be a more effective and safe choice for managing BPSD than the typical intervention. Future large randomized clinical trials are needed to re-assure these findings. CLINICAL IMPLICATIONS Healthcare professionals should consider incorporating CBD 3% into their practices to reduce BPSD in PwD. Regular assessments are necessary to ensure long-term effectiveness.
Collapse
Affiliation(s)
- Foteini Alexandri
- Neurosciences and Neurodegenerative Diseases, Postgraduate Course, Medical School, Faculty of Health Sciences, Aristotle University of Thessaloniki, Makedonia, Greece
| | - Lydia Papadopoulou
- Neurosciences and Neurodegenerative Diseases, Postgraduate Course, Medical School, Faculty of Health Sciences, Aristotle University of Thessaloniki, Makedonia, Greece
| | - Anthoula Tsolaki
- Greek Association of Alzheimer's Disease and Related Disorders (Alzheimer Hellas), Thessaloniki, Greece
- 1st Department of Neurology, Medical School, Faculty of Health Sciences, Aristotle University of Thessaloniki, Makedonia, Greece
| | - Georgia Papantoniou
- Department of Early Childhood Education, Faculty of Education Science, University of Ioannina, Ioannina, Greece
| | - Loukas Athanasiadis
- 1st Department of Psychiatry, Medical School, Faculty of Health Sciences, Aristotle University of Thessaloniki, Makedonia, Greece
| | - Magda Tsolaki
- Neurosciences and Neurodegenerative Diseases, Postgraduate Course, Medical School, Faculty of Health Sciences, Aristotle University of Thessaloniki, Makedonia, Greece
- Greek Association of Alzheimer's Disease and Related Disorders (Alzheimer Hellas), Thessaloniki, Greece
- 1st Department of Neurology, Medical School, Faculty of Health Sciences, Aristotle University of Thessaloniki, Makedonia, Greece
| |
Collapse
|
6
|
Secondulfo C, Mazzeo F, Pastorino GMG, Vicidomini A, Meccariello R, Operto FF. Opioid and Cannabinoid Systems in Pain: Emerging Molecular Mechanisms and Use in Clinical Practice, Health, and Fitness. Int J Mol Sci 2024; 25:9407. [PMID: 39273354 PMCID: PMC11394805 DOI: 10.3390/ijms25179407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Pain is an unpleasant sensory and emotional experience. Adequate pain control is often challenging, particularly in patients with chronic pain. Despite advances in pain management, drug addiction, overtreatment, or substance use disorders are not rare. Hence the need for further studies in the field. The substantial progress made over the last decade has revealed genes, signalling pathways, molecules, and neuronal networks in pain control thus opening new clinical perspectives in pain management. In this respect, data on the epigenetic modulation of opioid and cannabinoid receptors, key actors in the modulation of pain, offered new perspectives to preserve the activity of opioid and endocannabinoid systems to increase the analgesic efficacy of opioid- and cannabinoid-based drugs. Similarly, upcoming data on cannabidiol (CBD), a non-psychoactive cannabinoid in the marijuana plant Cannabis sativa, suggests analgesic, anti-inflammatory, antioxidant, anticonvulsivant and ansiolitic effects and supports its potential application in clinical contexts such as cancer, neurodegeneration, and autoimmune diseases but also in health and fitness with potential use in athletes. Hence, in this review article, we summarize the emerging epigenetic modifications of opioid and cannabinoid receptors and focus on CBD as an emerging non-psychoactive cannabinoid in pain management in clinical practice, health, and fitness.
Collapse
Affiliation(s)
- Carmine Secondulfo
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi, Italy
| | - Filomena Mazzeo
- Department of Economics, Law, Cybersecurity and Sports Sciences, University of Naples Parthenope, 80035 Nola, Italy
| | - Grazia Maria Giovanna Pastorino
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi, Italy
- Child and Adolescent Neuropsychiatry Unit, "San Giovanni di Dio e Ruggi d'Aragona" Hospital, 84131 Salerno, Italy
| | - Antonella Vicidomini
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, 84081 Baronissi, Italy
| | - Rosaria Meccariello
- Department of Medical, Human Movement and Well-Being Sciences, University of Naples Parthenope, 80133 Naples, Italy
| | - Francesca Felicia Operto
- Department of Science of Health, School of Medicine, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy
| |
Collapse
|
7
|
Pergolizzi JV, LeQuang JA, El-Tallawy SN, Wagner M, Ahmed RS, Varrassi G. An update on pharmacotherapy for trigeminal neuralgia. Expert Rev Neurother 2024; 24:773-786. [PMID: 38870050 DOI: 10.1080/14737175.2024.2365946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024]
Abstract
INTRODUCTION Trigeminal neuralgia is a rare condition that can be effectively treated by carbamazepine or oxcarbazepine but these older drugs are associated with dose-dependent and potentially treatment-limiting adverse effects. Third-generation anticonvulsants, new calcitonin gene-related peptide blockers for migraine, and older drugs such as ketamine and cannabinoids may be promising adjuvants or monotherapeutic options. AREAS COVERED The new drugs, their presumed mechanisms of action, safety and efficacy are discussed herein. There is a paucity of robust clinical evidence in support of these drugs for trigeminal neuralgia. New migraine agents are considered as well although migraines and trigeminal neuralgia are distinct, albeit similar, conditions. No new drugs have been released to market in recent years with the specific indication of trigeminal neuralgia. EXPERT OPINION In real-world clinical practice, about half of trigeminal neuralgia patients take more than one agent for prevention and combination therapy may be the optimal approach. Combination therapy might allow for lower doses of carbamazepine or oxcarbazepine, thus reducing the number and severity of potential adverse events but the potential for pharmacokinetic drug-drug interactions must be considered. Drug therapy for trigeminal neuralgia involves acute or abortive treatments, often administered in hospital versus long-term preventive therapy, usually involving oral agents.
Collapse
Affiliation(s)
| | | | - Salah N El-Tallawy
- Anesthesia and Pain Department, King Khalid University Hospital, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- Anesthesia Department, Medicine, Minia University & NCI, Minia, Egypt
| | | | - Rania S Ahmed
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | |
Collapse
|
8
|
da Silva Rodrigues F, Jantsch J, de Farias Fraga G, Luiza de Camargo Milczarski V, Silva Dias V, Scheid C, de Oliveira Merib J, Giovernardi M, Padilha Guedes R. Cannabidiol improves maternal obesity-induced behavioral, neuroinflammatory and neurochemical dysfunctions in the juvenile offspring. Brain Behav Immun 2024; 119:301-316. [PMID: 38608740 DOI: 10.1016/j.bbi.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/25/2024] [Accepted: 04/09/2024] [Indexed: 04/14/2024] Open
Abstract
Maternal obesity is associated with an increased risk of psychiatric disorders such as anxiety, depression, schizophrenia and autism spectrum disorder in the offspring. While numerous studies focus on preventive measures targeting the mothers, only a limited number provide practical approaches for addressing the damages once they are already established. We have recently demonstrated the interplay between maternal obesity and treatment with cannabidiol (CBD) on hypothalamic inflammation and metabolic disturbances, however, little is known about this relationship on behavioral manifestations and neurochemical imbalances in other brain regions. Therefore, here we tested whether CBD treatment could mitigate anxiety-like and social behavioral alterations, as well as neurochemical disruptions in both male and female offspring of obese dams. Female Wistar rats were fed a cafeteria diet for 12 weeks prior to mating, and during gestation and lactation. Offspring received CBD (50 mg/kg) from weaning for 3 weeks. Behavioral tests assessed anxiety-like manifestations and social behavior, while neuroinflammatory and neurochemical markers were evaluated in the prefrontal cortex (PFC) and hippocampus. CBD treatment attenuated maternal obesity-induced anxiety-like and social behavioral alterations, followed by rescuing effects on imbalanced neurotransmitter and endocannabinoid concentrations and altered expression of glial markers, CB1, oxytocin and dopamine receptors, with important differences between sexes. Overall, the findings of this study provide insight into the signaling pathways for the therapeutic benefits of CBD on neuroinflammation and neurochemical imbalances caused by perinatal maternal obesity in the PFC and the hippocampus, which translates into the behavioral manifestations, highlighting the sexual dimorphism encompassing both the transgenerational effect of obesity and the endocannabinoid system.
Collapse
Affiliation(s)
- Fernanda da Silva Rodrigues
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170, Porto Alegre, Rio Grande do Sul, Brazil
| | - Jeferson Jantsch
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170, Porto Alegre, Rio Grande do Sul, Brazil
| | - Gabriel de Farias Fraga
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170, Porto Alegre, Rio Grande do Sul, Brazil
| | - Vitória Luiza de Camargo Milczarski
- Undergraduate Program in Biomedical Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170, Porto Alegre, Rio Grande do Sul, Brazil
| | - Victor Silva Dias
- Undergraduate Program in Biomedical Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170, Porto Alegre, Rio Grande do Sul, Brazil
| | - Camila Scheid
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170, Porto Alegre, Rio Grande do Sul, Brazil
| | - Josias de Oliveira Merib
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170, Porto Alegre, Rio Grande do Sul, Brazil
| | - Marcia Giovernardi
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170, Porto Alegre, Rio Grande do Sul, Brazil; Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, 90050-170 Rio Grande do Sul, Brazil
| | - Renata Padilha Guedes
- Graduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), 90050-170, Porto Alegre, Rio Grande do Sul, Brazil; Graduate Program in Health Sciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, 90050-170 Rio Grande do Sul, Brazil.
| |
Collapse
|
9
|
Escobar-Espinal DM, Vivanco-Estela AN, Barros N, Dos Santos Pereira M, Guimaraes FS, Del Bel E, Nascimento GC. Cannabidiol and it fluorinate analog PECS-101 reduces hyperalgesia and allodynia in trigeminal neuralgia via TRPV1 receptors. Prog Neuropsychopharmacol Biol Psychiatry 2024; 132:110996. [PMID: 38508408 DOI: 10.1016/j.pnpbp.2024.110996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 03/04/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024]
Abstract
Trigeminal neuralgia (TN) is an intense and debilitating orofacial pain. The gold standard treatment for TN is carbamazepine. This antiepileptic drug provides pain relief with limited efficacy and side effects. To study the antinociceptive potential of cannabidiol (CBD) and its fluorinated analog PECS-101 (former HUF-101), we induced unilateral chronic constriction injury of the infraorbital nerve (IoN-CCI) in male Wistar rats. Seven days of treatment with CBD (30 mg/kg), PECS-101 (3, 10, and 30 mg/kg), or carbamazepine (10 and 30 mg/kg) reduced allodynia and hyperalgesia responses. Unlike carbamazepine, CBD and PECS-101 did not impair motor activity. The relief of the hypersensitive reactions has been associated with transient receptor potential vanilloid type 1 (TRPV1) modulation in the trigeminal spinal nucleus. CBD (30 mg/kg) and PECS-101 (10 and 30 mg/kg) reversed the increased expression of TRPV1 induced by IoN-CCI in this nucleus. Using a pharmacological strategy, the combination of the selective TRPV1 antagonist (capsazepine-CPZ - 5 mg/kg) with sub-effective doses of CBD (3 and 10 mg/kg) is also able to reverse the IoN-CCI-induced allodynia and hyperalgesia responses. This effect was accompanied by reduced TRPV1 protein expression in the trigeminal spinal nucleus. Our results suggest that CBD and PECS-101 may benefit trigeminal neuralgia without motor coordination impairments. PECS-101 is more potent against the hypernociceptive and motor impairment induced by TN compared to CBD and carbamazepine. The antinociceptive effect of these cannabinoids is partially mediated by TRPV1 receptors in the caudal part of the trigeminal spinal nucleus, the first central station of orofacial pain processing.
Collapse
Affiliation(s)
- Daniela Maria Escobar-Espinal
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14040-904, Brazil
| | - Airam Nicole Vivanco-Estela
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14040-904, Brazil
| | - Núbia Barros
- Department of Neuroscience, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14049-900, Brazil
| | - Maurício Dos Santos Pereira
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14040-904, Brazil
| | - Francisco Silveira Guimaraes
- Department of Neuroscience, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14049-900, Brazil
| | - Elaine Del Bel
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14040-904, Brazil; Department of Pharmacology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14049-900, Brazil; Department of Physiology, School of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14049-900, Brazil.
| | - Glauce C Nascimento
- Department of Basic and Oral Biology, School of Dentistry of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, SP 14040-904, Brazil.
| |
Collapse
|
10
|
Fava ALM, de Souza CM, dos Santos ÉM, Silvério LAL, Ataide JA, Paiva-Santos AC, Costa JL, de Melo DO, Mazzola PG. Evidence of Cannabidiol Effectiveness Associated or Not with Tetrahydrocannabinol in Topical Administration: A Scope Review. Pharmaceuticals (Basel) 2024; 17:748. [PMID: 38931415 PMCID: PMC11206585 DOI: 10.3390/ph17060748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/31/2024] [Accepted: 06/02/2024] [Indexed: 06/28/2024] Open
Abstract
Cannabis sativa is a plant of the Cannabaceae family, whose molecular composition is known for its vast pharmacological properties. Cannabinoids are the molecules responsible for Cannabis sativa potential effects, especially tetrahydrocannabinol and cannabidiol. Scientific development has shown interest in the potential of cannabidiol in various health conditions, as it has demonstrated lower adverse events and great pharmacological potential, especially when administered topically. The present study aims to carry out a scoping review, focusing on the use of cannabidiol, in vivo models, for topical administration. Thus, the methodological approach used by the Joanna Briggs Institute was applied, and the studies were selected based on previously established inclusion criteria. Even though more information regarding the dose to achieve pharmacological potential is still needed, cannabidiol demonstrated potential in treating and preventing different conditions, such as glaucoma, atopic dermatitis, epidermolysis bullosa, and pyoderma gangrenosum.
Collapse
Affiliation(s)
- Ana Laura Masquetti Fava
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Ciências Médicas, Campinas 13083-887, Brazil
| | - Cinthia Madeira de Souza
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Ciências Médicas, Campinas 13083-887, Brazil
| | - Érica Mendes dos Santos
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Ciências Farmacêuticas, Campinas 13083-871, Brazil
| | | | - Janaína Artem Ataide
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Ciências Farmacêuticas, Campinas 13083-871, Brazil
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
- REQUIMTE/LAQV, Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal
| | - Jose Luiz Costa
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Ciências Farmacêuticas, Campinas 13083-871, Brazil
- Centro de Informação e Assistência Toxicológica de Campinas, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Campinas 13083-970, Brazil
| | - Daniela Oliveira de Melo
- Departamento de Ciências Farmacêuticas, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo (UNIFESP), Diadema 09972-270, Brazil
| | - Priscila Gava Mazzola
- Universidade Estadual de Campinas (UNICAMP), Faculdade de Ciências Farmacêuticas, Campinas 13083-871, Brazil
| |
Collapse
|
11
|
Marquez AB, Vicente J, Castro E, Vota D, Rodríguez-Varela MS, Lanza Castronuovo PA, Fuentes GM, Parise AR, Romorini L, Alvarez DE, Bueno CA, Ramirez CL, Alaimo A, García CC. Broad-Spectrum Antiviral Effect of Cannabidiol Against Enveloped and Nonenveloped Viruses. Cannabis Cannabinoid Res 2024; 9:751-765. [PMID: 37682578 DOI: 10.1089/can.2023.0103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023] Open
Abstract
Introduction: Cannabidiol (CBD), the main non-psychoactive cannabinoid of the Cannabis sativa plant, is a powerful antioxidant compound that in recent years has increased interest due to causes effects in a wide range of biological functions. Zika virus (ZIKV) is a virus transmitted mainly by the Aedes aegypti mosquitoes, which causes neurological diseases, such as microcephaly and Guillain-Barre syndrome. Although the frequency of viral outbreaks has increased recently, no vaccinations or particular chemotherapeutic treatments are available for ZIKV infection. Objectives: The major aim of this study was to explore the in vitro antiviral activity of CBD against ZIKV, expanding also to other dissimilar viruses. Materials and Methods: Cell cultures were infected with enveloped and nonenveloped viruses and treated with non-cytotoxic concentrations of CBD and then, viral titers were determined. Additionally, the mechanism of action of the compound during ZIKV in vitro infections was studied. To study the possible immunomodulatory role of CBD, infected and uninfected Huh-7 cells were exposed to 10 μM CBD during 48 h and levels of interleukins 6 and 8 and interferon-beta (IFN-β) expression levels were measured. On the other hand, the effect of CBD on cellular membranes was studied. For this, an immunofluorescence assay was performed, in which cell membranes were labeled with wheat germ agglutinin. Finally, intracellular cholesterol levels were measured. Results: CBD exhibited a potent antiviral activity against all the tested viruses in different cell lines with half maximal effective concentration values (CE50) ranging from 0.87 to 8.55 μM. Regarding the immunomodulatory effect of CBD during ZIKV in vitro infections, CBD-treated cells exhibited significantly IFN-β increased levels, meanwhile, interleukins 6 and 8 were not induced. Furthermore, it was determined that CBD affects cellular membranes due to the higher fluorescence intensity that was observed in CBD-treated cells and lowers intracellular cholesterol levels, thus affecting the multiplication of ZIKV and other viruses. Conclusions: It was demonstrated that CBD inhibits structurally dissimilar viruses, suggesting that this phytochemical has broad-spectrum antiviral effect, representing a valuable alternative in emergency situations during viral outbreaks, like the one caused by severe acute respiratory syndrome coronavirus 2 in 2020.
Collapse
Affiliation(s)
- Agostina B Marquez
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), UBA-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Josefina Vicente
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), UBA-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Eliana Castro
- Instituto de Investigaciones Biotecnológicas (IIBIO), Universidad Nacional de San Martín (UNSAM)-(CONICET), Buenos Aires, Argentina
| | - Daiana Vota
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), UBA-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Laboratorio de Inmunofarmacología, IQUIBICEN, UBA-CONICET, Buenos Aires, Argentina
| | - María S Rodríguez-Varela
- Laboratorio de Investigación Aplicada a Neurociencias (LIAN), Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (Fleni)-CONICET, Instituto de Neurociencias (INEU), Buenos Aires, Argentina
| | - Priscila A Lanza Castronuovo
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC), Química Analítica y Modelado Molecular (QUIAMM), Universidad Nacional de Mar del Plata-CONICET, Mar del Plata, Argentina
| | - Giselle M Fuentes
- Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Centro Científico Tecnológico Mar del Plata, CONICET, Mar del Plata, Argentina
- Centro de Asociación Simple CIC PBA, Mar del Plata, Argentina
- Centro de Investigaciones en Abejas Sociales, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Alejandro R Parise
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC), Química Analítica y Modelado Molecular (QUIAMM), Universidad Nacional de Mar del Plata-CONICET, Mar del Plata, Argentina
- Departamento de Química Biológica y Bioquímica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Leonardo Romorini
- Laboratorio de Investigación Aplicada a Neurociencias (LIAN), Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (Fleni)-CONICET, Instituto de Neurociencias (INEU), Buenos Aires, Argentina
| | - Diego E Alvarez
- Instituto de Investigaciones Biotecnológicas (IIBIO), Universidad Nacional de San Martín (UNSAM)-(CONICET), Buenos Aires, Argentina
- Escuela de Bio y Nanotecnologías (EByN), Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Carlos A Bueno
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), UBA-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Cristina L Ramirez
- Departamento de Química Biológica y Bioquímica, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
- Asociación Civil CBG2000, Mar del Plata, Argentina
| | - Agustina Alaimo
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), UBA-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Cybele C García
- Laboratorio de Virología, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), UBA-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
12
|
Singh V, Vihal S, Rana R, Rathore C. Nanocarriers for Cannabinoid Delivery: Enhancing Therapeutic Potential. RECENT ADVANCES IN DRUG DELIVERY AND FORMULATION 2024; 18:247-261. [PMID: 39356097 DOI: 10.2174/0126673878300347240718100814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/10/2024] [Accepted: 06/24/2024] [Indexed: 10/03/2024]
Abstract
Medical cannabis has potential therapeutic benefits in managing pain, anxiety, depression, and neurological and movement disorders. Phytocannabinoids derived from the cannabis plant are responsible for their pharmacological and therapeutic properties. However, the complexity of cannabis components, especially cannabinoids, poses a challenge to effective medicinal administration. Even with the increasing acceptance of cannabis-based medicines, achieving consistent bioavailability and targeted distribution remains difficult. Conventional administration methods are plagued by solubility and absorption problems requiring innovative solutions. After conducting a thorough review of research papers and patents, it has become evident that nanotechnology holds great promise as a solution. The comprehensive review of 36 research papers has yielded valuable insights, with 7 papers reporting enhanced bioavailability, while others have focused on improvements in release, solubility, and stability. Additionally, 19 patents have been analyzed, of which 7 specifically claim enhanced bioavailability, while the remaining patents describe various formulation methods. These patents outline effective techniques for encapsulating cannabis using nanocarriers, effectively addressing solubility and controlled release. Studies on the delivery of cannabis using nanocarriers focus on improving bioavailability, prolonging release, and targeting specific areas. This synthesis highlights the potential of nanotechnology to enhance cannabis therapies and pave the way for innovative interventions and precision medicine.
Collapse
Affiliation(s)
- Varun Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Samar Vihal
- School of Pharmaceutical Sciences, Shoolini University, Solan, India
| | - Rupali Rana
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Charul Rathore
- University Institute of Pharma Sciences, Chandigarh University, Ajitgarh, Punjab, 160036, India
| |
Collapse
|
13
|
Zamith Cunha R, Semprini A, Salamanca G, Gobbo F, Morini M, Pickles KJ, Roberts V, Chiocchetti R. Expression of Cannabinoid Receptors in the Trigeminal Ganglion of the Horse. Int J Mol Sci 2023; 24:15949. [PMID: 37958932 PMCID: PMC10648827 DOI: 10.3390/ijms242115949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/17/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Cannabinoid receptors are expressed in human and animal trigeminal sensory neurons; however, the expression in the equine trigeminal ganglion is unknown. Ten trigeminal ganglia from five horses were collected post-mortem from an abattoir. The expression of cannabinoid receptors type 1 (CB1R) and type 2 (CB2R), and the cannabinoid-related receptors like transient receptor potential vanilloid type 1 (TRPV1), peroxisome proliferator-activated receptor gamma (PPARɣ), and G protein-related receptor 55 (GPR55) in the trigeminal ganglia (TG) of the horse were studied, using immunofluorescence on cryosections and formalin-fixed paraffin-embedded (FFPE) sections. Neurons and glial cells were identified using fluorescent Nissl staining NeuroTrace® and an antibody directed against the glial marker glial fibrillary acidic protein (GFAP), respectively. Macrophages were identified by means of an antibody directed against the macrophages/microglia marker ionized calcium-binding adapter molecule 1 (IBA1). The protein expression of CB1R, CB2R, TRPV1, and PPARɣ was found in the majority of TG neurons in both cryosections and FFPE sections. The expression of GPR55 immunoreactivity was mainly detectable in FFPE sections, with expression in the majority of sensory neurons. Some receptors were also observed in glial cells (CB2R, TRPV1, PPARγ, and GPR55) and inflammatory cells (PPARγ and GPR55). These results support further investigation of such receptors in disorders of equine trigeminal neuronal excitability.
Collapse
Affiliation(s)
- Rodrigo Zamith Cunha
- Department of Veterinary Medical Sciences, University of Bologna, 37200 Bologna, Italy; (R.Z.C.); (A.S.); (G.S.); (F.G.); (M.M.)
| | - Alberto Semprini
- Department of Veterinary Medical Sciences, University of Bologna, 37200 Bologna, Italy; (R.Z.C.); (A.S.); (G.S.); (F.G.); (M.M.)
| | - Giulia Salamanca
- Department of Veterinary Medical Sciences, University of Bologna, 37200 Bologna, Italy; (R.Z.C.); (A.S.); (G.S.); (F.G.); (M.M.)
| | - Francesca Gobbo
- Department of Veterinary Medical Sciences, University of Bologna, 37200 Bologna, Italy; (R.Z.C.); (A.S.); (G.S.); (F.G.); (M.M.)
| | - Maria Morini
- Department of Veterinary Medical Sciences, University of Bologna, 37200 Bologna, Italy; (R.Z.C.); (A.S.); (G.S.); (F.G.); (M.M.)
| | - Kirstie J. Pickles
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham LE12 5RD, UK;
| | - Veronica Roberts
- Bristol Vet School, University of Bristol, Bristol BS40 5DU, UK;
| | - Roberto Chiocchetti
- Department of Veterinary Medical Sciences, University of Bologna, 37200 Bologna, Italy; (R.Z.C.); (A.S.); (G.S.); (F.G.); (M.M.)
| |
Collapse
|
14
|
Hansen JS, Gustavsen S, Roshanisefat H, Kant M, Biering-Sørensen F, Andersen C, Olsson A, Chow HH, Asgari N, Hansen JR, Nielsen HH, Hansen RM, Petersen T, Oturai AB, Sellebjerg F, Sædder EA, Kasch H, Rasmussen PV, Finnerup NB, Svendsen KB. Cannabis-Based Medicine for Neuropathic Pain and Spasticity-A Multicenter, Randomized, Double-Blinded, Placebo-Controlled Trial. Pharmaceuticals (Basel) 2023; 16:1079. [PMID: 37630995 PMCID: PMC10459421 DOI: 10.3390/ph16081079] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 08/27/2023] Open
Abstract
Patients with multiple sclerosis (MS) and spinal cord injury (SCI) commonly sustain central neuropathic pain (NP) and spasticity. Despite a lack of consistent evidence, cannabis-based medicine (CBM) has been suggested as a supplement treatment. We aimed to investigate the effect of CBM on NP and spasticity in patients with MS or SCI. We performed a randomized, double-blinded, placebo-controlled trial in Denmark. Patients aged ≥18 years with NP (intensity >3, ≤9 on a numerical rating scale (NRS0-10) and/or spasticity (>3 on NRS0-10) were randomized to treatment consisting of either delta-9-tetrahydrocannabinol (THC), cannabidiol (CBD), a combination of THC&CBD in maximum doses of 22.5 mg, 45 mg and 22.5/45 mg per day, respectively, or placebo. A baseline registration was performed before randomization. Treatment duration was six weeks followed by a one-week phaseout. Primary endpoints were the intensity of patient-reported NP and/or spasticity. Between February 2019 and December 2021, 134 patients were randomized (MS n = 119, SCI n = 15), where 32 were assigned to THC, 31 to CBD, 31 to THC&CBD, and 40 to placebo. No significant difference was found for: mean pain intensity (THC 0.42 (-0.54-1.38), CBD 0.45 (-0.47-1.38) and THC&CBD 0.16 (-0.75-1.08)), mean spasticity intensity (THC 0.24 (-0.67-1.45), CBD 0.46 (-0.74-1.65), and THC&CBD 0.10 (-1.18-1.39), secondary outcomes (patient global impression of change and quality of life), or any tertiary outcomes. We aimed to include 448 patients in the trial; however, due to COVID-19 and recruitment challenges, fewer were included. Nevertheless, in this four-arm parallel trial, no effect was found between placebo and active treatment with THC or CBD alone or in combination on NP or spasticity in patients with either MS or SCI. The trial was registered with the EU Clinical Trials Register EudraCT (2018-002315-98).
Collapse
Affiliation(s)
- Julie Schjødtz Hansen
- Department of Neurology, Aarhus University Hospital (AUH), 8200 Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
| | - Stefan Gustavsen
- Danish Multiple Sclerosis Center (DMSC), Department of Neurology, Copenhagen University Hospital, Rigshospitalet, 2600 Glostrup, Denmark
| | - Homayoun Roshanisefat
- Department of Neurology, Naestved, Slagelse & Ringsted Hospitals, Region Zealand, 4200 Slagelse, Denmark
| | - Matthias Kant
- Department of Neurology, Hospital of Southern Jutland, 6400 Soenderborg, Denmark
- Department of Neurology, Hospital South-West Jutland Esbjerg, 6700 Esbjerg, Denmark
| | - Fin Biering-Sørensen
- Department of Brain and Spinal Cord Injuries, Copenhagen University Hospital, Rigshospitalet, 2600 Glostrup, Denmark
| | - Claus Andersen
- Department of Brain and Spinal Cord Injuries, Copenhagen University Hospital, Rigshospitalet, 2600 Glostrup, Denmark
| | - Anna Olsson
- Danish Multiple Sclerosis Center (DMSC), Department of Neurology, Copenhagen University Hospital, Rigshospitalet, 2600 Glostrup, Denmark
| | - Helene Højsgaard Chow
- Danish Multiple Sclerosis Center (DMSC), Department of Neurology, Copenhagen University Hospital, Rigshospitalet, 2600 Glostrup, Denmark
| | - Nasrin Asgari
- Department of Neurology, Naestved, Slagelse & Ringsted Hospitals, Region Zealand, 4200 Slagelse, Denmark
- Institute of Regional Health Research and Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark
| | - Julie Richter Hansen
- Danish Multiple Sclerosis Center (DMSC), Department of Neurology, Copenhagen University Hospital, Rigshospitalet, 2600 Glostrup, Denmark
- Department of Neurology, Herlev Hospital, 2730 Herlev, Denmark
| | | | - Rikke Middelhede Hansen
- Spinal Cord Injury Centre of Western Denmark (SCIWDK), Viborg Regional Hospital, 8800 Viborg, Denmark
| | - Thor Petersen
- Department of Neurology, Hospital of Southern Jutland and Research Unit in Neurology, Department of Regional Health Research, University of Southern Denmark, 5000 Odense, Denmark
| | - Annette Bang Oturai
- Danish Multiple Sclerosis Center (DMSC), Department of Neurology, Copenhagen University Hospital, Rigshospitalet, 2600 Glostrup, Denmark
| | - Finn Sellebjerg
- Danish Multiple Sclerosis Center (DMSC), Department of Neurology, Copenhagen University Hospital, Rigshospitalet, 2600 Glostrup, Denmark
| | - Eva Aggerholm Sædder
- Department of Clinical Pharmacology, Aarhus University Hospital, 8000 Aarhus, Denmark
| | - Helge Kasch
- Department of Neurology, Aarhus University Hospital (AUH), 8200 Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
| | | | - Nanna Brix Finnerup
- Department of Neurology, Aarhus University Hospital (AUH), 8200 Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
- Danish Pain Research Centre, Aarhus University, 8200 Aarhus, Denmark
| | - Kristina Bacher Svendsen
- Department of Neurology, Aarhus University Hospital (AUH), 8200 Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
| |
Collapse
|
15
|
Efforts Towards Repurposing of Antioxidant Drugs and Active Compounds for Multiple Sclerosis Control. Neurochem Res 2023; 48:725-744. [PMID: 36385213 DOI: 10.1007/s11064-022-03821-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/20/2022] [Accepted: 11/09/2022] [Indexed: 11/17/2022]
Abstract
Multiple Sclerosis (MS) is a degenerative disorder of the central nervous system (CNS) with complicated etiology that has not been clearly analyzed until nowadays. Apart from anti-inflammatory, immune modulatory and symptomatic treatments, which are the main tools towards MS control, antioxidant molecules may be of interest. Oxidative stress is a key condition implicated in the disease progression. Reactive species production is associated with immune cell activation in the brain as well as in the periphery, accounting for demyelinating and axonal disruptive processes. This review refers to research articles, of the last decade. It describes biological evaluation of antioxidant drugs, and molecules with pharmaceutical interest, which are not designed for MS treatment, however they seem to have potency against MS. Their antioxidant effect is accompanied, in most of the cases, by anti-inflammatory, immune-modulatory and neuroprotective properties. Compounds with such characteristics are expected to be beneficial in the treatment of MS, alone or as complementary therapy, improving some clinical and mechanistic aspects of the disease. This review also summarizes some of the pathobiological characteristics of MS, as well as the role of oxidative stress and inflammation in the progression of neurodegeneration. It presents known drugs and bioactive compounds with antioxidant, and in many cases, pleiotropic activity that have been tested for their efficacy in MS progression or the experimentally induced MS. Antioxidants may offer reduction or prevention of the disease symptoms and progression. Thus, their results may, combined with already applied treatments, be beneficial for the development of new molecules or the repurposing of drugs and supplements that are used with other indication so far.
Collapse
|
16
|
Yakti W, Förster N, Müller M, Mewis I, Ulrichs C. Hemp Waste as a Substrate for Hermetia illucens (L.) (Diptera: Stratiomyidae) and Tenebrio molitor L. (Coleoptera: Tenebrionidae) Rearing. INSECTS 2023; 14:183. [PMID: 36835752 PMCID: PMC9960234 DOI: 10.3390/insects14020183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
The proper treatment of cannabis agricultural wastes can reduce the environmental impact of its cultivation and generate valuable products. This study aimed to test the potential of cannabis agricultural wastes as a substrate for the rearing of black soldier fly larvae (BSFL) and yellow mealworms (MW). In the case of BSFL, replacing the fibre component (straw) in the substrate with the hemp waste can increase the nutritional value of the substrate and led to bigger larvae. The bigger larvae had lower P and Mg, and higher Fe and Ca. Crude protein also varied based on the size of larvae and/or the content of protein in the initial substrate, which was boosted by replacing straw with hemp material. No other cannabinoids than cannabidiolic acid (CBDA), cannabigerolic acid (CBGA), and cannabidiol (CBD) were found in significant amounts in the larvae. In the case of MW, the larvae grew less on the hemp material in comparison to wheat bran. Replacing wheat bran with the hemp material led to smaller larvae with higher Ca, Fe, K, and crude protein content, but lower Mg and P values. No cannabinoids were detected in the MW fed with the hemp material.
Collapse
Affiliation(s)
- Wael Yakti
- Urban Plant Ecophysiology Division, Faculty of Life Sciences, Thaer-Institute of Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Lentzeallee 55, 14195 Berlin, Germany
| | | | | | | | | |
Collapse
|
17
|
Andrei C, Zanfirescu A, Nițulescu GM, Olaru OT, Negreș S. Natural Active Ingredients and TRPV1 Modulation: Focus on Key Chemical Moieties Involved in Ligand-Target Interaction. PLANTS (BASEL, SWITZERLAND) 2023; 12:339. [PMID: 36679051 PMCID: PMC9860573 DOI: 10.3390/plants12020339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/06/2023] [Accepted: 01/08/2023] [Indexed: 06/17/2023]
Abstract
Diseases such as cancer, neurological pathologies and chronic pain represent currently unmet needs. The existing pharmacotherapeutic options available for treating these conditions are limited by lack of efficiency and/or side effects. Transient receptor potential vanilloid 1 ion channel emerged as an attractive therapeutic target for developing new analgesic, anti-cancer and antiepileptic agents. Furthermore, various natural ingredients were shown to have affinity for this receptor. The aim of this narrative review was to summarize the diverse natural scaffolds of TRPV1 modulators based on their agonistic/antagonistic properties and to analyze the structure-activity relationships between the ligands and molecular targets based on the results of the existing molecular docking, mutagenesis and in vitro studies. We present here an exhaustive collection of TRPV1 modulators grouped by relevant chemical features: vanilloids, guaiacols, phenols, alkylbenzenes, monoterpenes, sesquiterpenoids, alkaloids, etc. The information herein is useful for understanding the key structural elements mediating the interaction with TRPV1 and how their structural variation impacts the interaction between the ligand and receptor. We hope this data will contribute to the design of novel effective and safe TRPV1 modulators, to help overcome the lack of effective therapeutic agents against pathologies with high morbidity and mortality.
Collapse
|
18
|
Pérez R, Glaser T, Villegas C, Burgos V, Ulrich H, Paz C. Therapeutic Effects of Cannabinoids and Their Applications in COVID-19 Treatment. Life (Basel) 2022; 12:2117. [PMID: 36556483 PMCID: PMC9784976 DOI: 10.3390/life12122117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Cannabis sativa is one of the first medicinal plants used by humans. Its medical use remains controversial because it is a psychotropic drug whose use has been banned. Recently, however, some countries have approved its use, including for recreational and medical purposes, and have allowed the scientific study of its compounds. Cannabis is characterized by the production of special types of natural products called phytocannabinoids that are synthesized exclusively by this genus. Phytocannabinoids and endocannabinoids are chemically different, but both pharmacologically modulate CB1, CB2, GRP55, GRP119 and TRPV1 receptor activities, involving activities such as memory, sleep, mood, appetite and motor regulation, pain sensation, neuroinflammation, neurogenesis and apoptosis. Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD) are phytocannabinoids with greater pharmacological potential, including anti-inflammatory, neuroprotective and anticonvulsant activities. Cannabidiol is showing promising results for the treatment of COVID-19, due to its capability of acting on the unleashed cytokine storm, on the proteins necessary for both virus entry and replication and on the neurological consequences of patients who have been infected by the virus. Here, we summarize the latest knowledge regarding the advantages of using cannabinoids in the treatment of COVID-19.
Collapse
Affiliation(s)
- Rebeca Pérez
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Universidad de La Frontera, Temuco 4811230, Chile
| | - Talita Glaser
- Department of Biochemistry, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo 05508-000, SP, Brazil
| | - Cecilia Villegas
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Universidad de La Frontera, Temuco 4811230, Chile
| | - Viviana Burgos
- Departamento de Ciencias Básicas, Facultad de Ciencias, Universidad Santo Tomas, Temuco 4780000, Chile
| | - Henning Ulrich
- Department of Biochemistry, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, São Paulo 05508-000, SP, Brazil
| | - Cristian Paz
- Laboratory of Natural Products & Drug Discovery, Center CEBIM, Department of Basic Sciences, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
19
|
Gildea L, Ayariga JA, Xu J, Villafane R, Robertson BK, Samuel-Foo M, Ajayi OS. Cannabis sativa CBD Extract Exhibits Synergy with Broad-Spectrum Antibiotics against Salmonella enterica subsp. Enterica serovar typhimurium. Microorganisms 2022; 10:microorganisms10122360. [PMID: 36557613 PMCID: PMC9784314 DOI: 10.3390/microorganisms10122360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/21/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
New generation antibiotics are needed to combat the development of resistance to antimicrobials. One of the most promising new classes of antibiotics is cannabidiol (CBD). It is a non-toxic and low-resistance chemical that can be used to treat bacterial infections. The antibacterial activity of Cannabis sativa L. byproducts, specifically CBD, has been of growing interest in the field of novel therapeutics. As research continues to define and characterize the antibacterial activity that CBD possesses against a wide variety of bacterial species, it is important to examine potential interactions between CBD and common therapeutics such as broad-spectrum antibiotics. In this study it is demonstrated that CBD-antibiotic (combination of CBD and antibiotic) co-therapy can effectively fight Salmonella typhimurium (S. typhimurium) via membrane integrity disruption. This research serves to examine the potential synergy between CBD and three broad-spectrum antibiotics (ampicillin, kanamycin, and polymyxin B) for potential CBD-antibiotic co-therapy. In this study, it is revealed that S. typhimurium growth is inhibited at very low dosages of CBD-antibiotic. This interesting finding demonstrates that CBD and CBD-antibiotic co-therapies are viable novel alternatives to combating S. typhimurium.
Collapse
Affiliation(s)
- Logan Gildea
- The Microbiology Program, Department of Biological Sciences, College of Science, Technology, Engineering, and Mathematics (C-STEM), Alabama State University, Montgomery, AL 36104, USA
| | - Joseph Atia Ayariga
- The Industrial Hemp Program, Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA
- Correspondence: (J.A.A.); (O.S.A.)
| | - Junhuan Xu
- The Industrial Hemp Program, Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA
| | - Robert Villafane
- The Microbiology Program, Department of Biological Sciences, College of Science, Technology, Engineering, and Mathematics (C-STEM), Alabama State University, Montgomery, AL 36104, USA
| | - Boakai K. Robertson
- The Microbiology Program, Department of Biological Sciences, College of Science, Technology, Engineering, and Mathematics (C-STEM), Alabama State University, Montgomery, AL 36104, USA
| | - Michelle Samuel-Foo
- The Industrial Hemp Program, Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA
| | - Olufemi S. Ajayi
- The Industrial Hemp Program, Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA
- Correspondence: (J.A.A.); (O.S.A.)
| |
Collapse
|
20
|
Shehata I, Hashim A, Elsaeidy A, Nair A, Urits I, Viswanath O, Kaye AD, Habib M. Cannabinoids and Their Role in Chronic Pain Treatment: Current Concepts and a Comprehensive Review. Health Psychol Res 2022; 10:35848. [PMID: 36628124 PMCID: PMC9820704 DOI: 10.52965/001c.35848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 05/18/2022] [Indexed: 11/22/2022] Open
Abstract
For decades, chronic pain was managed with an almost conventional approach of using a wide range of analgesic spectrum, surgical approaches and complex interventional pain techniques to modulate or even interrupt pain pathways. These different approaches carry many pharmacological hazards together with the lack of efficacy and safety of many interventional and surgical management techniques for chronic pain have mandated searching for other effective therapies including alternative treatments. Cannabinoids are naturally occurring substances that are derived from Cannabis sativa L. The usage of cannabinoids and their related synthetic chemical compounds has emerged as a choice in the management of different chronic pain conditions is being evaluated, however, the efficacy is still not consistently established. In the present investigation, therefore, we discuss the different aspects related to cannabinoids and their implications in the management of chronic pain conditions. This review will also discuss the safety profile of the cannabinoids together with the legal considerations that hinder their use in different countries.
Collapse
Affiliation(s)
| | | | | | | | - Ivan Urits
- Louisiana State University Health Sciences Center
| | | | - Alan D Kaye
- Louisiana State University Health Sciences Center
| | - Marian Habib
- Hurghada General Hospital, Department of Cardiology, Hurghada, Egypt
| |
Collapse
|
21
|
Development and Evaluation of Cannabidiol Orodispersible Tablets Using a 23-Factorial Design. Pharmaceutics 2022; 14:pharmaceutics14071467. [PMID: 35890362 PMCID: PMC9324952 DOI: 10.3390/pharmaceutics14071467] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 01/23/2023] Open
Abstract
Orodispersible tablets (ODTs) are pharmaceutical formulations used to obtain fast therapeutic effects, usually recommended for geriatric and pediatric patients due to their improved compliance, bioavailability, ease of administration, and good palatability. This study aimed to develop ODTs with cannabidiol (CBD) phytocannabinoid extracted from Cannabis sativa used in the treatment of Lennox–Gastaut and Dravet syndromes. The tablets were obtained using an eccentric tableting machine and 9 mm punches. To develop CBD ODTs, the following parameters were varied: the Poloxamer 407 concentration (0 and 10%), the type of co-processed excipient (Prosolv® ODT G2—PODTG2 and Prosolv® EasyTab sp—PETsp), and the type of superdisintegrant (Croscarmellose—CCS, and Soy Polysaccharides—Emcosoy®—EMCS), resulting in eleven formulations (O1–O11). The following dependent parameters were evaluated: friability, disintegration time, crushing strength, and the CBD dissolution at 1, 3, 5, 10, 15, and 30 min. The dependent parameters were verified according to European Pharmacopoeia (Ph. Eur.) requirements. All the tablets obtained were in accordance with quality requirements in terms of friability (less than 1%), and disintegration time (less than 180 s). The crushing strength was between 19 N and 80 N. Regarding the dissolution test, only four formulations exhibited an amount of CBD released higher than 80% at 30 min. Taking into consideration the results obtained and using the Modde 13.1 software, an optimal formulation was developed (O12), which respected the quality criteria chosen (friability 0.23%, crushing strength of 37 N, a disintegration time of 27 s, and the target amount of CBD released in 30 min of 99.3 ± 6%).
Collapse
|
22
|
Pergolizzi JV, Gharibo C, Magnusson P, Breve F, LeQuang JA, Varrassi G. Pharmacotherapeutic management of trigeminal neuropathic pain: an update. Expert Opin Pharmacother 2022; 23:1155-1164. [PMID: 35695796 DOI: 10.1080/14656566.2022.2087507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
INTRODUCTION Guidelines recommend a number of pharmacotherapeutic options used as monotherapy or in combination with others for treating the pain of trigeminal neuropathy. AREAS COVERED The authors examine the pharmacotherapeutic options for treating trigeminal neuralgia and supporting evidence in the literature. Guidelines reported the most effective treatment for trigeminal neuropathy, in particular trigeminal neuralgia, appears to be carbamazepine or oxcabazepine, but side effects can be treatment limiting. Lamotrigine and gabapentin are also recommended in guidance. In real-world clinical practice, baclofen, cannabinoids, eslicarbazepine, levetiracetam, brivaracetam, lidocaine, misoprostol, opioids, phenytoin, fosphenytoin, pimozide, sodium valproate, sumatriptan, tizanidine, tocainide, tricyclic antidepressants, and vixotrigine are sometimes used, either as monotherapy or in combination. The relatively small patient population has limited the number of large-scale studies and there is limited evidence on which to base prescribing choices. EXPERT OPINION While there is no optimal pharmacotherapy for treating trigeminal neuropathy, advancements in our understanding of the underlying mechanisms of this condition and drug development indicate promise for NaV inhibitors, despite the fact that not all patients respond to them and they may have potentially treatment-limiting side effects. Nevertheless, better understanding of NaV channels may be important avenues for future drug development for trigeminal neuropathy.
Collapse
Affiliation(s)
| | | | - Peter Magnusson
- Centre for Research and Development, Region Gävleborg/Uppsala University, Gävle, Sweden.,Department of Medicine, Cardiology Research Unit, Karolinska Institutet, Stockholm, Sweden
| | - Frank Breve
- Department of Pharmacy Practice, Temple University School of Pharmacy, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
23
|
Srivastava RK, Lutz B, Ruiz de Azua I. The Microbiome and Gut Endocannabinoid System in the Regulation of Stress Responses and Metabolism. Front Cell Neurosci 2022; 16:867267. [PMID: 35634468 PMCID: PMC9130962 DOI: 10.3389/fncel.2022.867267] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/14/2022] [Indexed: 11/26/2022] Open
Abstract
The endocannabinoid system, with its receptors and ligands, is present in the gut epithelium and enteroendocrine cells, and is able to modulate brain functions, both indirectly through circulating gut-derived factors and directly through the vagus nerve, finally acting on the brain’s mechanisms regarding metabolism and behavior. The gut endocannabinoid system also regulates gut motility, permeability, and inflammatory responses. Furthermore, microbiota composition has been shown to influence the activity of the endocannabinoid system. This review examines the interaction between microbiota, intestinal endocannabinoid system, metabolism, and stress responses. We hypothesize that the crosstalk between microbiota and intestinal endocannabinoid system has a prominent role in stress-induced changes in the gut-brain axis affecting metabolic and mental health. Inter-individual differences are commonly observed in stress responses, but mechanisms underlying resilience and vulnerability to stress are far from understood. Both gut microbiota and the endocannabinoid system have been implicated in stress resilience. We also discuss interventions targeting the microbiota and the endocannabinoid system to mitigate metabolic and stress-related disorders.
Collapse
Affiliation(s)
- Raj Kamal Srivastava
- Department of Zoology, Indira Gandhi National Tribal University, Anuppur, India
- *Correspondence: Raj Kamal Srivastava,
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
| | - Inigo Ruiz de Azua
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
- Inigo Ruiz de Azua,
| |
Collapse
|
24
|
Marzullo P, Maiocchi A, Paladino G, Ciriello U, Lo Presti L, Passarella D. Total Synthesis of (‐)‐Cannabidiol‐C4. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Paola Marzullo
- Università degli Studi di Milano: Universita degli Studi di Milano Chimica ITALY
| | - Alice Maiocchi
- Università degli Studi di Milano: Universita degli Studi di Milano Chemistry ITALY
| | | | | | - Leonardo Lo Presti
- Università degli Studi di Milano: Universita degli Studi di Milano Chemistry ITALY
| | - Daniele Passarella
- Universit� degli Studid di Milano Chimica Via C. Golgi 19 20133 Milano ITALY
| |
Collapse
|
25
|
Gildea L, Ayariga JA, Ajayi OS, Xu J, Villafane R, Samuel-Foo M. Cannabis sativa CBD Extract Shows Promising Antibacterial Activity against Salmonella typhimurium and S. newington. Molecules 2022; 27:2669. [PMID: 35566019 PMCID: PMC9099639 DOI: 10.3390/molecules27092669] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 12/27/2022] Open
Abstract
Products derived from Cannabis sativa L. have gained increased interest and popularity. As these products become common amongst the public, the health and potential therapeutic values associated with hemp have become a premier focus of research. While the psychoactive and medicinal properties of Cannabis products have been extensively highlighted in the literature, the antibacterial properties of cannabidiol (CBD) have not been explored in depth. This research serves to examine the antibacterial potential of CBD against Salmonella newington and S. typhimurium. In this study, we observed bacterial response to CBD exposure through biological assays, bacterial kinetics, and fluorescence microscopy. Additionally, comparative studies between CBD and ampicillin were conducted against S. typhimurium and S. newington to determine comparative efficacy. Furthermore, we observed potential resistance development of our Salmonella spp. against CBD treatment.
Collapse
Affiliation(s)
- Logan Gildea
- The Microbiology Program, College of Science, Technology, Engineering, and Mathematics (C-STEM), Alabama State University, Montgomery, AL 36104, USA; (L.G.); (R.V.)
| | - Joseph Atia Ayariga
- The Biomedical Engineering Program, College of Science, Technology, Engineering, and Mathematics (C-STEM), Alabama State University, Montgomery, AL 36104, USA
| | - Olufemi S. Ajayi
- Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA; (J.X.); (M.S.-F.)
| | - Junhuan Xu
- Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA; (J.X.); (M.S.-F.)
| | - Robert Villafane
- The Microbiology Program, College of Science, Technology, Engineering, and Mathematics (C-STEM), Alabama State University, Montgomery, AL 36104, USA; (L.G.); (R.V.)
| | - Michelle Samuel-Foo
- Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA; (J.X.); (M.S.-F.)
| |
Collapse
|
26
|
Siahanidou T, Spiliopoulou C. Pharmacological Neuroprotection of the Preterm Brain: Current Evidence and Perspectives. Am J Perinatol 2022; 39:479-491. [PMID: 32961562 DOI: 10.1055/s-0040-1716710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite improvements in viability, the long-term neurodevelopmental outcomes of preterm babies remain serious concern as a significant percentage of these infants develop neurological and/or intellectual impairment, and they are also at increased risk of psychiatric illnesses later in life. The current challenge is to develop neuroprotective approaches to improve adverse outcomes in preterm survivors. The purpose of this review was to provide an overview of the current evidence on pharmacological agents targeting the neuroprotection of the preterm brain. Among them, magnesium sulfate, given antenatally to pregnant women with imminent preterm birth before 30 to 34 weeks of gestation, as well as caffeine administered to preterm infants after birth, exhibited neuroprotective effects for human preterm brain. Erythropoietin treatment of preterm infants did not result in neuroprotection at 2 years of age in two out of three published large randomized controlled trials; however, long-term follow-up of these infants is needed to come to definite conclusions. Further studies are also required to assess whether melatonin, neurosteroids, inhaled nitric oxide, allopurinol, or dietary supplements (omega-3 fatty acids, choline, curcumin, etc.) could be implemented as neuroprotectants in clinical practice. Furthermore, other pharmacological agents showing promising signs of neuroprotective efficacy in preclinical studies (growth factors, hyaluronidase inhibitors or treatment, antidiabetic drugs, cannabidiol, histamine-H3 receptor antagonists, etc.), as well as stem cell- or exosomal-based therapies and nanomedicine, may prove useful in the future as potential neuroprotective approaches for human preterm brain. KEY POINTS: · Magnesium and caffeine have neuroprotective effects for the preterm brain.. · Follow-up of infants treated with erythropoietin is needed.. · Neuroprotective efficacy of several drugs in animals needs to be shown in humans..
Collapse
Affiliation(s)
- Tania Siahanidou
- Neonatal Unit of the First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | | |
Collapse
|
27
|
The Problem of Malnutrition Associated with Major Depressive Disorder from a Sex-Gender Perspective. Nutrients 2022; 14:nu14051107. [PMID: 35268082 PMCID: PMC8912662 DOI: 10.3390/nu14051107] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 02/03/2023] Open
Abstract
Major depressive disorder (MDD) is an incapacitating condition characterized by loss of interest, anhedonia and low mood, which affects almost 4% of people worldwide. With rising prevalence, it is considered a public health issue that affects economic productivity and heavily increases health costs alone or as a comorbidity for other pandemic non-communicable diseases (such as obesity, cardiovascular disease, diabetes, inflammatory bowel diseases, etc.). What is even more noteworthy is the double number of women suffering from MDD compared to men. In fact, this sex-related ratio has been contemplated since men and women have different sexual hormone oscillations, where women meet significant changes depending on the age range and moment of life (menstruation, premenstruation, pregnancy, postpartum, menopause…), which seem to be associated with susceptibility to depressive symptoms. For instance, a decreased estrogen level promotes decreased activation of serotonin transporters. Nevertheless, sexual hormones are not the only triggers that alter neurotransmission of monoamines and other neuropeptides. Actually, different dietary habits and/or nutritional requirements for specific moments of life severely affect MDD pathophysiology in women. In this context, the present review aims to descriptively collect information regarding the role of malnutrition in MDD onset and course, focusing on female patient and especially macro- and micronutrient deficiencies (amino acids, ω3 polyunsaturated fatty acids (ω3 PUFAs), folate, vitamin B12, vitamin D, minerals…), besides providing evidence for future nutritional intervention programs with a sex-gender perspective that hopefully improves mental health and quality of life in women.
Collapse
|
28
|
Jones É, Vlachou S. Cannabidiol Does Not Cause Significant Changes to Working Memory Performance in the N-Back Task. Pharmaceuticals (Basel) 2021; 14:1165. [PMID: 34832947 PMCID: PMC8623009 DOI: 10.3390/ph14111165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/04/2021] [Accepted: 11/10/2021] [Indexed: 11/20/2022] Open
Abstract
Cannabis use can be traced back to several centuries before the Common Era, when it was used for industrial, medicinal and recreational purposes. More recently, over 100 different cannabinoid compounds have been identified, one of which is cannabidiol (CBD), a compound widely used for anti-inflammatory and anxiolytic treatment. The literature surrounding the cognitive effects of CBD is limited, with most studies focusing on the effects of other cannabinoids on cognition. To expand this literature, this study investigated whether CBD causes significant differences to working memory (WM) functioning, as measured by the N-back task. It was hypothesised that CBD does not cause statistically significant differences to WM. In all, 54 participants, 33 females and 21 males, were recruited, with a mean age of 32.63 years. Of these 54 participants, 26 reported using CBD and no other cannabinoids, while 28 reported not using any cannabinoid. The participants were instructed to answer a short online survey to gather basic demographic data and to complete an online N-back task to measure WM. For the computerised N-back task, the participants completed a practice and three test blocks, where they were instructed to respond to whether a series of letter stimuli were presented one trial back (1-back), two trials back (2-back) or three trials back (3-back). Multivariate analysis of covariance yielded no statistically significant difference on either response time or response accuracy data between groups after controlling for how long the participants use CBD and for what reason they use CBD. These results support our hypothesis that CBD does not cause significant changes to WM functioning. Further research is greatly needed to investigate the long-term effects of CBD use on WM and on general cognitive functioning.
Collapse
Affiliation(s)
| | - Styliani Vlachou
- Neuropsychopharmacology Division, Behavioural Neuroscience Laboratory, School of Psychology, Faculty of Science and Health, Dublin City University, Glasnevin, Dublin 9, D09 Y074 Dublin, Ireland;
| |
Collapse
|
29
|
Carmona-Hidalgo B, García-Martín A, Muñoz E, González-Mariscal I. Detrimental Effect of Cannabidiol on the Early Onset of Diabetic Nephropathy in Male Mice. Pharmaceuticals (Basel) 2021; 14:ph14090863. [PMID: 34577563 PMCID: PMC8466593 DOI: 10.3390/ph14090863] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 01/04/2023] Open
Abstract
Anti-inflammatory and antidiabetogenic properties have been ascribed to cannabidiol (CBD). CBD-based medicinal drugs have been approved for over a lustrum, and a boom in the commercialization of CBD products started in parallel. Herein, we explored the efficacy of CBD in streptozotocin (STZ)-induced diabetic mice to prevent diabetic nephropathy at onset. Eight-to-ten-week-old C57BL6J male mice were treated daily intraperitoneally with 10 mg/kg of CBD or vehicle for 14 days. After 8 days of treatment, mice were challenged with STZ or vehicle (healthy-control). At the end of the study, non-fasting blood glucose (FBG) level was 276 ± 42 mg/dL in vehicle-STZ-treated compared to 147 ± 9 mg/dL (p ≤ 0.01) in healthy-control mice. FBG was 114 ± 8 mg/dL in vehicle-STZ-treated compared to 89 ± 4 mg/dL in healthy-control mice (p ≤ 0.05). CBD treatment did not prevent STZ-induced hyperglycemia, and non-FBG and FBG levels were 341 ± 40 and 133 ± 26 mg/dL, respectively. Additionally, treatment with CBD did not avert STZ-induced glucose intolerance or pancreatic beta cell mass loss compared to vehicle-STZ-treated mice. Anatomopathological examination showed that kidneys from vehicle-STZ-treated mice had a 35% increase of glomerular size compared to healthy-control mice (p ≤ 0.001) and presented lesions with a 43% increase in fibrosis and T cell infiltration (p ≤ 0.001). Although treatment with CBD prevented glomerular hypertrophy and reduced T cell infiltration, it significantly worsened overall renal damage (p ≤ 0.05 compared to vehicle-STZ mice), leading to a more severe renal dysfunction than STZ alone. In conclusion, we showed that CBD could be detrimental for patients with type 1 diabetes, particularly those undergoing complications such as diabetic nephropathy.
Collapse
Affiliation(s)
| | | | - Eduardo Muñoz
- Instituto Maimónides de Investigación Biomédica de Córdoba, Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Hospital Universitario Reina Sofía, 14004 Córdoba, Spain
- Correspondence: (E.M.); (I.G.-M.)
| | - Isabel González-Mariscal
- Instituto de Investigación Biomédica de Málaga-IBIMA, UGC Endocrinología y Nutrición, Hospital Regional Universitario de Málaga, 29009 Málaga, Spain
- Correspondence: (E.M.); (I.G.-M.)
| |
Collapse
|
30
|
Selling cannabidiol products in Canada: A framing analysis of advertising claims by online retailers. BMC Public Health 2021; 21:1285. [PMID: 34210299 PMCID: PMC8248754 DOI: 10.1186/s12889-021-11282-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 06/14/2021] [Indexed: 02/03/2023] Open
Abstract
Background In Canada, the legalization of cannabis has enabled cannabidiol (CBD) to become a popular commercial product, increasingly used for medical or therapeutic purposes. There are currently over one thousand CBD products available globally, ranging from oil extracts to CBD-infused beverages. Despite increased usage and availability, the evidence supporting the medical efficacy of CBD is limited. Anecdotal evidence suggests CBD sellers represent their products for medical use through direct medical claims or advice, which in Canada, is not allowed under the Cannabis Act without Health Canada approval. However, it is not clear the extent of sellers making health claims or other strategies used to promote medical usage of CBD. The objective of this study is to determine how CBD sellers advertise their products online to consumers. Methods The product descriptions of 2165 CBD products from 70 websites selling CBD products for human consumption in Canada were collected from January 14th, 2020 to February 2nd, 2020 using an automated website scraper tool. A framing analysis was used to determine how CBD sellers frame their products to prospective customers. The specific medical conditions CBD is represented to treat and product forms were tabulated. Results CBD products are framed to prospective customer through three distinct frames: a specific cure or treatment (n = 1153), a natural health product (n = 872), and a product used in certain ways to achieve particular results (n = 1388). Product descriptions contained medical or therapeutic claims for 171 medical conditions and ailments, with 53.3% of products containing at least one claim. The most prevalent claims found in product descriptions were the ability to treat or manage pain (n = 824), anxiety (n = 609), and inflammation (n = 545). Claims were found for treating or managing serious and-life-threatening illnesses such as multiple sclerosis (n = 210), arthritis (n = 179), cancer (n = 169), Crohn’s disease (n = 78), Parkinson’s disease (n = 59), and human immunodeficiency virus (HIV) (n = 54). CBD most often came in oil/tincture/concentrate form (n = 755), followed by edibles (n = 428), and vaporizer pen/cartridge/liquid products (n = 290). Conclusion The findings suggest CBD is represented as a medical option for numerous conditions and ailments. We recommend Health Canada to conduct a systematic audit of companies selling CBD for regulatory adherence.
Collapse
|
31
|
Griffiths C, Aikins J, Warshal D, Ostrovsky O. Can Cannabidiol Affect the Efficacy of Chemotherapy and Epigenetic Treatments in Cancer? Biomolecules 2021; 11:biom11050766. [PMID: 34065479 PMCID: PMC8160970 DOI: 10.3390/biom11050766] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/03/2021] [Accepted: 05/10/2021] [Indexed: 12/14/2022] Open
Abstract
The success of cannabinoids with chronic neuropathic pain and anxiety has been demonstrated in a multitude of studies. With the high availability of a non-intoxicating compound, cannabidiol (CBD), an over-the-counter medication, has generated heightened interest in its use in the field of oncology. This review focuses on the widespread therapeutic potential of CBD with regard to enhanced wound healing, lowered toxicity profiles of chemotherapeutics, and augmented antitumorigenic effects. The current literature is sparse with regard to determining the clinically relevant concentrations of CBD given the biphasic nature of the compound’s response. Therefore, there is an imminent need for further dose-finding studies in order to determine the optimal dose of CBD for both intermittent and regular users. We address the potential influence of regular or occasional CBD usage on therapeutic outcomes in ovarian cancer patients. Additionally, as the development of chemoresistance in ovarian cancer results in treatment failure, the potential for CBD to augment the efficacy of conventional chemotherapeutic and epigenetic drugs is a topic of significant importance. Our review is focused on the widespread therapeutic potential of CBD and whether or not a synergistic role exists in combination with epigenetic and classic chemotherapy medications.
Collapse
Affiliation(s)
- Courtney Griffiths
- MD Anderson Cancer Center at Cooper, Division of Gynecologic Oncology, Cooper University Healthcare, Camden, NJ 08103, USA; (C.G.); (J.A.); (D.W.)
| | - James Aikins
- MD Anderson Cancer Center at Cooper, Division of Gynecologic Oncology, Cooper University Healthcare, Camden, NJ 08103, USA; (C.G.); (J.A.); (D.W.)
| | - David Warshal
- MD Anderson Cancer Center at Cooper, Division of Gynecologic Oncology, Cooper University Healthcare, Camden, NJ 08103, USA; (C.G.); (J.A.); (D.W.)
| | - Olga Ostrovsky
- Department of Surgery, Division of Surgical Research, Cooper University Healthcare and Cooper Medical School, Rowan University, Camden, NJ 08103, USA
- Correspondence: ; Tel.: +1-(856)-536-1099; Fax: +1-(856)-757-9647
| |
Collapse
|
32
|
Malinowska B, Baranowska-Kuczko M, Kicman A, Schlicker E. Opportunities, Challenges and Pitfalls of Using Cannabidiol as an Adjuvant Drug in COVID-19. Int J Mol Sci 2021; 22:1986. [PMID: 33671463 PMCID: PMC7922403 DOI: 10.3390/ijms22041986] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 02/06/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection may lead to coronavirus disease 2019 (COVID-19) which, in turn, may be associated with multiple organ dysfunction. In this review, we present advantages and disadvantages of cannabidiol (CBD), a non-intoxicating phytocannabinoid from the cannabis plant, as a potential agent for the treatment of COVID-19. CBD has been shown to downregulate proteins responsible for viral entry and to inhibit SARS-CoV-2 replication. Preclinical studies have demonstrated its effectiveness against diseases of the respiratory system as well as its cardioprotective, nephroprotective, hepatoprotective, neuroprotective and anti-convulsant properties, that is, effects that may be beneficial for COVID-19. Only the latter two properties have been demonstrated in clinical studies, which also revealed anxiolytic and antinociceptive effects of CBD (given alone or together with Δ9-tetrahydrocannabinol), which may be important for an adjuvant treatment to improve the quality of life in patients with COVID-19 and to limit post-traumatic stress symptoms. However, one should be aware of side effects of CBD (which are rarely serious), drug interactions (also extending to drugs acting against COVID-19) and the proper route of its administration (vaping may be dangerous). Clearly, further clinical studies are necessary to prove the suitability of CBD for the treatment of COVID-19.
Collapse
Affiliation(s)
- Barbara Malinowska
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, 15-222 Białystok, Poland; (M.B.-K.); (A.K.)
| | - Marta Baranowska-Kuczko
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, 15-222 Białystok, Poland; (M.B.-K.); (A.K.)
- Department of Clinical Pharmacy, Medical University of Białystok, 15-222 Białystok, Poland
| | - Aleksandra Kicman
- Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, 15-222 Białystok, Poland; (M.B.-K.); (A.K.)
| | - Eberhard Schlicker
- Department of Pharmacology and Toxicology, University of Bonn, 53127 Bonn, Germany
| |
Collapse
|
33
|
Clinical Evidence of Magistral Preparations Based on Medicinal Cannabis. Pharmaceuticals (Basel) 2021; 14:ph14020078. [PMID: 33494156 PMCID: PMC7909828 DOI: 10.3390/ph14020078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 12/15/2022] Open
Abstract
Cannabis has been widely used as a medicinal plant for millennia; however, studies related to its main components were first conducted in 1960. Subsequently, laboratories have produced new components and structures related to its active biological properties. Countries that have approved the medicinal use of cannabis impose regulations that govern its clinical and scientific use. One means of administering medicinal cannabis is via a magistral preparation that must have a medical prescription and be prepared in an establishment that meets quality standards to ensure the quantities of its main components, such as tetrahydrocannabinol (THC) and cannabidiol (CBD). Furthermore, suppliers must have a clear indication of its use in the patient before prescription. This review shows the published evidence regarding the clinical use of medicinal cannabis magistral preparations in the management of post-chemotherapy nausea and vomiting, neuropathic pain in multiple sclerosis, and anorexia and cachexia in patients with HIV.
Collapse
|
34
|
Criscuolo E, De Sciscio ML, Fezza F, Maccarrone M. In Silico and In Vitro Analysis of Major Cannabis-Derived Compounds as Fatty Acid Amide Hydrolase Inhibitors. Molecules 2020; 26:molecules26010048. [PMID: 33374180 PMCID: PMC7795171 DOI: 10.3390/molecules26010048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/11/2022] Open
Abstract
Accumulated evidence suggests that enhancing the endocannabinoid (eCB) tone, in particular of anandamide (N-arachidonoylethanolamine, AEA), has therapeutic potential in many human diseases. Fatty acid amide hydrolase (FAAH) is a membrane-bound enzyme principally responsible for the degradation of AEA, and thus it represents a relevant target to increase signaling thereof. In recent years, different synthetic and natural compounds have been developed and tested on rat FAAH, but little is known of their effect on the human enzyme. Here, we sought to investigate six major cannabis-derived compounds to compare their action on rat and human FAAHs. To this aim, we combined an in silico analysis of their binding mode and affinity, with in vitro assays of their effect on enzyme activity. This integrated approach allowed to disclose differences in efficacy towards rat and human FAAHs, and to highlight the role of key residues involved in the inhibition of both enzymes. This study suggests that the therapeutic efficacy of compounds targeted towards FAAH should be always tested in vitro on both rat and human enzymes.
Collapse
Affiliation(s)
- Emanuele Criscuolo
- Department of Experimental Medicine, Tor Vergata University of Rome, Via Montpellier 1, 00121 Rome, Italy;
- Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy;
| | - Maria Laura De Sciscio
- Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy;
- Department of Chemistry “G. Ciamician”, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
| | - Filomena Fezza
- Department of Experimental Medicine, Tor Vergata University of Rome, Via Montpellier 1, 00121 Rome, Italy;
- Correspondence: (F.F.); (M.M.)
| | - Mauro Maccarrone
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio snc, 67100 L’Aquila, Italy
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 54, 00143 Rome, Italy
- Correspondence: (F.F.); (M.M.)
| |
Collapse
|
35
|
Molecular Targets of Cannabidiol in Experimental Models of Neurological Disease. Molecules 2020; 25:molecules25215186. [PMID: 33171772 PMCID: PMC7664437 DOI: 10.3390/molecules25215186] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022] Open
Abstract
Cannabidiol (CBD) is a non-psychoactive phytocannabinoid known for its beneficial effects including antioxidant and anti-inflammatory properties. Moreover, CBD is a compound with antidepressant, anxiolytic, anticonvulsant and antipsychotic effects. Thanks to all these properties, the interest of the scientific community for it has grown. Indeed, CBD is a great candidate for the management of neurological diseases. The purpose of our review is to summarize the in vitro and in vivo studies published in the last 15 years that describe the biochemical and molecular mechanisms underlying the effects of CBD and its therapeutic application in neurological diseases. CBD exerts its neuroprotective effects through three G protein coupled-receptors (adenosine receptor subtype 2A, serotonin receptor subtype 1A and G protein-coupled receptor 55), one ligand-gated ion channel (transient receptor potential vanilloid channel-1) and one nuclear factor (peroxisome proliferator-activated receptor γ). Moreover, the therapeutical properties of CBD are also due to GABAergic modulation. In conclusion, CBD, through multi-target mechanisms, represents a valid therapeutic tool for the management of epilepsy, Alzheimer’s disease, multiple sclerosis and Parkinson’s disease.
Collapse
|