1
|
Yuan Z, Wang Q, Wang C, Liu Y, Fan L, Liu Y, Huang H. Identification of a de novo CACNA1B variant and a start-loss ADRA2B variant in paroxysmal kinesigenic dyskinesia. Heliyon 2024; 10:e28674. [PMID: 38571653 PMCID: PMC10988053 DOI: 10.1016/j.heliyon.2024.e28674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 03/12/2024] [Accepted: 03/21/2024] [Indexed: 04/05/2024] Open
Abstract
Paroxysmal kinesigenic dyskinesia (PKD) represents the most prevalent form of paroxysmal dyskinesia, characterized by recurrent and transient attacks of involuntary movements triggered by a sudden voluntary action. In this study, whole-exome sequencing was conducted on a cohort of Chinese patients to identify causal mutations. In one young female case, a de novo CACNA1B variant (NM_000718.3:exon3:c.479C > T:p.S160F) was identified as the causative lesion. This finding may broaden the phenotypic spectrum of CACNA1B mutations and provide a prospective cause of primary PKD. Additionally, a novel start-loss variant (NM_000682.7:c.3G > A) within ADRA2B further denied its association with benign adult familial myoclonic epilepsy, and a KCNQ2 E515D variant that was reported as a genetic susceptibility factor for seizures had no damaging effect in this family. In sum, this study established a correlation between CACNA1B and primary PKD, and found valid evidence that further negates the pathogenic role of ADRA2B in benign adult familial myoclonic epilepsy.
Collapse
Affiliation(s)
- Zhuangzhuang Yuan
- Department of Cell Biology, School of Life Science, Central South University, Changsha, China
| | - Qian Wang
- Department of Cell Biology, School of Life Science, Central South University, Changsha, China
| | - Chenyu Wang
- Department of Cell Biology, School of Life Science, Central South University, Changsha, China
| | - Yuxing Liu
- Department of Cell Biology, School of Life Science, Central South University, Changsha, China
| | - Liangliang Fan
- Department of Cell Biology, School of Life Science, Central South University, Changsha, China
| | - Yihui Liu
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Hao Huang
- Department of Cell Biology, School of Life Science, Central South University, Changsha, China
| |
Collapse
|
2
|
Salamon A, Nagy ZF, Pál M, Szabó M, Csősz Á, Szpisjak L, Gárdián G, Zádori D, Széll M, Klivényi P. Genetic Screening of a Hungarian Cohort with Focal Dystonia Identified Several Novel Putative Pathogenic Gene Variants. Int J Mol Sci 2023; 24:10745. [PMID: 37445923 DOI: 10.3390/ijms241310745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Dystonia is a rare movement disorder which is characterized by sustained or intermittent muscle contractions causing abnormal and often repetitive movements, postures, or both. The two most common forms of adult-onset focal dystonia are cervical dystonia (CD) and benign essential blepharospasm (BSP). A total of 121 patients (CD, 74; BSP, 47) were included in the study. The average age of the patients was 64 years. For the next-generation sequencing (NGS) approach, 30 genes were selected on the basis of a thorough search of the scientific literature. Assessment of 30 CD- and BSP-associated genes from 121 patients revealed a total of 209 different heterozygous variants in 24 genes. Established clinical and genetic validity was determined for nine heterozygous variations (three likely pathogenic and six variants of uncertain significance). Detailed genetic examination is an important part of the work-up for focal dystonia forms. To our knowledge, our investigation is the first such study to be carried out in the Middle-European region.
Collapse
Affiliation(s)
- András Salamon
- Department of Neurology, University of Szeged, 6, Semmelweis Str., H-6725 Szeged, Hungary
| | - Zsófia Flóra Nagy
- Department of Medical Genetics, University of Szeged, 4, Somogyi Béla Str., H-6720 Szeged, Hungary
- Institute of Genomic Medicine and Rare Disorders, Semmelweis University, 78/b, Üllői Str., H-1083 Budapest, Hungary
| | - Margit Pál
- Department of Medical Genetics, University of Szeged, 4, Somogyi Béla Str., H-6720 Szeged, Hungary
- ELKH-SZTE Functional Clinical Genetics Research Group, Eötvös Loránd Research Network, 4, Somogyi Béla Str., H-6720 Szeged, Hungary
| | - Máté Szabó
- Department of Neurology, University of Szeged, 6, Semmelweis Str., H-6725 Szeged, Hungary
| | - Ádám Csősz
- Department of Neurology, University of Szeged, 6, Semmelweis Str., H-6725 Szeged, Hungary
| | - László Szpisjak
- Department of Neurology, University of Szeged, 6, Semmelweis Str., H-6725 Szeged, Hungary
| | - Gabriella Gárdián
- Department of Neurology, University of Szeged, 6, Semmelweis Str., H-6725 Szeged, Hungary
| | - Dénes Zádori
- Department of Neurology, University of Szeged, 6, Semmelweis Str., H-6725 Szeged, Hungary
| | - Márta Széll
- Department of Medical Genetics, University of Szeged, 4, Somogyi Béla Str., H-6720 Szeged, Hungary
- ELKH-SZTE Functional Clinical Genetics Research Group, Eötvös Loránd Research Network, 4, Somogyi Béla Str., H-6720 Szeged, Hungary
| | - Péter Klivényi
- Department of Neurology, University of Szeged, 6, Semmelweis Str., H-6725 Szeged, Hungary
| |
Collapse
|
3
|
Li LX, Liu Y, Huang JH, Yang Y, Pan YG, Zhang XL, Pan LZ, Jin LJ. Genetic spectrum and clinical features in a cohort of Chinese patients with isolated dystonia. Clin Genet 2023; 103:459-465. [PMID: 36648081 DOI: 10.1111/cge.14298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/03/2023] [Accepted: 01/10/2023] [Indexed: 01/18/2023]
Abstract
Dystonia is a genetically and phenotypically heterogeneous disorder that occurs in isolation (isolated dystonia) or in combination with other movement disorders. To determine the genetic spectrum in isolated dystonia, we enrolled 88 patients with isolated dystonia for whole-exome sequencing (WES). Seventeen mutations, including nine novel ones, were identified in 19 of the 88 patients, providing a 21.59% positive molecular diagnostic rate. Eleven distinct genes were involved, of which TOR1A and THAP1 accounted for 47.37% (9/19) of the positive cases. A novel missense variant, p.S225R in TOR1A, was found in a patient with adolescence-onset generalized dystonia. Cellular experiments revealed that p.S255R results in the abnormal aggregation of Torsin-1A encoding by TOR1A. In addition, we reviewed the clinical and genetic features of the isolated dystonia patients carrying TOR1A, THAP1, ANO3, and GNAL mutations in the Chinese population. Our results expand the genetic spectrum and clinical profiles of patients with isolated dystonia and demonstrate WES as an effective strategy for the molecular diagnosis of isolated dystonia.
Collapse
Affiliation(s)
- Li-Xi Li
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ying Liu
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jie-Hong Huang
- Department of Neurology and Neurological Rehabilitation, Shanghai Yangzhi Rehabilitation Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yi Yang
- Department of Neurology and Neurological Rehabilitation, Shanghai Yangzhi Rehabilitation Hospital, School of Medicine, Tongji University, Shanghai, China
| | - You-Gui Pan
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiao-Long Zhang
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Li-Zhen Pan
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Ling-Jing Jin
- Department of Neurology, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
- Department of Neurology and Neurological Rehabilitation, Shanghai Yangzhi Rehabilitation Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
4
|
Trifiletti R, Lachman HM, Manusama O, Zheng D, Spalice A, Chiurazzi P, Schornagel A, Serban AM, van Wijck R, Cunningham JL, Swagemakers S, van der Spek PJ. Identification of ultra-rare genetic variants in pediatric acute onset neuropsychiatric syndrome (PANS) by exome and whole genome sequencing. Sci Rep 2022; 12:11106. [PMID: 35773312 PMCID: PMC9246359 DOI: 10.1038/s41598-022-15279-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 06/21/2022] [Indexed: 12/13/2022] Open
Abstract
Abrupt onset of severe neuropsychiatric symptoms including obsessive-compulsive disorder, tics, anxiety, mood swings, irritability, and restricted eating is described in children with Pediatric Acute-Onset Neuropsychiatric Syndrome (PANS). Symptom onset is often temporally associated with infections, suggesting an underlying autoimmune/autoinflammatory etiology, although direct evidence is often lacking. The pathological mechanisms are likely heterogeneous, but we hypothesize convergence on one or more biological pathways. Consequently, we conducted whole exome sequencing (WES) on a U.S. cohort of 386 cases, and whole genome sequencing (WGS) on ten cases from the European Union who were selected because of severe PANS. We focused on identifying potentially deleterious genetic variants that were de novo or ultra-rare (MAF) < 0.001. Candidate mutations were found in 11 genes (PPM1D, SGCE, PLCG2, NLRC4, CACNA1B, SHANK3, CHK2, GRIN2A, RAG1, GABRG2, and SYNGAP1) in 21 cases, which included two or more unrelated subjects with ultra-rare variants in four genes. These genes converge into two broad functional categories. One regulates peripheral immune responses and microglia (PPM1D, CHK2, NLRC4, RAG1, PLCG2). The other is expressed primarily at neuronal synapses (SHANK3, SYNGAP1, GRIN2A, GABRG2, CACNA1B, SGCE). Mutations in these neuronal genes are also described in autism spectrum disorder and myoclonus-dystonia. In fact, 12/21 cases developed PANS superimposed on a preexisting neurodevelopmental disorder. Genes in both categories are also highly expressed in the enteric nervous system and the choroid plexus. Thus, genetic variation in PANS candidate genes may function by disrupting peripheral and central immune functions, neurotransmission, and/or the blood-CSF/brain barriers following stressors such as infection.
Collapse
Affiliation(s)
| | - Herbert M Lachman
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA.
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Olivia Manusama
- Department of Immunology, Erasmus MC, Rotterdam, The Netherlands
| | - Deyou Zheng
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Alberto Spalice
- Department of Pediatrics, Pediatric Neurology, Sapienza University of Rome, Rome, Italy
| | - Pietro Chiurazzi
- Sezione di Medicina Genomica, Dipartimento Scienze della Vita e Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento Scienze di Laboratorio e Infettivologiche, UOC Genetica Medica, Rome, Italy
| | - Allan Schornagel
- GGZ-Delfland, Kinderpraktijk Zoetermeer, Zoetermeer, The Netherlands
| | - Andreea M Serban
- Department of Pathology and Clinical Bioinformatics, Erasmus MC, Rotterdam, The Netherlands
| | - Rogier van Wijck
- Department of Pathology and Clinical Bioinformatics, Erasmus MC, Rotterdam, The Netherlands
| | - Janet L Cunningham
- Department of Neuroscience, Psychiatry, Uppsala University, Uppsala, Sweden
| | - Sigrid Swagemakers
- Department of Pathology and Clinical Bioinformatics, Erasmus MC, Rotterdam, The Netherlands
| | - Peter J van der Spek
- Department of Pathology and Clinical Bioinformatics, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
5
|
Krishnaveni V, Ganaraja VH, Mala K, Kodapala S. Generalised dystonic presentation of CACNA1B-associated dystonia and its response to Levodopa. Acta Neurol Belg 2022:10.1007/s13760-022-01988-z. [PMID: 35698023 DOI: 10.1007/s13760-022-01988-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/23/2022] [Indexed: 11/28/2022]
Affiliation(s)
- V Krishnaveni
- Department of Neurology, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, India
| | - V H Ganaraja
- Department of Neurology, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, India
| | - Kavya Mala
- Department of Neurology, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, India
| | - Suresha Kodapala
- Department of Neurology, Vydehi Institute of Medical Sciences and Research Centre, Bangalore, India.
| |
Collapse
|
6
|
Satoh A, Fujimoto S, Irie T, Suzuki T, Miyazaki Y, Tanaka K, Usami M, Takizawa T. Valproic acid promotes differentiation of adipose tissue-derived stem cells to neuronal cells selectively expressing functional N-type voltage-gated Ca 2+ channels. Biochem Biophys Res Commun 2022; 589:55-62. [PMID: 34891042 DOI: 10.1016/j.bbrc.2021.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/30/2021] [Accepted: 12/02/2021] [Indexed: 12/14/2022]
Abstract
The differentiation of adipose tissue-derived stem cells (ASCs) to neuronal cells is greatly promoted by valproic acid (VPA), and is synergistically enhanced by the following treatment with neuronal induction medium (NIM) containing cAMP-elevating agents. In the present study, we investigated the synergism between VPA and NIM in neuronal differentiation of ASCs, assessed by the expression of neurofilament medium polypeptide (NeFM), with respect to Ca2+ entry. VPA (2 mM) treatment for 3 days followed by NIM for 2 h synergistically increased the incidence of neuronal cells differentiated from ASCs to an extent more than VPA alone treatment for 6 days, shortening the time required for the differentiation. VPA increased intracellular Ca2+ and the mRNAs of voltage-gated Ca2+ channels, Cacna1b (Cav2.2) and Cacna1h (Cav3.2), in ASCs. Inward currents through Ca2+ channels were evoked electrophysiologically at high voltage potential in ASCs treated with VPA. NIM reduced the mRNAs of NeFM and Cacna1b in VPA-promoted neuronal differentiation of ASCs. It was concluded that functional N-type voltage-gated Ca2+ channels (Cav2.2) are selectively expressed in VPA-promoted neuronal differentiation of ASCs. NIM seems to enhance the mRNA translation of molecules required for the differentiation. Neuronal cells obtained from ASCs by this protocol will be used as a cell source for regenerative therapy of neurological disorders associated with altered Cav2.2 activity.
Collapse
Affiliation(s)
- Azusa Satoh
- Graduate School of Veterinary Medicine, Azabu University, Fuchinobe, Chuo-ku, Sagamihara, 252-5201, Japan
| | - Shinri Fujimoto
- Graduate School of Veterinary Medicine, Azabu University, Fuchinobe, Chuo-ku, Sagamihara, 252-5201, Japan
| | - Tomohiko Irie
- Division of Pharmacology, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki, Kanagawa, 210-9501, Japan
| | - Takehito Suzuki
- Graduate School of Veterinary Medicine, Azabu University, Fuchinobe, Chuo-ku, Sagamihara, 252-5201, Japan
| | - Yoko Miyazaki
- Graduate School of Veterinary Medicine, Azabu University, Fuchinobe, Chuo-ku, Sagamihara, 252-5201, Japan
| | - Kazuaki Tanaka
- Graduate School of Veterinary Medicine, Azabu University, Fuchinobe, Chuo-ku, Sagamihara, 252-5201, Japan
| | - Makoto Usami
- Graduate School of Veterinary Medicine, Azabu University, Fuchinobe, Chuo-ku, Sagamihara, 252-5201, Japan
| | - Tatsuya Takizawa
- Graduate School of Veterinary Medicine, Azabu University, Fuchinobe, Chuo-ku, Sagamihara, 252-5201, Japan.
| |
Collapse
|
7
|
Striessnig J. Voltage-Gated Ca 2+-Channel α1-Subunit de novo Missense Mutations: Gain or Loss of Function - Implications for Potential Therapies. Front Synaptic Neurosci 2021; 13:634760. [PMID: 33746731 PMCID: PMC7966529 DOI: 10.3389/fnsyn.2021.634760] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 02/02/2021] [Indexed: 12/12/2022] Open
Abstract
This review summarizes our current knowledge of human disease-relevant genetic variants within the family of voltage gated Ca2+ channels. Ca2+ channelopathies cover a wide spectrum of diseases including epilepsies, autism spectrum disorders, intellectual disabilities, developmental delay, cerebellar ataxias and degeneration, severe cardiac arrhythmias, sudden cardiac death, eye disease and endocrine disorders such as congential hyperinsulinism and hyperaldosteronism. A special focus will be on the rapidly increasing number of de novo missense mutations identified in the pore-forming α1-subunits with next generation sequencing studies of well-defined patient cohorts. In contrast to likely gene disrupting mutations these can not only cause a channel loss-of-function but can also induce typical functional changes permitting enhanced channel activity and Ca2+ signaling. Such gain-of-function mutations could represent therapeutic targets for mutation-specific therapy of Ca2+-channelopathies with existing or novel Ca2+-channel inhibitors. Moreover, many pathogenic mutations affect positive charges in the voltage sensors with the potential to form gating-pore currents through voltage sensors. If confirmed in functional studies, specific blockers of gating-pore currents could also be of therapeutic interest.
Collapse
Affiliation(s)
- Jörg Striessnig
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Center for Molecular Biosciences Innsbruck, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|