1
|
Schoen D, Deutsch S, Mehta J, Wang S, Kornak J, Starr P, Wang D, Ostrem J, Bledsoe I, Morrison M. Boundary Complexity of (Sub-) Cortical Areas Predict Deep Brain Stimulation Outcomes in Parkinson's Disease. RESEARCH SQUARE 2024:rs.3.rs-5537857. [PMID: 39711571 PMCID: PMC11661364 DOI: 10.21203/rs.3.rs-5537857/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
While deep brain stimulation (DBS) remains an effective therapy for Parkinson's disease (PD), sources of variance in patient outcomes are still not fully understood, underscoring a need for better prognostic criteria. Here we leveraged routinely collected T1-weighted (T1-w) magnetic resonance imaging (MRI) data to derive patient-specific measures of brain structure and evaluate their usefulness in predicting changes in PD medications in response to DBS. Preoperative T1-w MRI data from 231 patients with PD were used to extract regional measures of fractal dimension (FD), sensitive to the structural complexities of cortical and subcortical areas. FD was validated as a biomarker of Parkinson's disease (PD) progression through comparison of patients with PD and healthy controls (HCs). This analysis revealed significant group differences in FD across nine brain regions which supports its utility as a marker of PD. We evaluated the impact of adding imaging features (FD) to a clinical model that included demographics and clinical parameters-age, sex, total number and location of DBS electrodes, and preoperative motor response to levodopa. This model aimed to explain variance and predict changes in medication following DBS. Regression analysis revealed that inclusion of the FD of distributed brain areas correlated with post-DBS reductions in medication burden, explaining an additional 13.6% of outcome variance (R 2 =0.388) compared to clinical features alone (R 2 =0.252). Hypergraph-based classification learning tasks achieved an area under the receiver operating characteristic curve of 0.64 when predicting with clinical features alone, versus 0.76 when combining clinical and imaging features. These findings demonstrate that PD effects on brain morphology linked to disease progression influence DBS outcomes. The work also highlights FD as a potentially useful imaging biomarker to enhance DBS candidate selection criteria for optimized treatment planning.
Collapse
|
2
|
Chang B, Geng Z, Mei J, Wang Z, Chen P, Jiang Y, Niu C. Application of multimodal deep learning and multi-instance learning fusion techniques in predicting STN-DBS outcomes for Parkinson's disease patients. Neurotherapeutics 2024; 21:e00471. [PMID: 39419638 PMCID: PMC11585874 DOI: 10.1016/j.neurot.2024.e00471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 10/03/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024] Open
Abstract
Parkinson's Disease (PD) is a progressive neurodegenerative disorder with substantial impact on patients' quality of life. Subthalamic nucleus deep brain stimulation (STN-DBS) is an effective treatment for advanced PD, but patient responses vary, necessitating predictive models for personalized care. Recent advancements in medical imaging and machine learning offer opportunities to enhance predictive accuracy, particularly through deep learning and multi-instance learning (MIL) techniques. This retrospective study included 127 PD patients undergoing STN-DBS. Medical records and imaging data were collected, and patients were categorized based on treatment outcomes. Advanced segmentation models were trained for automated region of interest (ROI) delineation. A novel 2.5D deep learning approach incorporating multi-slice representation was developed to extract detailed ROI features. Multi-instance learning fusion techniques integrated predictions across multiple slices, combining radiomics and deep learning features to enhance model performance. Various machine learning algorithms were evaluated, and model robustness was assessed using cross-validation and hyperparameter optimization. The MIL model achieved an area under the curve (AUC) of 0.846 for predicting STN-DBS outcomes, surpassing the radiomics model's AUC of 0.825. Integration of MIL and radiomics features in the DLRad model further improved discriminative ability to an AUC of 0.871. Calibration tests showed good model reliability, and decision curve analysis demonstrated clinical utility, affirming the model's predictive advantage. This study demonstrates the efficacy of integrating MIL, radiomics, and deep learning techniques to predict STN-DBS outcomes in PD patients. The multimodal fusion approach enhances predictive accuracy, supporting personalized treatment planning and advancing patient care.
Collapse
Affiliation(s)
- Bowen Chang
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, PR China; Anhui Province Key Laboratory of Brain Function and Brain Disease, Hefei, Anhui Province, PR China
| | - Zhi Geng
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, PR China
| | - Jiaming Mei
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, PR China; Anhui Province Key Laboratory of Brain Function and Brain Disease, Hefei, Anhui Province, PR China
| | - Zhengyu Wang
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, PR China; Anhui Province Key Laboratory of Brain Function and Brain Disease, Hefei, Anhui Province, PR China
| | - Peng Chen
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, PR China; Anhui Province Key Laboratory of Brain Function and Brain Disease, Hefei, Anhui Province, PR China
| | - Yuge Jiang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Chinese Medicine, Anhui University of Chinese Medicine, Hefei, Anhui Province, PR China.
| | - Chaoshi Niu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui Province, PR China; Anhui Province Key Laboratory of Brain Function and Brain Disease, Hefei, Anhui Province, PR China.
| |
Collapse
|
3
|
Maccarrone G, Saporito G, Sucapane P, Rizi C, Bruno F, Catalucci A, Pistoia ML, Splendiani A, Ricci A, Di Cesare E, Rizzo M, Totaro R, Pistoia F. Gender disparity in access to advanced therapies for patients with Parkinson's disease: a retrospective real-word study. Front Neurol 2024; 15:1429251. [PMID: 39385822 PMCID: PMC11461232 DOI: 10.3389/fneur.2024.1429251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/10/2024] [Indexed: 10/12/2024] Open
Abstract
Background Gender differences in the access to advanced therapies for Parkinson's disease (PD) are poorly investigated. Objective The objective of this study was to investigate the presence of any gender disparity in the access to advanced therapies for PD. Design Retrospective study. Methods Data from patients with consistent access to the Parkinson's and Movement Disorder Center of L'Aquila over the last 10-year period were screened. Patients selected for advanced therapies were included. Results Out of 1,252 patients, 200 (mean age ± SD 71.02 ± 9.70; 72% males; median Hoen Yahr level: 3, minimum 1 maximum 5) were selected for advanced therapies: 133 for Magnetic Resonance guided Focused Ultrasound (MRgFUS) thalamotomy (mean age ± SD 70.0 ± 8.9; 77% males), 49 for Levodopa/Carbidopa Intestinal Gel (LCIG) infusion (mean age ± SD 74.3 ± 11.4; 59% males), 12 for Deep Brain Stimulation (DBS) (mean age ± SD 71.2 ± 6.3; 75% males), and 7 for Continuous Subcutaneous Apomorphine Infusion (CSAI) (mean age ± SD 69.7 ± 5.5; 43% males). No sex differences were found in relation to age (MRgFUS group: males vs. females 70.2 ± 8.9 vs. 70.8 ± 8.9, p-value = 0.809; LCIG group: males vs. females 73.5 ± 13.0 vs. 75.5 ± 8.5, p-value = 0.557; DBS group: males vs. females 77.2 ± 8.1 vs. 67.3 ± 8.6, p-value = 0.843; CSAI group: males vs. females 73.3 ± 4.0 vs. 67.0 ± 5.2, p-value = 0.144) and disease duration (MRgFUS group: males vs. females 8.3 ± 4.4 vs. 9.6 ± 6.7, p-value = 0.419; LCIG group: males vs. females 14.5 ± 5.81 vs. 17.3 ± 5.5; p-value = 0.205; DBS group: males vs. females 15.0 ± 9.6 vs. 15.5 ± 7.7, p-value = 0.796; CSAI group: males vs. females 11.7 ± 3.7 vs. 10.3 ± 3.7, p-value = 0.505). Conclusion The predominance of males is higher than that expected based on the higher prevalence of PD in men. Women are less confident in selecting advanced therapies during the natural progression of their disease. Factors accounting for this discrepancy deserve further investigation.
Collapse
Affiliation(s)
- Giuseppe Maccarrone
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Gennaro Saporito
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | | | - Chiara Rizi
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Federico Bruno
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | | | | | - Alessandra Splendiani
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Alessandro Ricci
- Department of Neurosurgery, San Salvatore Hospital, L’Aquila, Italy
| | - Ernesto Di Cesare
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
| | - Marina Rizzo
- Department of Neurology, Villa Sofia, Palermo, Italy
| | - Rocco Totaro
- Department of Neurology, San Salvatore Hospital, L’Aquila, Italy
| | - Francesca Pistoia
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, L’Aquila, Italy
- Department of Neurology, San Salvatore Hospital, L’Aquila, Italy
| |
Collapse
|
4
|
Zampogna A, Suppa A, Bove F, Cavallieri F, Castrioto A, Meoni S, Pelissier P, Schmitt E, Chabardes S, Fraix V, Moro E. Disentangling Bradykinesia and Rigidity in Parkinson's Disease: Evidence from Short- and Long-Term Subthalamic Nucleus Deep Brain Stimulation. Ann Neurol 2024; 96:234-246. [PMID: 38721781 DOI: 10.1002/ana.26961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/04/2024] [Accepted: 04/07/2024] [Indexed: 07/11/2024]
Abstract
OBJECTIVE Bradykinesia and rigidity are considered closely related motor signs in Parkinson disease (PD), but recent neurophysiological findings suggest distinct pathophysiological mechanisms. This study aims to examine and compare longitudinal changes in bradykinesia and rigidity in PD patients treated with bilateral subthalamic nucleus deep brain stimulation (STN-DBS). METHODS In this retrospective cohort study, the clinical progression of appendicular and axial bradykinesia and rigidity was assessed up to 15 years after STN-DBS in the best treatment conditions (ON medication and ON stimulation). The severity of bradykinesia and rigidity was examined using ad hoc composite scores from specific subitems of the Unified Parkinson's Disease Rating Scale motor part (UPDRS-III). Short- and long-term predictors of bradykinesia and rigidity were analyzed through linear regression analysis, considering various preoperative demographic and clinical data, including disease duration and severity, phenotype, motor and cognitive scores (eg, frontal score), and medication. RESULTS A total of 301 patients were examined before and 1 year after surgery. Among them, 101 and 56 individuals were also evaluated at 10-year and 15-year follow-ups, respectively. Bradykinesia significantly worsened after surgery, especially in appendicular segments (p < 0.001). Conversely, rigidity showed sustained benefit, with unchanged clinical scores compared to preoperative assessment (p > 0.05). Preoperative motor disability (eg, composite scores from the UPDRS-III) predicted short- and long-term outcomes for both bradykinesia and rigidity (p < 0.01). Executive dysfunction was specifically linked to bradykinesia but not to rigidity (p < 0.05). INTERPRETATION Bradykinesia and rigidity show long-term divergent progression in PD following STN-DBS and are associated with independent clinical factors, supporting the hypothesis of partially distinct pathophysiology. ANN NEUROL 2024;96:234-246.
Collapse
Affiliation(s)
- Alessandro Zampogna
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
- Grenoble Alpes University, Division of Neurology, Centre Hospitalier Universitaire de Grenoble, Grenoble Institute of Neuroscience, INSERM U1216, Grenoble, France
- IRCCS Neuromed Institute, Pozzilli, Italy
| | - Antonio Suppa
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
- IRCCS Neuromed Institute, Pozzilli, Italy
| | - Francesco Bove
- Neurology Unit, Department of Neuroscience, Sensory Organs and Chest, Fondazione Policlinico Universitario A. Gemelli IRCCS, Catholic University of the Sacred Heart, Rome, Italy
| | - Francesco Cavallieri
- Neurology Unit, Neuromotor and Rehabilitation Department, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Anna Castrioto
- Grenoble Alpes University, Division of Neurology, Centre Hospitalier Universitaire de Grenoble, Grenoble Institute of Neuroscience, INSERM U1216, Grenoble, France
| | - Sara Meoni
- Grenoble Alpes University, Division of Neurology, Centre Hospitalier Universitaire de Grenoble, Grenoble Institute of Neuroscience, INSERM U1216, Grenoble, France
| | - Pierre Pelissier
- Grenoble Alpes University, Division of Neurology, Centre Hospitalier Universitaire de Grenoble, Grenoble Institute of Neuroscience, INSERM U1216, Grenoble, France
| | - Emmanuelle Schmitt
- Grenoble Alpes University, Division of Neurology, Centre Hospitalier Universitaire de Grenoble, Grenoble Institute of Neuroscience, INSERM U1216, Grenoble, France
| | - Stephan Chabardes
- Division of Neurosurgery, Grenoble Alpes University, Centre Hospitalier Universitaire de Grenoble, Grenoble, France
| | - Valerie Fraix
- Grenoble Alpes University, Division of Neurology, Centre Hospitalier Universitaire de Grenoble, Grenoble Institute of Neuroscience, INSERM U1216, Grenoble, France
| | - Elena Moro
- Grenoble Alpes University, Division of Neurology, Centre Hospitalier Universitaire de Grenoble, Grenoble Institute of Neuroscience, INSERM U1216, Grenoble, France
| |
Collapse
|
5
|
Mar-Barrutia L, Ibarrondo O, Mar J, Real E, Segalàs C, Bertolín S, Aparicio MA, Plans G, Menchón JM, Alonso P. Sex differences in clinical response to deep brain stimulation in resistant obsessive-compulsive disorder. SPANISH JOURNAL OF PSYCHIATRY AND MENTAL HEALTH 2024:S2950-2853(24)00013-9. [PMID: 38331320 DOI: 10.1016/j.sjpmh.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
INTRODUCTION Deep brain stimulation (DBS) is an effective alternative to treat severe refractory obsessive-compulsive disorder (OCD), although little is known on factors predicting response. The objective of this study was to explore potential sex differences in the pattern of response to DBS in OCD patients. METHODS We conducted a prospective observational study in 25 patients with severe resistant OCD. Response to treatment was defined as a ≥35% reduction in Yale-Brown Obsessive Compulsive Scale (Y-BOCS) score. Logistic regression models were calculated to measure the likelihood of response at short and long-term follow-up by sex as measured by Y-BOCS score. Similar analyses were carried out to study changes in depressive symptomatology assessed with the Hamilton Depression Rating Scale (HDRS). Additionally, effect sizes were calculated to assess clinical significance. RESULTS We did not observe significant clinical differences between men and women prior to DBS implantation, nor in the response after one year of stimulation. At long-term follow-up, 76.9% of men could be considered responders to DBS versus only 33.3% of women. The final response odds ratio in men was 10.05 with significant confidence intervals (88.90-1.14). No other predictors of response were identified. The sex difference in Y-BOCS reduction was clinically significant, with an effect size of 3.2. The main limitation was the small sample size. CONCLUSIONS Our results suggest that gender could influence the long-term response to DBS in OCD, a finding that needs to be confirmed in new studies given the paucity of results on predictors of response to DBS.
Collapse
Affiliation(s)
- Lorea Mar-Barrutia
- OCD Clinical and Research Unit, Department of Psychiatry, Bellvitge Hospital, Barcelona, Spain; Osakidetza Basque Health Service, Araba University Hospital, Department of Psychiatry, Vitoria-Gasteiz, Spain; Bioaraba Health Research Institute, Vitoria-Gasteiz, Spain
| | - Oliver Ibarrondo
- Osakidetza Basque Health Service, Debagoiena Integrated Health Organisation, Research Unit, Arrasate-Mondragón, Spain; Biodonostia Health Research Institute, Donostia-San Sebastián, Spain
| | - Javier Mar
- Osakidetza Basque Health Service, Debagoiena Integrated Health Organisation, Research Unit, Arrasate-Mondragón, Spain; Biodonostia Health Research Institute, Donostia-San Sebastián, Spain; Kronikgune Institute for Health Services Research, Barakaldo, Spain
| | - Eva Real
- OCD Clinical and Research Unit, Department of Psychiatry, Bellvitge Hospital, Barcelona, Spain; Bellvitge Biomedical Research Institute-IDIBELL, Barcelona, Spain; CIBERSAM (Centro de Investigación en Red de Salud Mental), Carlos III Health Institute, Madrid, Spain
| | - Cinto Segalàs
- OCD Clinical and Research Unit, Department of Psychiatry, Bellvitge Hospital, Barcelona, Spain; Bellvitge Biomedical Research Institute-IDIBELL, Barcelona, Spain; CIBERSAM (Centro de Investigación en Red de Salud Mental), Carlos III Health Institute, Madrid, Spain; Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Spain
| | - Sara Bertolín
- OCD Clinical and Research Unit, Department of Psychiatry, Bellvitge Hospital, Barcelona, Spain; Bellvitge Biomedical Research Institute-IDIBELL, Barcelona, Spain; CIBERSAM (Centro de Investigación en Red de Salud Mental), Carlos III Health Institute, Madrid, Spain
| | | | - Gerard Plans
- Department of Neurosurgery, Hospital de Bellvitge, Barcelona, Spain
| | - José Manuel Menchón
- OCD Clinical and Research Unit, Department of Psychiatry, Bellvitge Hospital, Barcelona, Spain; Bellvitge Biomedical Research Institute-IDIBELL, Barcelona, Spain; CIBERSAM (Centro de Investigación en Red de Salud Mental), Carlos III Health Institute, Madrid, Spain; Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Spain
| | - Pino Alonso
- OCD Clinical and Research Unit, Department of Psychiatry, Bellvitge Hospital, Barcelona, Spain; Bellvitge Biomedical Research Institute-IDIBELL, Barcelona, Spain; CIBERSAM (Centro de Investigación en Red de Salud Mental), Carlos III Health Institute, Madrid, Spain; Department of Clinical Sciences, Faculty of Medicine, University of Barcelona, Spain.
| |
Collapse
|
6
|
Somma T, Bove I, Vitulli F, Solari D, Bocchino A, Palmiero C, Scala MR, Zoia C, Cappabianca P, Esposito F. Gender gap in deep brain stimulation for Parkinson's disease: preliminary results of a retrospective study. Neurosurg Rev 2024; 47:63. [PMID: 38263479 PMCID: PMC10806036 DOI: 10.1007/s10143-024-02290-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 01/25/2024]
Abstract
Subthalamic nucleus deep brain stimulation (STN-DBS) is an effective treatment of PD for both women and men. However, discussions have been reported about the impact of STN-DBS surgery in PD. The aim of our study is to identify differences between men and women in terms of pre- and post-DBS symptoms and try to explain the possible causes. In the current study, we evaluated the gender impact on STN-DBS in PD at the Department of Neurosurgery of University of Naples "Federico II" from 2013 to 2021. Motor and non-motor symptoms were evaluated. To compare the data before and after surgery and between the genders, Wilcoxon-Mann-Whitney tests were performed. A total of 43 patients with PD were included; of them, 17 (39%) were female. Baseline evaluation revealed no gender differences in the age of onset (p = 0.87). Not significant differences were noted in the Unified Parkinson's Disease Rating Scale (UPDRS) pre-surgery score, but if we consider UPDRS subscores of motor examination, significant clinical improvement was reported in both male and female in terms of UPDRS pre- and post-surgery (p < 0.001). STN-DBS is a highly effective treatment for motor and non-motor symptoms of PD for both women and men but our study hints towards gender-specific outcomes in motor domains. Improving our knowledge in this field can allow us to implement strategies to identify new directions in the development of an adequate treatment of PD in terms of surgical intervention and in consideration of the gender.
Collapse
Affiliation(s)
- Teresa Somma
- Department of Neurological Sciences, Division of Neurosurgery, Università Degli Studi Di Napoli Federico II, Naples, Italy
| | - Ilaria Bove
- Department of Neurological Sciences, Division of Neurosurgery, Università Degli Studi Di Napoli Federico II, Naples, Italy.
| | - Francesca Vitulli
- Department of Neurological Sciences, Division of Neurosurgery, Università Degli Studi Di Napoli Federico II, Naples, Italy
| | - Domenico Solari
- Department of Neurological Sciences, Division of Neurosurgery, Università Degli Studi Di Napoli Federico II, Naples, Italy
| | - Andrea Bocchino
- Department of Neurological Sciences, Division of Neurosurgery, Università Degli Studi Di Napoli Federico II, Naples, Italy
| | - Carmela Palmiero
- Department of Neurological Sciences, Division of Neurosurgery, Università Degli Studi Di Napoli Federico II, Naples, Italy
| | - Maria Rosaria Scala
- Department of Neurological Sciences, Division of Neurosurgery, Università Degli Studi Di Napoli Federico II, Naples, Italy
| | - Cesare Zoia
- UOC Neurochirurgia, Ospedale Moriggia Pelascini, Gravedona Ed Uniti, Italy
| | - Paolo Cappabianca
- Department of Neurological Sciences, Division of Neurosurgery, Università Degli Studi Di Napoli Federico II, Naples, Italy
| | - Felice Esposito
- Department of Neurological Sciences, Division of Neurosurgery, Università Degli Studi Di Napoli Federico II, Naples, Italy
| |
Collapse
|
7
|
Hong J, Xie H, Chen Y, Liu D, Wang T, Xiong K, Mao Z. Effects of STN-DBS on cognition and mood in young-onset Parkinson's disease: a two-year follow-up. Front Aging Neurosci 2024; 15:1177889. [PMID: 38292047 PMCID: PMC10824910 DOI: 10.3389/fnagi.2023.1177889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 12/26/2023] [Indexed: 02/01/2024] Open
Abstract
Background The effects of subthalamic nucleus deep brain stimulation (STN-DBS) on the cognition and mood of patients with PD are still not uniformly concluded, and young-onset Parkinson's disease (YOPD) is even less explored. Objective To observe the effectiveness of STN-DBS on the cognition and mood of YOPD patients. Methods A total of 27 subjects, with a mean age at onset of 39.48 ± 6.24 and age at surgery for STN-DBS of 48.44 ± 4.85, were followed up preoperatively and for 2 years postoperatively. Using the Unified Parkinson disease rating scale (UPDRS), H&Y(Hoehn and Yahr stage), 39-Item Parkinson's Disease Questionnaire (PDQ-39), Mini-mental state examination (MMSE), Montreal Cognitive Assessment (MoCA), Hamilton depression scale (HAMD), Hamilton anxiety scale (HAMA) to assess motor, cognition, and mood. Results At the 2-year follow-up after STN-DBS, YOPD patients showed significant improvements in motor and quality of life (UPDRS III: p < 0.001, PDQ-39: p < 0.001); overall cognition was not significantly different from preoperative (MMSE: p = 0.275, MoCA: p = 0.913), although language function was significantly impaired compared to preoperative (MMSE: p = 0.004, MoCA: p = 0.009); depression and anxiety symptoms also improved significantly (HAMD: p < 0.001, HAMA: p < 0.001) and the depression score correlated significantly with motor (preoperative: r = 0.493, p = 0.009), disease duration (preoperative: r = 0.519, p = 0.006; postoperative: r = 0.406, p = 0.036) and H&Y (preoperative: r = 0.430, p = 0.025; postoperative: r = 0.387, p = 0.046); total anxiety scores were also significantly correlated with motor (preoperative: r = 0.553, p = 0.003; postoperative: r = 0.444, p = 0.020), disease duration (preoperative: r = 0.417, p = 0.031), PDQ-39 (preoperative: r = 0.464, p = 0.015) and H&Y (preoperative: r = 0.440, p = 0.022; postoperative: r = 0.526, p = 0.005). Conclusion STN-DBS is a safe and effective treatment for YOPD. The mood improved significantly, and overall cognition was not impaired, were only verbal fluency decreased but did not affect the improvement in quality of life.
Collapse
Affiliation(s)
- Jun Hong
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
- Department of Neurosurgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Huimin Xie
- Department of Neurosurgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Yuhua Chen
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Di Liu
- Department of Neurosurgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Tianyu Wang
- Department of Neurosurgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
- Hebei Key Laboratory of Nerve Injury and Repair, Chengde Medical University, Chengde, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, College of Emergency and Trauma, Hainan Medical University, Haikou, China
- Hunan Key Laboratory of Ophthalmology, Central South University, Changsha, China
| | - Zhiqi Mao
- Department of Neurosurgery, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
8
|
Hendriks M, Vinke RS, Georgiev D. Gender discrepancies and differences in motor and non-motor symptoms, cognition, and psychological outcomes in the treatment of Parkinson's disease with subthalamic deep brain stimulation. Front Neurol 2024; 14:1257781. [PMID: 38259647 PMCID: PMC10800523 DOI: 10.3389/fneur.2023.1257781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Available data suggest that there may be gender differences in the effect of STN-DBS in the treatment of Parkinson's disease (PD). The aim of this study was to review data on gender discrepancies and gender differences in clinical outcomes in PD patients treated with deep brain stimulation of the subthalamic nucleus (STN-DBS). Included were original studies that specifically examined gender discrepancies or gender differences in PD patients with STN-DBS. Men receive more DBS than women, for various indications. The decision-making process for DBS in women compared to men is more influenced by personal preferences and external factors. Motor symptoms improve in both genders, but bradykinesia improves more in men. The postoperative reduction of the levodopa equivalent daily dose seems to be more pronounced in men. Men show more cognitive deterioration and less improvement than women after STN-DBS. Women show more depressive symptoms before surgery, but they improve similarly to men. Men show more improvement in impulsivity and less decrease in impulsive behaviour symptoms than women. Anxiety and personality traits remain unchanged in both genders. Voice quality improves more in men and deteriorates less often than in women. Men gain fat-free mass and fat mass, but women only gain fat mass. Regarding sexual function the evidence is inconsistent. More urinary symptoms improve in women than in men. Pain and restless leg syndrome seems to improve more in men. Regarding quality of life, the evidence seems to be inconsistent, and activities of daily living seems to improve in both genders. Better prospective controlled studies, focusing directly on gender differences in PD patients treated with STN-DBS, are needed to better explain gender differences in STN-DBS for PD.
Collapse
Affiliation(s)
- Martijn Hendriks
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Donders Institute for Brain, Cognition and Behaviour, Department of Neurosurgery, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Ruben Saman Vinke
- Donders Institute for Brain, Cognition and Behaviour, Department of Neurosurgery, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Dejan Georgiev
- Department of Neurology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Laboratory for Artificial Intelligence, Faculty of Computer and Information Science, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
9
|
Houle N, Feaster T, Mira A, Meeks K, Stepp CE. Sex Differences in the Speech of Persons With and Without Parkinson's Disease. AMERICAN JOURNAL OF SPEECH-LANGUAGE PATHOLOGY 2024; 33:96-116. [PMID: 37889201 PMCID: PMC11000784 DOI: 10.1044/2023_ajslp-22-00350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/24/2023] [Accepted: 08/30/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND Sex differences are apparent in the prevalence and the clinical presentation of Parkinson's disease (PD), but their effects on speech have been less studied. METHOD Speech acoustics of persons with (34 females and 34 males) and without (age- and sex-matched) PD were examined, assessing the effects of PD diagnosis and sex on ratings of dysarthria severity and acoustic measures of phonation (fundamental frequency standard deviation, smoothed cepstral peak prominence), speech rate (net syllables per second, percent pause ratio), and articulation (articulatory-acoustic vowel space, release burst precision). RESULTS Most measures were affected by PD (dysarthria severity, fundamental frequency standard deviation) and sex (smoothed cepstral peak prominence, net syllables per second, percent pause ratio, articulatory-acoustic vowel space), but without interactions between them. Release burst precision was differentially affected by sex in PD. Relative to those without PD, persons with PD produced fewer plosives with a single burst: females more frequently produced multiple bursts, whereas males more frequently produced no burst at all. CONCLUSIONS Most metrics did not indicate that speech production is differentially affected by sex in PD. Sex was, however, associated with disparate effects on release burst precision in PD, which deserves further study. SUPPLEMENTAL MATERIAL https://doi.org/10.23641/asha.24388666.
Collapse
Affiliation(s)
- Nichole Houle
- Department of Speech, Language, and Hearing Sciences, Boston University, MA
| | - Taylor Feaster
- Department of Speech, Language, and Hearing Sciences, Boston University, MA
| | - Amna Mira
- Department of Speech, Language, and Hearing Sciences, Boston University, MA
- College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Jeddah, Saudi Arabia
- King Abdullah International Medical Research Center, Jeddah, Saudi Arabia
| | - Kirsten Meeks
- Department of Speech, Language, and Hearing Sciences, Boston University, MA
| | - Cara E. Stepp
- Department of Speech, Language, and Hearing Sciences, Boston University, MA
- Department of Biomedical Engineering, Boston University, MA
- Department of Otolaryngology–Head & Neck Surgery, Boston University School of Medicine, MA
| |
Collapse
|
10
|
Mainardi M, Ciprietti D, Pilleri M, Bonato G, Weis L, Cianci V, Biundo R, Ferreri F, Piacentino M, Landi A, Guerra A, Antonini A. Deep brain stimulation of globus pallidus internus and subthalamic nucleus in Parkinson's disease: a multicenter, retrospective study of efficacy and safety. Neurol Sci 2024; 45:177-185. [PMID: 37555874 PMCID: PMC10761504 DOI: 10.1007/s10072-023-06999-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 07/11/2023] [Indexed: 08/10/2023]
Abstract
BACKGROUND Deep brain stimulation (DBS) is an established therapeutic option in advanced Parkinson's disease (PD). Literature data and recent guidelines remain inconclusive about the best choice as a target between the subthalamic nucleus (STN) and the globus pallidus internus (GPi). MATERIALS AND METHODS We retrospectively reviewed the clinical efficacy outcomes of 48 DBS-implanted patients (33 STN-DBS and 15 GPi-DBS) at a short- (<1 year from the surgery) and long-term (2-5 years) follow-up. Also, clinical safety outcomes, including postoperative surgical complications and severe side effects, were collected. RESULTS We found no difference between STN-DBS and GPi-DBS in improving motor symptoms at short-term evaluation. However, STN-DBS achieved a more prominent reduction in oral therapy (L-DOPA equivalent daily dose, P = .02). By contrast, GPi-DBS was superior in ameliorating motor fluctuations and dyskinesia (MDS-UPDRS IV, P < .001) as well as motor experiences of daily living (MDS-UPDRS II, P = .03). The greater efficacy of GPi-DBS on motor fluctuations and experiences of daily living was also present at the long-term follow-up. We observed five serious adverse events, including two suicides, all among STN-DBS patients. CONCLUSION Both STN-DBS and GPi-DBS are effective in improving motor symptoms severity and complications, but GPi-DBS has a greater impact on motor fluctuations and motor experiences of daily living. These results suggest that the two targets should be considered equivalent in motor efficacy, with GPi-DBS as a valuable option in patients with prominent motor complications. The occurrence of suicides in STN-treated patients claims further attention in target selection.
Collapse
Affiliation(s)
- Michele Mainardi
- Parkinson and Movement Disorders Unit, Study Center for Neurodegeneration (CESNE), Department of Neuroscience, University of Padua, Via Giustiniani 2, 35128, Padua, Italy
| | - Dario Ciprietti
- Parkinson and Movement Disorders Unit, Study Center for Neurodegeneration (CESNE), Department of Neuroscience, University of Padua, Via Giustiniani 2, 35128, Padua, Italy
| | - Manuela Pilleri
- Service of Neurology, Villa Margherita-Santo Stefano Private Hospital, Arcugnano, Italy
| | - Giulia Bonato
- Parkinson and Movement Disorders Unit, Study Center for Neurodegeneration (CESNE), Department of Neuroscience, University of Padua, Via Giustiniani 2, 35128, Padua, Italy
| | - Luca Weis
- Parkinson and Movement Disorders Unit, Study Center for Neurodegeneration (CESNE), Department of Neuroscience, University of Padua, Via Giustiniani 2, 35128, Padua, Italy
| | - Valeria Cianci
- Parkinson and Movement Disorders Unit, Study Center for Neurodegeneration (CESNE), Department of Neuroscience, University of Padua, Via Giustiniani 2, 35128, Padua, Italy
| | - Roberta Biundo
- Parkinson and Movement Disorders Unit, Study Center for Neurodegeneration (CESNE), Department of Neuroscience, University of Padua, Via Giustiniani 2, 35128, Padua, Italy
- Department of General Psychology, University of Padua, Via Giustiniani 2, 35128, Padua, Italy
| | - Florinda Ferreri
- Unit of Neurology, Unit of Clinical Neurophysiology, Department of Neuroscience, University of Padova, 35128, Padova, Italy
| | - Massimo Piacentino
- Department of Neurosurgery, AULSS 8 Berica Ospedale San Bortolo, Viale Rodolfi, 37 36100, Vicenza, Italy
| | - Andrea Landi
- Academic Neurosurgery, Department of Neurosciences, University of Padova, 35128, Padova, Italy
| | - Andrea Guerra
- Parkinson and Movement Disorders Unit, Study Center for Neurodegeneration (CESNE), Department of Neuroscience, University of Padua, Via Giustiniani 2, 35128, Padua, Italy
| | - Angelo Antonini
- Parkinson and Movement Disorders Unit, Study Center for Neurodegeneration (CESNE), Department of Neuroscience, University of Padua, Via Giustiniani 2, 35128, Padua, Italy.
| |
Collapse
|
11
|
Raheel K, Deegan G, Di Giulio I, Cash D, Ilic K, Gnoni V, Chaudhuri KR, Drakatos P, Moran R, Rosenzweig I. Sex differences in alpha-synucleinopathies: a systematic review. Front Neurol 2023; 14:1204104. [PMID: 37545736 PMCID: PMC10398394 DOI: 10.3389/fneur.2023.1204104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/13/2023] [Indexed: 08/08/2023] Open
Abstract
Background Past research indicates a higher prevalence, incidence, and severe clinical manifestations of alpha-synucleinopathies in men, leading to a suggestion of neuroprotective properties of female sex hormones (especially estrogen). The potential pathomechanisms of any such effect on alpha-synucleinopathies, however, are far from understood. With that aim, we undertook to systematically review, and to critically assess, contemporary evidence on sex and gender differences in alpha-synucleinopathies using a bench-to-bedside approach. Methods In this systematic review, studies investigating sex and gender differences in alpha-synucleinopathies (Rapid Eye Movement (REM) Behavior Disorder (RBD), Parkinson's Disease (PD), Dementia with Lewy Bodies (DLB), Multiple System Atrophy (MSA)) from 2012 to 2022 were identified using electronic database searches of PubMed, Embase and Ovid. Results One hundred sixty-two studies were included; 5 RBD, 6 MSA, 20 DLB and 131 PD studies. Overall, there is conclusive evidence to suggest sex-and gender-specific manifestation in demographics, biomarkers, genetics, clinical features, interventions, and quality of life in alpha-synucleinopathies. Only limited data exists on the effects of distinct sex hormones, with majority of studies concentrating on estrogen and its speculated neuroprotective effects. Conclusion Future studies disentangling the underlying sex-specific mechanisms of alpha-synucleinopathies are urgently needed in order to enable novel sex-specific therapeutics.
Collapse
Affiliation(s)
- Kausar Raheel
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, United Kingdom
| | - Gemma Deegan
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, United Kingdom
- BRAIN, Imaging Centre, CNS, King’s College London, London, United Kingdom
| | - Irene Di Giulio
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, United Kingdom
- School of Basic and Medical Biosciences, Faculty of Life Science and Medicine, King’s College London, London, United Kingdom
| | - Diana Cash
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, United Kingdom
- BRAIN, Imaging Centre, CNS, King’s College London, London, United Kingdom
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, United Kingdom
| | - Katarina Ilic
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, United Kingdom
- BRAIN, Imaging Centre, CNS, King’s College London, London, United Kingdom
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, United Kingdom
| | - Valentina Gnoni
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, United Kingdom
- Center for Neurodegenerative Diseases and the Aging Brain, University of Bari Aldo Moro, Lecce, Italy
| | - K. Ray Chaudhuri
- Movement Disorders Unit, King’s College Hospital and Department of Clinical and Basic Neurosciences, Institute of Psychiatry, Psychology and Neuroscience and Parkinson Foundation Centre of Excellence, King’s College London, London, United Kingdom
| | - Panagis Drakatos
- School of Basic and Medical Biosciences, Faculty of Life Science and Medicine, King’s College London, London, United Kingdom
- Sleep Disorders Centre, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| | - Rosalyn Moran
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, United Kingdom
| | - Ivana Rosenzweig
- Sleep and Brain Plasticity Centre, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London, United Kingdom
- Sleep Disorders Centre, Guy’s and St Thomas’ NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
12
|
Nicoletti A, Baschi R, Cicero CE, Iacono S, Re VL, Luca A, Schirò G, Monastero R. Sex and gender differences in Alzheimer's disease, Parkinson's disease, and Amyotrophic Lateral Sclerosis: a narrative review. Mech Ageing Dev 2023; 212:111821. [PMID: 37127082 DOI: 10.1016/j.mad.2023.111821] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/03/2023]
Abstract
Neurodegenerative diseases (NDs), including Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS), exhibit high phenotypic variability and they are very common in the general population. These diseases are associated with poor prognosis and a significant burden on patients and their caregivers. Although increasing evidence suggests that biological sex is an important factor for the development and phenotypical expression of some NDs, the role of sex and gender in the diagnosis and prognosis of NDs has been poorly explored. Current knowledge relating to sex- and gender-related differences in the epidemiology, clinical features, biomarkers, and treatment of AD, PD, and ALS will be summarized in this narrative review. The cumulative evidence hitherto collected suggests that sex and gender are factors to be considered in explaining the heterogeneity of these NDs. Clarifying the role of sex and gender in AD, PD, and ALS is a key topic in precision medicine, which will facilitate sex-specific prevention and treatment strategies to be implemented in the near future.
Collapse
Affiliation(s)
- Alessandra Nicoletti
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 78, 95123, Catania, Italy.
| | - Roberta Baschi
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, Via La Loggia 1, 90129 Palermo, Italy
| | - Calogero Edoardo Cicero
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 78, 95123, Catania, Italy
| | - Salvatore Iacono
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, Via La Loggia 1, 90129 Palermo, Italy
| | - Vincenzina Lo Re
- Neurology Service, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS-ISMETT), Via Ernesto Tricomi 5, 90127 Palermo, Italy; Women's Brain Project, Guntershausen, Switzerland
| | - Antonina Luca
- Department of Medical, Surgical Sciences and Advanced Technologies "G.F. Ingrassia", University of Catania, Via Santa Sofia 78, 95123, Catania, Italy
| | - Giuseppe Schirò
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, Via La Loggia 1, 90129 Palermo, Italy
| | - Roberto Monastero
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, Via La Loggia 1, 90129 Palermo, Italy.
| |
Collapse
|
13
|
Sex Differences in Motor and Non-Motor Symptoms among Spanish Patients with Parkinson's Disease. J Clin Med 2023; 12:jcm12041329. [PMID: 36835866 PMCID: PMC9960095 DOI: 10.3390/jcm12041329] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND AND OBJECTIVE Sex plays a role in Parkinson's disease (PD) mechanisms. We analyzed sex difference manifestations among Spanish patients with PD. PATIENTS AND METHODS PD patients who were recruited from the Spanish cohort COPPADIS from January 2016 to November 2017 were included. A cross-sectional and a two-year follow-up analysis were conducted. Univariate analyses and general linear model repeated measure were used. RESULTS At baseline, data from 681 PD patients (mean age 62.54 ± 8.93) fit the criteria for analysis. Of them, 410 (60.2%) were males and 271 (39.8%) females. There were no differences between the groups in mean age (62.36 ± 8.73 vs. 62.8 ± 9.24; p = 0.297) or in the time from symptoms onset (5.66 ± 4.65 vs. 5.21 ± 4.11; p = 0.259). Symptoms such as depression (p < 0.0001), fatigue (p < 0.0001), and pain (p < 0.00001) were more frequent and/or severe in females, whereas other symptoms such as hypomimia (p < 0.0001), speech problems (p < 0.0001), rigidity (p < 0.0001), and hypersexuality (p < 0.0001) were more noted in males. Women received a lower levodopa equivalent daily dose (p = 0.002). Perception of quality of life was generally worse in females (PDQ-39, p = 0.002; EUROHIS-QOL8, p = 0.009). After the two-year follow-up, the NMS burden (Non-Motor Symptoms Scale total score) increased more significantly in males (p = 0.012) but the functional capacity (Schwab and England Activities of Daily Living Scale) was more impaired in females (p = 0.001). CONCLUSION The present study demonstrates that there are important sex differences in PD. Long-term prospective comparative studies are needed.
Collapse
|
14
|
Kübler D, Astalosch M, Gaus V, Krause P, de Almeida Marcelino AL, Schneider GH, Kühn A. Gender-specific outcomes of deep brain stimulation for Parkinson's disease - results from a single movement disorder center. Neurol Sci 2023; 44:1625-1631. [PMID: 36607479 PMCID: PMC10102088 DOI: 10.1007/s10072-023-06598-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 12/31/2022] [Indexed: 01/07/2023]
Abstract
INTRODUCTION AND GOAL The investigation of gender differences in treatment response is crucial for effective personalized therapies. With only 30%, women are underrepresented in trials for deep brain stimulation (DBS) in Parkinson's disease (PD). It is therefore important to evaluate gender-specific outcomes of DBS in PD in order to improve therapeutic counseling. METHODS We analyzed clinical outcome parameters of 203 patients with PD that underwent DBS surgery targeting the subthalamic nucleus (STN) at our movement disorder center. A total of 27.6% of patients were female and 72.4% male. Motor and non-motor scores were compared before and 1 year after DBS surgery (1y FU) using Wilcoxon signed-rank tests and gender specific outcomes were analyzed with chi-square tests. RESULTS At 1y FU, we found significant improvement in UPDRS II, UPDRS III (35.78 ± 36.14% MedOFF vs. StimON-MedOFF), UPDRS IV, depression (BDI-II), and health-related disability as (ADL) that showed no gender-specific differences. No significant change was revealed for UPDRS I, QUIP, and DemTect for the entire cohort. However, when analyzing both groups separately, only women improved in general cognition (plus 1.26 ± 3.03 DemTect points, p = 0.014*), whereas only men ameliorated in depression (minus 1.97 ± 6.92 BDI-II points, p = 0.002**) and impulsivity (minus 2.80 ± 7.27 QUIP points, p = 0.004**). Chi-square tests, however, revealed no significant differences between genders. CONCLUSION AND OUTLOOK STN-DBS is a highly effective treatment for motor and non-motor symptoms of PD for both women and men but our study hints towards gender-specific outcomes in non-motor-domains like cognition, depressive symptoms, and impulsivity. To explore this in more detail, larger cohorts need to be investigated in multicenter trials.
Collapse
Affiliation(s)
- Dorothee Kübler
- Movement Disorder and Neuromodulation Unit, Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203, Berlin, Germany.
| | - Melanie Astalosch
- Movement Disorder and Neuromodulation Unit, Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Verena Gaus
- Movement Disorder and Neuromodulation Unit, Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203, Berlin, Germany
- Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Patricia Krause
- Movement Disorder and Neuromodulation Unit, Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Ana Luísa de Almeida Marcelino
- Movement Disorder and Neuromodulation Unit, Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Gerd-Helge Schneider
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andrea Kühn
- Movement Disorder and Neuromodulation Unit, Department of Neurology and Experimental Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, 12203, Berlin, Germany
- Berlin Center for Advanced Neuroimaging, Bernstein Center for Computational Neuroscience, Berlin, Germany
- Exzellenzcluster NeuroCure, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin School of Mind and Brain, Humboldt - Universität Zu Berlin, Berlin, Germany
- Deutsches Zentrum Für Neurodegenerative Erkrankungen, Berlin, Germany
| |
Collapse
|
15
|
Sex Differences in Parkinson’s Disease: From Bench to Bedside. Brain Sci 2022; 12:brainsci12070917. [PMID: 35884724 PMCID: PMC9313069 DOI: 10.3390/brainsci12070917] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/08/2022] [Accepted: 07/09/2022] [Indexed: 02/01/2023] Open
Abstract
Background: Parkinson’s disease (PD) is the second most common neurodegenerative disorder after Alzheimer’s disease and gender differences have been described on several aspects of PD. In the present commentary, we aimed to collect and discuss the currently available evidence on gender differences in PD regarding biomarkers, genetic factors, motor and non-motor symptoms, therapeutic management (including pharmacological and surgical treatment) as well as preclinical studies. Methods: A systematic literature review was performed by searching the Pubmed and Scopus databases with the search strings “biomarkers”, “deep brain stimulation”, “female”, “gender”, “genetic”, “levodopa”, “men”, “male”, “motor symptoms”, “non-motor symptoms”, “Parkinson disease”, “sex”, “surgery”, and “women”. Results: The present review confirms the existence of differences between men and women in Parkinson Disease, pointing out new information regarding evidence from animal models, genetic factors, biomarkers, clinical features and pharmacological and surgical treatment. Conclusions: The overall goal is to acquire new informations about sex and gender differences in Parkinson Disease, in order to develop tailored intervetions.
Collapse
|
16
|
Deshpande N, Gibbs R, Ali R. Evaluation of DBS Timeline in Movement Disorders: A Comparison Between Genders. World Neurosurg 2022; 164:e256-e262. [PMID: 35490886 DOI: 10.1016/j.wneu.2022.04.092] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Deep brain stimulation (DBS) is a pivotal surgical treatment for movement disorders. However, men and women have had differing opinions and referral experiences related to DBS, leading us to assess whether a gender disparity exists in the interval from a movement disorder diagnosis to DBS usage. METHODS We performed a single-center, retrospective cohort study of 105 patients who had undergone DBS surgery for either Parkinson disease (PD) or essential tremor (ET). We compared gender differences in the median interval between the diagnosis date, DBS consultation date, and DBS surgery dates. Additionally, the patient demographics, baseline clinical characteristics, and DBS outcomes were compared between men and women. RESULTS We found no significant differences between genders in the interval from the diagnosis to DBS surgery for ET or PD. At the DBS consultation for ET, the women had had significantly greater disease severity compared with the men (P = 0.029). The baseline motor impairment without medication was similar between the men and women with PD. However, female patients with PD had experienced a significantly greater reduction compared with male patients in baseline motor impairment with medication versus without medication (P = 0.042). No minority populations were represented within the female ET and PD subgroups. CONCLUSIONS Our study detected no gender differences in the DBS implantation timeline but alluded to a gender-specific discrepancy in DBS referral for ET. The female patients did not have a shorter duration from the ET diagnosis to DBS, despite experiencing significantly greater baseline ET severity compared with their male counterparts. Furthermore, the women with ET more often used Medicaid insurance and were without minority representation.
Collapse
Affiliation(s)
- Nachiket Deshpande
- College of Human Medicine, Michigan State University, East Lansing, Michigan, USA.
| | - River Gibbs
- Office of Research and Education, Spectrum Health, Grand Rapids, Michigan, USA
| | - Rushna Ali
- Division of Neurosurgery, Spectrum Health, Grand Rapids, Michigan, USA
| |
Collapse
|