1
|
Xu L, Li C, Wan T, Sun X, Lin X, Yan D, Li J, Wei P. Targeting uric acid: a promising intervention against oxidative stress and neuroinflammation in neurodegenerative diseases. Cell Commun Signal 2025; 23:4. [PMID: 39754256 PMCID: PMC11699683 DOI: 10.1186/s12964-024-01965-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/27/2024] [Indexed: 01/06/2025] Open
Abstract
Oxidative stress and neuroinflammation are recognized as key factors in the development of neurodegenerative diseases, yet effective interventions and biomarkers to address oxidative stress and neuroinflammation in these conditions are limited. Uric acid (UA), traditionally associated with gout, is now gaining prominence as a potential target in neurodegenerative diseases. Soluble UA stands out as one of the most vital antioxidant compounds produced by the human body, accounting for up to 55% of the extracellular capacity to neutralize free radicals. While there is increasing evidence supporting the neuroprotective properties of UA in Parkinson's disease and Alzheimer's disease, gaps in knowledge still exist regarding the underlying mechanisms and how to effectively translate these benefits into clinical practice. Moreover, the current UA elevation therapy exhibits unstable antioxidant properties, individual variability, and even adverse effects, limiting its potential clinical applications. This review consolidates recent advancements in understanding how UA exerts neuroprotective effects on neurodegenerative diseases and emphasizes the dual roles of UA in managing oxidative stress and neuroinflammation. Additionally, the review elucidates the mechanisms through which UA confers neuroprotection. Based on this, the review underscores the significance of UA as a potential biomarker and aims to provide a comprehensive understanding of its potential as a therapeutic target, while also addressing possible challenges to clinical implementation.
Collapse
Affiliation(s)
- Lin Xu
- Department of Anesthesiology, Cheeloo College of Medicine, Qilu Hospital (Qingdao), Shandong University, 758 Hefei Road, Qingdao, China
- Laboratory of Anesthesia and Brain Function, Qilu hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China
| | - Chengwei Li
- Department of Anesthesiology, Cheeloo College of Medicine, Qilu Hospital (Qingdao), Shandong University, 758 Hefei Road, Qingdao, China
- Laboratory of Anesthesia and Brain Function, Qilu hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China
| | - Tiantian Wan
- Department of Anesthesiology, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Xinyi Sun
- Department of Anesthesiology, Cheeloo College of Medicine, Qilu Hospital (Qingdao), Shandong University, 758 Hefei Road, Qingdao, China
- Laboratory of Anesthesia and Brain Function, Qilu hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China
| | - Xiaojie Lin
- Department of Anesthesiology, Cheeloo College of Medicine, Qilu Hospital (Qingdao), Shandong University, 758 Hefei Road, Qingdao, China
- Laboratory of Anesthesia and Brain Function, Qilu hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China
| | - Dong Yan
- Department of Anesthesiology, Cheeloo College of Medicine, Qilu Hospital (Qingdao), Shandong University, 758 Hefei Road, Qingdao, China
- Laboratory of Anesthesia and Brain Function, Qilu hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China
| | - Jianjun Li
- Department of Anesthesiology, Cheeloo College of Medicine, Qilu Hospital (Qingdao), Shandong University, 758 Hefei Road, Qingdao, China
- Laboratory of Anesthesia and Brain Function, Qilu hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China
| | - Penghui Wei
- Department of Anesthesiology, Cheeloo College of Medicine, Qilu Hospital (Qingdao), Shandong University, 758 Hefei Road, Qingdao, China.
- Laboratory of Anesthesia and Brain Function, Qilu hospital (Qingdao), Cheeloo College of Medicine, Shandong University, 758 Hefei Road, Qingdao, China.
| |
Collapse
|
2
|
Arya R, Haque AKMA, Shakya H, Billah MM, Parvin A, Rahman MM, Sakib KM, Faruquee HM, Kumar V, Kim JJ. Parkinson's Disease: Biomarkers for Diagnosis and Disease Progression. Int J Mol Sci 2024; 25:12379. [PMID: 39596444 PMCID: PMC11594627 DOI: 10.3390/ijms252212379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
Parkinson's disease (PD) is a progressive neurological disease that causes both motor and nonmotor symptoms. While our understanding of putative mechanisms has advanced significantly, it remains challenging to verify biomarkers with sufficient evidence for regular clinical use. Clinical symptoms are the primary basis for diagnosing the disease, which can be mild in the early stages and overlap with other neurological disorders. As a result, clinical testing and medical records are mostly relied upon for diagnosis, posing substantial challenges during both the initial diagnosis and the continuous disease monitoring. Recent biochemical, neuroimaging, and genetic biomarkers have helped us understand the pathophysiology of Parkinson's disease. This comprehensive study focuses on these biomarkers, which were chosen based on their relevance, methodological excellence, and contribution to the field. Biochemical biomarkers, including α-synuclein and glial fibrillary acidic protein (GFAP), can predict disease severity and progression. The dopaminergic system is widely used as a neuroimaging biomarker to diagnose PD. Numerous genes and genome wide association study (GWAS) sites have been related to the development of PD. Recent research on the SNCA gene and leucine-rich repeat protein kinase 2 (LRRK2) has shown promising results. By evaluating current studies, this review intends to uncover gaps in biomarker validation and use, while also highlighting promising improvements. It emphasizes the need for dependable and reproducible indicators in improving PD diagnosis and prognosis. These biomarkers may open up new avenues for early diagnosis, disease progression tracking, and the development of personalized treatment programs.
Collapse
Affiliation(s)
- Rakesh Arya
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - A. K. M. Ariful Haque
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh; (A.K.M.A.H.); (M.M.B.); (A.P.); (M.-M.R.); (H.M.F.)
| | - Hemlata Shakya
- Department of Biomedical Engineering, Shri G. S. Institute of Technology and Science, Indore 452003, India;
| | - Md. Masum Billah
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh; (A.K.M.A.H.); (M.M.B.); (A.P.); (M.-M.R.); (H.M.F.)
| | - Anzana Parvin
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh; (A.K.M.A.H.); (M.M.B.); (A.P.); (M.-M.R.); (H.M.F.)
| | - Md-Mafizur Rahman
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh; (A.K.M.A.H.); (M.M.B.); (A.P.); (M.-M.R.); (H.M.F.)
| | - Khan Mohammad Sakib
- Department of Biology, Adamjee Cantonment College, Dhaka Cantonment, Dhaka 1206, Bangladesh;
| | - Hossain Md. Faruquee
- Department of Biotechnology and Genetic Engineering, Faculty of Biological Sciences, Islamic University, Kushtia 7003, Bangladesh; (A.K.M.A.H.); (M.M.B.); (A.P.); (M.-M.R.); (H.M.F.)
| | - Vijay Kumar
- Department of Orthopaedic Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jong-Joo Kim
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| |
Collapse
|
3
|
Ohnari K, Mafune K, Adachi H. Fasciculation potentials are related to the prognosis of amyotrophic lateral sclerosis. PLoS One 2024; 19:e0313307. [PMID: 39514515 PMCID: PMC11548741 DOI: 10.1371/journal.pone.0313307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Some prognostic biomarkers of amyotrophic lateral sclerosis (ALS) have been described; however, they are inadequate for satisfactorily predicting individual patient outcomes. Fasciculation potentials (FPs) on electromyography (EMG) are useful for the early diagnosis of ALS, and complex FPs are associated with shorter survival in ALS. In this study, we investigated the relationship between the proportion of muscles with FPs, biochemical markers, and the prognosis of ALS. 89 Patients with ALS were retrospectively classified into three groups based on the interval from onset to death or tracheostomy (less than 1 year: fast progression; from 1 year to less than 3 years: average progression; 3 years or more: slow progression). We performed statistical analysis of the electrophysiological findings, including the percentage of examined muscles with FPs, and biochemical markers evaluated on admission. Patients with fast ALS progression had a higher percentage of muscles with FPs (93.1% vs. 37.9%, P<0.001) and lower uric acid (UA) levels (male: 4.19 mg/dl vs 5.55 mg/dl, P<0.001; female: 3.71 mg/dl vs 5.41 mg/dl, P<0.001) than patients with slow progression. Survival curves demonstrated a relationship between these factors and the survival time in patients with ALS. Furthermore, UA levels were correlated with the percentage of muscles with FPs. Our electrophysiological findings suggest that ALS presents with multisystem neurological manifestations, and these manifestations differed among the groups classified by disease progression. The percentage of muscles with FPs on EMG and serum UA levels were especially associated with the prognosis of ALS.
Collapse
Affiliation(s)
- Keiko Ohnari
- Department of Neurology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| | - Kosuke Mafune
- Department of Mental Health, Institute of Industrial Ecological Sciences, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| | - Hiroaki Adachi
- Department of Neurology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan
| |
Collapse
|
4
|
Geng C, Chen C. Association between serum insulin-like growth factor 1 and osteoporosis risk in Parkinson's disease: a cross-sectional study. Neurol Sci 2024; 45:5291-5296. [PMID: 38898339 DOI: 10.1007/s10072-024-07605-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024]
Abstract
OBJECTIVE To examine the correlation between serum insulin-like growth factor 1 (IGF-1) and osteoporosis (OP) in Parkinson's disease (PD). METHODS We retrospectively analyzed clinical data from 105 PD patients (PD group) and 78 individuals in the health examination group (HC group). We compared general clinical data and serum IGF-1 levels between the two groups. PD patients were further categorized into PD with OP (50 cases) and PD without OP (55 cases) based on dual-energy X-ray absorptiometry (DXA) results for bone density. We compared general clinical data and serum IGF-1 levels between these two subgroups. Pearson correlation coefficient analysis was conducted to assess the relationship between serum IGF-1 levels and bone density at the lumbar spine and left femoral neck. Multifactorial logistic regression analysis was performed to identify risk factors for PD with OP. RESULTS Serum IGF-1 levels were significantly lower in the PD group compared to the HC group (P < 0.05). Pearson correlation analysis revealed a positive association between serum IGF-1 levels and both lumbar spine and left femoral neck bone densities (r = 0.653, P < 0.001; r = 0.625, P < 0.001). Multivariate logistic regression analysis identified decreased serum IGF-1 levels, lower uric acid levels, and higher H-Y stage as risk factors for PD with OP (P < 0.05). CONCLUSION Reduced levels of serum IGF-1, uric acid, and an increased H-Y stage are closely linked to osteoporosis in PD. Elevating serum levels of IGF-1 and uric acid may potentially offer therapeutic avenues for PD with osteoporosis.
Collapse
Affiliation(s)
- Chaofan Geng
- Department of Neurology & Innovation Center for Neurological Disorders, National Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Chen Chen
- Department of Neurology, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China.
| |
Collapse
|
5
|
Sekine M, Fujiwara M, Okamoto K, Ichida K, Nagata K, Hille R, Nishino T. Significance and amplification methods of the purine salvage pathway in human brain cells. J Biol Chem 2024; 300:107524. [PMID: 38960035 PMCID: PMC11342100 DOI: 10.1016/j.jbc.2024.107524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/05/2024] Open
Abstract
Previous studies suggest that uric acid or reactive oxygen species, products of xanthine oxidoreductase (XOR), may associate with neurodegenerative diseases. However, neither relationship has ever been firmly established. Here, we analyzed human brain samples, obtained under protocols approved by research ethics committees, and found no expression of XOR and only low levels of uric acid in various regions of the brain. In the absence of XOR, hypoxanthine will be preserved and available for incorporation into the purine salvage pathway. To clarify the importance of salvage in the brain, we tested using human-induced pluripotent stem cell-derived neuronal cells. Stable isotope analyses showed that the purine salvage pathway was more effective for ATP synthesis than purine de novo synthesis. Blood uric acid levels were related to the intracellular adenylate pool (ATP + ADP + AMP), and reduced levels of this pool result in lower uric acid levels. XOR inhibitors are related to extracellular hypoxanthine levels available for uptake into the purine salvage pathway by inhibiting the oxidation of hypoxanthine to xanthine and uric acid in various organs where XOR is present and can prevent further decreases in the intracellular adenylate pool under stress. Furthermore, adding precursors of the pentose phosphate pathway enhanced hypoxanthine uptake, indicating that purine salvage is activated by phosphoribosyl pyrophosphate replenishment. These findings resolve previous contradictions regarding XOR products and provide new insights into clinical studies. It is suggested that therapeutic strategies maximizing maintenance of intracellular adenylate levels may effectively treat pathological conditions associated with ischemia and energy depletion.
Collapse
Affiliation(s)
- Mai Sekine
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Science, The University of Tokyo, Bunkyo, Tokyo, Japan; Department of Pathophysiology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan.
| | - Megumi Fujiwara
- Department of Laboratory of Morphological Analysis, Nippon Medical School, Bunkyo, Tokyo, Japan
| | - Ken Okamoto
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Science, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Kimiyoshi Ichida
- Department of Pathophysiology, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Koji Nagata
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Science, The University of Tokyo, Bunkyo, Tokyo, Japan
| | - Russ Hille
- Department of Biochemistry, University of California, Riverside, California, USA
| | - Takeshi Nishino
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Science, The University of Tokyo, Bunkyo, Tokyo, Japan; Professor Emeritus, Nippon Medical School, Bunkyo, Tokyo, Japan; University of Tokyo Health Sciences, Tama, Tokyo, Japan.
| |
Collapse
|
6
|
Zhai RX, Yu H, Ma H, Liu TT, Zhong P. Progression of cognitive impairment in Parkinson's disease correlates with uric acid concentration. Front Neurol 2024; 15:1378334. [PMID: 38872819 PMCID: PMC11169608 DOI: 10.3389/fneur.2024.1378334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/16/2024] [Indexed: 06/15/2024] Open
Abstract
Introduction This study assessed the relationship between the progression of Parkinson's disease (PD) with cognitive impairment and changes in serum uric acid (UA) and homocysteine (Hcy) concentrations and explored the factors influencing PD with cognitive impairment. Methods The study randomly selected 74 patients with PD and evaluated their cognitive function using the Montreal Cognitive Assessment Scale (MoCA). Patients with PD were divided into two subgroups: those with and without cognitive impairment. PD severity was evaluated and graded using the Hoehn and Yahr (H-Y) scale. Another 60 middle-aged and older individuals without PD during the same period were selected as a control group. Blood UA and Hcy concentrations in each group were measured to assess the relationship between PD, cognitive impairment, and changes in UA and Hcy concentrations. Results The PD group with cognitive impairment had a lower UA concentration and higher Hcy concentration. The UA concentration was significantly higher in the early PD stages than in the middle and late stages (P<0.05). A significant negative relationship between MoCA scores and serum UA levels was found in patients with PD, whereas a positive relationship existed between MoCA scores and serum Hcy concentrations. Regression analysis showed that a higher UA concentration was an independent protective factor for PD with cognitive impairment, while a higher Hcy concentration was a risk factor (P<0.05). A serum UA concentration of 212.9 mmol/L and Hcy concentration of 13.35 mmol/L could distinguish between patients with PD with or without cognitive impairment with a sensitivity of 93.2% and specificity of 43.3%. Conclusion PD and cognitive impairment were associated with a decrease in UA concentration; the later the H-Y stage was, the lower the UA concentration was. The increase in Hcy concentration was related to PD and its cognitive impairment, whereas it is not significantly correlated with PD progression.
Collapse
Affiliation(s)
- Rui-Xue Zhai
- Department of Neurology, Suzhou Hospital Affiliated to Anhui Medical University, Suzhou, China
| | | | | | | | - Ping Zhong
- Department of Neurology, Suzhou Hospital Affiliated to Anhui Medical University, Suzhou, China
| |
Collapse
|
7
|
Fan Y, Ma J, Yang D, Li X, Liang K, She Z, Qi X, Shi X, Gu Q, Zheng J, Li D. Clinical findings of hyperechoic substantia nigra in patients with Parkinson's disease. Eur J Neurosci 2024; 59:2702-2714. [PMID: 38469656 DOI: 10.1111/ejn.16308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 01/06/2024] [Accepted: 02/19/2024] [Indexed: 03/13/2024]
Abstract
This study aims to analyse hyperechoic substantia nigra (HSN) characteristics and the correlation of HSN with clinical features and blood biomarkers in patients with Parkinson's disease (PD). Transcranial sonography (TCS) evaluations of the substantia nigra (SN) were performed in 40 healthy controls and 71 patients with PD, including patients with SN hyperechogenicity (SN+) and those with normal SN echogenicity (SN-). Evaluation of motor and non-motor symptoms was assessed by a series of rating scales. The uricase method was used to determine serum uric acid (UA) levels, and enzyme-linked immunosorbent assay (ELISA) was used to measure plasma interleukin (IL)-1β levels. TCS showed 92.50% specificity and 61.97% sensitivity in differentiating PD patients from controls. The area of SN+ contralateral to the side of initial motor symptoms (SNcontra) was larger than that ipsilateral to the side of initial motor symptoms (SNipsi). The PDSN+ group had lower Argentine Hyposmia Rating Scale (AHRS) scores and UA levels than the PDSN- group. Binary logistic regression analysis revealed that AHRS scores and UA levels could be independent predictors for HSN. The larger SN echogenic area (SNL) sizes positively correlated with plasma IL-1β levels in PD patients with SN+. The present study provides further evidence of the potential of SN echogenicity as an imaging biomarker for PD diagnosis. PD patients with HSN have more severe non-motor symptoms of hyposmia. HSN in PD patients is related to the mechanism of abnormal iron metabolism and microglial activation.
Collapse
Affiliation(s)
- Yongyan Fan
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou, China
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Jianjun Ma
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou, China
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China
- Department of Neurology, Henan University People's Hospital, Zhengzhou, China
| | - Dawei Yang
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou, China
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Xiaohuan Li
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou, China
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Keke Liang
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China
- Department of Neurology, Henan University People's Hospital, Zhengzhou, China
| | - Zonghan She
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou, China
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Xuelin Qi
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou, China
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Xiaoxue Shi
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou, China
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China
- Department of Neurology, Henan University People's Hospital, Zhengzhou, China
| | - Qi Gu
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou, China
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China
- Department of Neurology, Henan University People's Hospital, Zhengzhou, China
| | - Jinhua Zheng
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou, China
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China
- Department of Neurology, Henan University People's Hospital, Zhengzhou, China
| | - Dongsheng Li
- Department of Neurology, Zhengzhou University People's Hospital, Zhengzhou, China
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, China
- Department of Neurology, Henan University People's Hospital, Zhengzhou, China
| |
Collapse
|
8
|
Kato K, Kinoshita H, Kumagai G, Takekawa D, Nitobe Y, Asari T, Wada K, Kushikata T, Ishibashi Y, Hirota K. Association between preoperative neutrophil-lymphocyte ratio, uric acid, and postoperative delirium in elderly patients undergoing degenerative spine surgery. J Anesth 2024; 38:35-43. [PMID: 37898990 DOI: 10.1007/s00540-023-03273-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 10/04/2023] [Indexed: 10/31/2023]
Abstract
PURPOSE There are few reports regarding the association between the neutrophil-lymphocyte ratio (NLR), uric acid, and the development of postoperative delirium (POD) in patients who are undergoing spine surgeries. We investigated the associations between the NLR, uric acid as a natural antioxidant, and POD in elderly patients undergoing degenerative spine surgery. PATIENTS AND METHODS This was a single-center, observational, and retrospective study conducted in Japan. We enrolled 410 patients who underwent degenerative spine surgery. POD was diagnosed after the surgeries by psychiatrists, based on the 5th edition of the Diagnostic and Statistical Manual of Mental Disorders (DSM-V). We performed a multivariable logistic regression analysis to clarify whether the NLR and uric acid values were associated with the development of POD in the patients. RESULTS 129 of the 410 patients were excluded from the analysis. Of the 281 patients (137 females, 144 males), 32 patients (11.4%) were diagnosed with POD. The multivariable logistic regression analysis revealed that the preoperative uric acid level (adjusted odds ratio [aOR]: 0.67, 95% confidence interval [CI]: 0.49-0.90, p = 0.008) and age (aOR: 1.09, 95% CI: 1.02-1.16, p = 0.008) were significantly associated with POD. The preoperative NLR (aOR: 0.82, 95% CI: 0.60-1.13, p = 0.227) and antihyperuricemic medication (aOR: 0.97, 95% CI: 0.24-3.82, p = 0.959) were not significantly associated with POD. CONCLUSION Our results demonstrated that in elderly patients undergoing degenerative spine surgery, the preoperative NLR was not significantly associated with POD, but a lower preoperative uric acid value was an independent risk factor for developing POD. Uric acid could have a neuroprotective impact on POD in patients with degenerative spine diseases.
Collapse
Affiliation(s)
- Kodai Kato
- Department of Anesthesiology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan
| | - Hirotaka Kinoshita
- Department of Anesthesiology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan.
| | - Gentaro Kumagai
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan
| | - Daiki Takekawa
- Department of Anesthesiology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan
| | - Yohshiro Nitobe
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan
| | - Toru Asari
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan
| | - Kanichiro Wada
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan
| | - Tetsuya Kushikata
- Department of Anesthesiology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan
| | - Yasuyuki Ishibashi
- Department of Orthopedic Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan
| | - Kazuyoshi Hirota
- Department of Anesthesiology, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan
- Department of Perioperative Medicine for Community Healthcare, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan
- Department of Perioperative Stress Management, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan
| |
Collapse
|
9
|
Chang B, Ni C, Mei J, Xiong C, Chen P, Jiang M, Niu C. Relationship between serum uric acid levels and the outcome of STN-DBS in Parkinson's disease. Neurol Sci 2023; 44:3913-3917. [PMID: 37340228 DOI: 10.1007/s10072-023-06911-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 06/13/2023] [Indexed: 06/22/2023]
Abstract
BACKGROUND Uric acid is a natural antioxidant and it has been shown that low levels of uric acid may be a risk factor for the development of Parkinson's disease. We aimed to investigate the relationship between uric acid and improvement of motor symptoms in patients with Parkinson's disease after subthalamic nucleus deep brain stimulation. METHODS We analyzed the correlation between serum uric acid levels in 64 patients with Parkinson's disease and the rate of improvement of motor symptoms 2 years after subthalamic nucleus deep brain stimulation. RESULTS A non-linear correlation was observed between uric acid levels and the rate of motor symptom improvement after subthalamic nucleus deep brain stimulation, during both the drug-off and drug-on periods. CONCLUSIONS Uric acid is positively associated with the rate of motor symptom improvement in subthalamic nucleus deep brain stimulation within a certain range.
Collapse
Affiliation(s)
- Bowen Chang
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, People's Republic of China
- Anhui Province Key Laboratory of Brain Function and Brain Disease, Hefei, 230001, People's Republic of China
| | - Chen Ni
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, People's Republic of China
- Anhui Province Key Laboratory of Brain Function and Brain Disease, Hefei, 230001, People's Republic of China
| | - Jiaming Mei
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, People's Republic of China
- Anhui Province Key Laboratory of Brain Function and Brain Disease, Hefei, 230001, People's Republic of China
| | - Chi Xiong
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, People's Republic of China
- Anhui Province Key Laboratory of Brain Function and Brain Disease, Hefei, 230001, People's Republic of China
| | - Peng Chen
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, People's Republic of China
- Anhui Province Key Laboratory of Brain Function and Brain Disease, Hefei, 230001, People's Republic of China
| | - Manli Jiang
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, People's Republic of China
- Anhui Province Key Laboratory of Brain Function and Brain Disease, Hefei, 230001, People's Republic of China
| | - Chaoshi Niu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, People's Republic of China.
- Anhui Province Key Laboratory of Brain Function and Brain Disease, Hefei, 230001, People's Republic of China.
| |
Collapse
|
10
|
Zhang WZ. Uric acid en route to gout. Adv Clin Chem 2023; 116:209-275. [PMID: 37852720 DOI: 10.1016/bs.acc.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Gout and hyperuricemia (HU) have generated immense attention due to increased prevalence. Gout is a multifactorial metabolic and inflammatory disease that occurs when increased uric acid (UA) induce HU resulting in monosodium urate (MSU) crystal deposition in joints. However, gout pathogenesis does not always involve these events and HU does not always cause a gout flare. Treatment with UA-lowering therapeutics may not prevent or reduce the incidence of gout flare or gout-associated comorbidities. UA exhibits both pro- and anti-inflammation functions in gout pathogenesis. HU and gout share mechanistic and metabolic connections at a systematic level, as shown by studies on associated comorbidities. Recent studies on the interplay between UA, HU, MSU and gout as well as the development of HU and gout in association with metabolic syndromes, non-alcoholic fatty liver disease (NAFLD), and cardiovascular, renal and cerebrovascular diseases are discussed. This review examines current and potential therapeutic regimens and illuminates the journey from disrupted UA to gout.
Collapse
Affiliation(s)
- Wei-Zheng Zhang
- VIDRL, The Peter Doherty Institute, Melbourne, VIC, Australia.
| |
Collapse
|
11
|
Qamar MA, Rota S, Batzu L, Subramanian I, Falup-Pecurariu C, Titova N, Metta V, Murasan L, Odin P, Padmakumar C, Kukkle PL, Borgohain R, Kandadai RM, Goyal V, Chaudhuri KR. Chaudhuri's Dashboard of Vitals in Parkinson's syndrome: an unmet need underpinned by real life clinical tests. Front Neurol 2023; 14:1174698. [PMID: 37305739 PMCID: PMC10248458 DOI: 10.3389/fneur.2023.1174698] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/02/2023] [Indexed: 06/13/2023] Open
Abstract
We have recently published the notion of the "vitals" of Parkinson's, a conglomeration of signs and symptoms, largely nonmotor, that must not be missed and yet often not considered in neurological consultations, with considerable societal and personal detrimental consequences. This "dashboard," termed the Chaudhuri's vitals of Parkinson's, are summarized as 5 key vital symptoms or signs and comprise of (a) motor, (b) nonmotor, (c) visual, gut, and oral health, (d) bone health and falls, and finally (e) comorbidities, comedication, and dopamine agonist side effects, such as impulse control disorders. Additionally, not addressing the vitals also may reflect inadequate management strategies, leading to worsening quality of life and diminished wellness, a new concept for people with Parkinson's. In this paper, we discuss possible, simple to use, and clinically relevant tests that can be used to monitor the status of these vitals, so that these can be incorporated into clinical practice. We also use the term Parkinson's syndrome to describe Parkinson's disease, as the term "disease" is now abandoned in many countries, such as the U.K., reflecting the heterogeneity of Parkinson's, which is now considered by many as a syndrome.
Collapse
Affiliation(s)
- Mubasher A. Qamar
- Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, Division of Neuroscience, King’s College London, London, United Kingdom
- King’s College Hospital NHS Foundation Trust, London, United Kingdom
| | - Silvia Rota
- Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, Division of Neuroscience, King’s College London, London, United Kingdom
- King’s College Hospital NHS Foundation Trust, London, United Kingdom
| | - Lucia Batzu
- Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, Division of Neuroscience, King’s College London, London, United Kingdom
- King’s College Hospital NHS Foundation Trust, London, United Kingdom
| | - Indu Subramanian
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Parkinson’s Disease Research, Education and Clinical Centers, Greater Los Angeles Veterans Affairs Medical Center, Los Angeles, CA, United States
| | - Cristian Falup-Pecurariu
- Faculty of Medicine, Transilvania University of Braşov, Brașov, Romania
- Department of Neurology, County Clinic Hospital, Brașov, Romania
| | - Nataliya Titova
- Department of Neurology, Neurosurgery and Medical Genetics, Federal State Autonomous Educational Institution of Higher Education “N.I. Pirogov Russian National Research Medical University” of the Ministry of Health of the Russian Federation, Moscow, Russia
- Department of Neurodegenerative Diseases, Federal State Budgetary Institution “Federal Center of Brain Research and Neurotechnologies” of the Federal Medical Biological Agency, Moscow, Russia
| | - Vinod Metta
- Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, Division of Neuroscience, King’s College London, London, United Kingdom
- King’s College Hospital NHS Foundation Trust, London, United Kingdom
| | - Lulia Murasan
- Faculty of Medicine, Transilvania University of Braşov, Brașov, Romania
- Department of Neurology, County Clinic Hospital, Brașov, Romania
| | - Per Odin
- Department of Neurology, University Hospital, Lund, Sweden
| | | | - Prashanth L. Kukkle
- Center for Parkinson’s Disease and Movement Disorders, Manipal Hospital, Karnataka, India, Bangalore
- Parkinson’s Disease and Movement Disorders Clinic, Bangalore, Karnataka, India
| | - Rupam Borgohain
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Rukmini Mridula Kandadai
- Department of Neurology, Nizam’s Institute of Medical Sciences, Autonomous University, Hyderabad, India
| | - Vinay Goyal
- Neurology Department, Medanta, Gurugram, India
| | - Kallo Ray Chaudhuri
- Institute of Psychiatry, Psychology and Neuroscience, Department of Basic and Clinical Neuroscience, Division of Neuroscience, King’s College London, London, United Kingdom
- King’s College Hospital NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
12
|
Koponen M, Paakinaho A, Lin J, Hartikainen S, Tolppanen AM. Identification of Drugs Associated with Lower Risk of Parkinson's Disease Using a Systematic Screening Approach in a Nationwide Nested Case-Control Study. Clin Epidemiol 2022; 14:1217-1227. [PMID: 36325200 PMCID: PMC9620835 DOI: 10.2147/clep.s381289] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/12/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Drugs for other indications may be repurposable as disease-modifying drugs for Parkinson's disease (PD). A systematic hypothesis-free approach can enable identification of candidates for repurposing. We applied a hypothesis-free systematic approach to identify drugs associated with lower risk of PD to discover candidates with potential for repurposing as disease-modifying drugs for PD and to illustrate challenges in observational studies that simultaneously investigate multiple repurposing candidates. Methods The Finnish Parkinson's disease study (FINPARK), a nationwide nested case-control study, was randomized to screening (10,183 cases, 67,849 controls) and replication (10,184 cases, 67,754 controls) samples, including cases diagnosed in 1998-2015. After screening all univariable associations of register-derived exposure to individual-drug, group- and subgroup level since 1995 (exposure ≥3 years before outcome, threshold P = 0.1), different exposure periods were used in confounder-adjusted replication analyses. Results In screening stage, the group-level (antipsoriatics and antigout preparations) and subgroup-level (cicatrizants, topical antipsoriatics, antigout preparations and mydriatics and cycloplegics) associations were mainly due to individual drugs. Seven other drugs (eg methotrexate, drugs for chronic obstructive pulmonary disease, COPD and/or asthma) were associated with lower risk. Associations of antigout preparations and antipsoriatics were replicated. COPD/asthma drugs, methotrexate and diabetes drugs were studied in separate, indication-restricted designs. Discussion The results reflect the known risk factors and the implied role of the immune system in PD pathogenesis and spurious associations. They underline the importance of controlling for confounding by indication, which is challenging to apply to systematic screening.
Collapse
Affiliation(s)
- Marjaana Koponen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
- Kuopio Research Centre of Geriatric Care, University of Eastern Finland, Kuopio, Finland
- Center for Medicine Use and Safety, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Anne Paakinaho
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
- Kuopio Research Centre of Geriatric Care, University of Eastern Finland, Kuopio, Finland
| | - Julian Lin
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
- Kuopio Research Centre of Geriatric Care, University of Eastern Finland, Kuopio, Finland
| | - Sirpa Hartikainen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
- Kuopio Research Centre of Geriatric Care, University of Eastern Finland, Kuopio, Finland
| | - Anna-Maija Tolppanen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
- Kuopio Research Centre of Geriatric Care, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
13
|
Xu L, Lyu W, Wei P, Zheng Q, Li C, Zhang Z, Li J. Lower preoperative serum uric acid level may be a risk factor for postoperative delirium in older patients undergoing hip fracture surgery: a matched retrospective case-control study. BMC Anesthesiol 2022; 22:282. [PMID: 36071379 PMCID: PMC9450341 DOI: 10.1186/s12871-022-01824-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/26/2022] [Indexed: 11/11/2022] Open
Abstract
Background Postoperative delirium (POD) is a common complication after hip fracture surgery that is associated with various short- and long-term outcomes. The mechanism of POD may be associated with the oxidative stress process. Uric acid has been shown to provide a neuroprotective effect in various neurodegenerative diseases through its antioxidant properties. However, it is unclear whether lower preoperative serum uric acid levels are associated with the development of POD after hip fracture surgery. Therefore, this study assessed the association of lower preoperative uric acid levels in patients with POD during hospitalization. Methods This is a matched retrospective case-control study that included 96 older patients (≥65 y) who underwent hip fracture surgery. POD was diagnosed using the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition. Patients diagnosed with POD (cases) were matched 1:1 with patients without POD (controls) on the basis of age, sex, and anesthesia type. The relationship between preoperative uric acid and POD was analyzed by multivariable analysis. Results The POD and non-POD groups each had 48 patients. In the univariate analysis, lower log preoperative serum uric acid value, higher neutrophil-to-lymphocyte ratio, and cerebrovascular disease were more likely in patients with POD than in those with no POD. Multivariable conditional logistic regression analysis showed that lower log preoperative serum uric acid (adjusted odds ratio [aOR], 0.028; confidence interval [CI], 0.001–0.844; p = 0.040), higher neutrophil-to-lymphocyte ratio (aOR, 1.314; 95% CI, 1.053–1.638; p = 0.015), and increased surgery duration (aOR, 1.034; 95% CI, 1.004–1.065; p = 0.024) were associated with increased risk of POD. Conclusions Lower preoperative serum uric acid levels may be an independent risk factor for POD after adjustment for possible confounding factors. However, large prospective studies are needed to confirm this finding.
Collapse
Affiliation(s)
- Lin Xu
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266035, P.R. China.,Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, 250000, P.R. China
| | - Wenyuan Lyu
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266035, P.R. China
| | - Penghui Wei
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266035, P.R. China
| | - Qiang Zheng
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266035, P.R. China
| | - Chengwei Li
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266035, P.R. China.,Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, 250000, P.R. China
| | - Zheng Zhang
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266035, P.R. China.,Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, 250000, P.R. China
| | - Jianjun Li
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, 266035, P.R. China. .,Department of Anesthesiology, Qilu Hospital of Shandong University, Jinan, 250000, P.R. China.
| |
Collapse
|
14
|
Zhang LL, Zhang L, Dong J, Zhao Y, Wang XP. Factors Contributing to Malnutrition in Parkinson's Disease Patients With Freezing of Gait. Front Neurol 2022; 13:816315. [PMID: 35359625 PMCID: PMC8963416 DOI: 10.3389/fneur.2022.816315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/11/2022] [Indexed: 11/13/2022] Open
Abstract
Background and PurposeLittle is known about the nutritional status and clinical characteristics of patients with Parkinson's disease with freezing of gait (PDFOG). The purpose of this study was to describe the relationship between nutritional status and characteristics of patients with PDFOG.MethodsIn this cross-sectional study, 178 PDFOG patients were recruited and classified as nutritionally normal or at risk of malnutrition/already malnourished based on their Mini Nutritional Assessment (MNA) scores. Each participant underwent a structured questionnaire, physical examination and routine serum biochemical tests.ResultsWe found that 44.4 and 37.1% of PDFOG patients were malnourished [mini nutritional assessment (MNA) score <17] and at risk of malnutrition (17 ≤ MNA score ≤ 23.5), respectively. Compared to patients with normal nutrition, PDFOG patients with malnutrition and at risk of malnutrition had longer duration of Parkinson's disease (PD) and freezing of gait (FOG), more levodopa equivalent daily doses (LEDD), lower body mass index (BMI), more motor symptoms according to the Unified PD Rating Scale-III (UPDRS-III) and non-motor symptoms according to the PD Non-motor Symptoms Questionnaire (PD-NMS) (P < 0.05). Uric acid, albumin, prealbumin, and total cholesterol (TC) differed between the two groups (P < 0.05). High Hoehn and Yahr (H-Y) stage, high Freezing of Gait Questionnaire (FOGQ) scores, low TC and low uric acid were risk factors for malnutrition in patients with PDFOG.ConclusionOur results showed disease severity, motor symptoms, TC levels and uric acid levels were all associated with nutritional status in patients with PDFOG. This study suggest early discovery of the nutritional status of PDFOG patients is important.
Collapse
Affiliation(s)
- Li-Li Zhang
- Shanghai General Hospital of Nanjing Medical University, Shanghai, China
- Department of Geriatrics, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
- Department of Neurology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Liang Zhang
- Department of Geriatrics, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jingde Dong
- Department of Geriatrics, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Ying Zhao
- Department of Geriatrics, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xiao-Ping Wang
- Shanghai General Hospital of Nanjing Medical University, Shanghai, China
- *Correspondence: Xiao-Ping Wang
| |
Collapse
|
15
|
Serum Uric Acid Levels in Parkinson’s Disease: A Cross-Sectional Electronic Medical Record Database Study from a Tertiary Referral Centre in Romania. Medicina (B Aires) 2022; 58:medicina58020245. [PMID: 35208569 PMCID: PMC8877142 DOI: 10.3390/medicina58020245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/02/2022] [Accepted: 02/03/2022] [Indexed: 11/17/2022] Open
Abstract
Background and Objectives: Parkinson’s disease (PD) is a prevalent neurodegenerative condition responsible for progressive motor and non-motor symptoms. Currently, no prophylactic or disease-modifying interventions are available. Uric acid (UA) is a potent endogenous antioxidant, resulting from purine metabolism. It is responsible for about half of the antioxidant capacity of the plasma. Increasing evidence suggests that lower serum UA levels are associated with an increased risk of developing PD and with faster disease progression. Materials and Methods: We conducted an electronic medical record database study to investigate the associations between UA levels and different characteristics of PD. Results: Out of 274 datasets from distinct patients with PD, 49 complied with the predefined inclusion and exclusion criteria. Lower UA levels were significantly associated with the severity of parkinsonism according to the Hoehn and Yahr stage (rs = 0.488, p = 0.002), with the motor complications of long-term dopaminergic treatment (r = 0.333, p = 0.027), and with the presence of neurocognitive impairment (r = 0.346, p = 0.021). Conclusions: Oxidative stress is considered a key player in the etiopathogenesis of PD, therefore the involvement of lower UA levels in the development and progression of PD is plausible. Data on the potential therapeutic roles of elevating serum UA (e.g., by precursor administration or diet manipulation) are scarce, but considering the accumulating epidemiological evidence, the topic warrants further research.
Collapse
|