1
|
Muroya S. An insight into farm animal skeletal muscle metabolism based on a metabolomics approach. Meat Sci 2022; 195:108995. [DOI: 10.1016/j.meatsci.2022.108995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 01/10/2023]
|
2
|
Andersen JL, Gruschy-Knudsen T. Rapid switch-off of the human myosin heavy chain IIX gene after heavy load muscle contractions is sustained for at least four days. Scand J Med Sci Sports 2017; 28:371-380. [DOI: 10.1111/sms.12914] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2017] [Indexed: 12/19/2022]
Affiliation(s)
- J. L. Andersen
- Institute of Sports Medicine; Bispebjerg Hospital and Center for Healthy Aging; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| | - T. Gruschy-Knudsen
- Institute of Sports Medicine; Bispebjerg Hospital and Center for Healthy Aging; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
3
|
Abstract
Sarcopenia is an age-related geriatric syndrome which is characterized by the gradual loss of muscle mass, muscle strength, and muscle quality. There are a lot of neurologic insults on sarcopenia at various levels from the brain to the neuromuscular junctions (NMJs) to generate a volitional task. Dopaminergic downregulation, inadequate motor programming and motor coordination impairment lead to decline of supraspinal drive. Motor unit reorganization and inflammatory changes in motor neuron decrease conduction velocity and amplitude of compound muscle action potential. Furthermore, NMJ remodeling and age related neurophysiological alterations may contribute to neuromuscular impairment. Sarcopenia is an age-associated, lifelong process which links to multiple etiological factors. Although not all the causes are completely understood, we suggest that compromised nervous system function may be one of the important contributors to the sarcopenia.
Collapse
Affiliation(s)
- Young Nam Kwon
- Department of Neurology, College of Medicine, Kyung Hee University, Seoul, Korea
| | - Sung Sang Yoon
- Department of Neurology, College of Medicine, Kyung Hee University, Seoul, Korea
| |
Collapse
|
4
|
Güth R, Pinch M, Unguez GA. Mechanisms of muscle gene regulation in the electric organ of Sternopygus macrurus. ACTA ACUST UNITED AC 2014; 216:2469-77. [PMID: 23761472 DOI: 10.1242/jeb.082404] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Animals perform a remarkable diversity of movements through the coordinated mechanical contraction of skeletal muscle. This capacity for a wide range of movements is due to the presence of muscle cells with a very plastic phenotype that display many different biochemical, physiological and morphological properties. What factors influence the maintenance and plasticity of differentiated muscle fibers is a fundamental question in muscle biology. We have exploited the remarkable potential of skeletal muscle cells of the gymnotiform electric fish Sternopygus macrurus to trans-differentiate into electrocytes, the non-contractile electrogenic cells of the electric organ (EO), to investigate the mechanisms that regulate the skeletal muscle phenotype. In S. macrurus, mature electrocytes possess a phenotype that is intermediate between muscle and non-muscle cells. How some genes coding for muscle-specific proteins are downregulated while others are maintained, and novel genes are upregulated, is an intriguing problem in the control of skeletal muscle and EO phenotype. To date, the intracellular and extracellular factors that generate and maintain distinct patterns of gene expression in muscle and EO have not been defined. Expression studies in S. macrurus have started to shed light on the role that transcriptional and post-transcriptional events play in regulating specific muscle protein systems and the muscle phenotype of the EO. In addition, these findings also represent an important step toward identifying mechanisms that affect the maintenance and plasticity of the muscle cell phenotype for the evolution of highly specialized non-contractile tissues.
Collapse
Affiliation(s)
- Robert Güth
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
| | | | | |
Collapse
|
5
|
Kwan P. Sarcopenia: the gliogenic perspective. Mech Ageing Dev 2013; 134:349-55. [PMID: 23831860 DOI: 10.1016/j.mad.2013.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2012] [Revised: 06/20/2013] [Accepted: 06/22/2013] [Indexed: 12/15/2022]
Abstract
It has been approximately 25 years since Dr. Rosenberg first brought attention to sarcopenia. To date, this aging-associated condition is recognized as a chronic loss of muscle mass and is usually accompanied by dynapenia. Despite its poly-etiological factors, sarcopenia has a strong neurogenic component underlying this chrono-degeneration of muscle mass, as shown in recent studies. As it seems plausible to explain the origin of sarcopenia through a motor neuron degeneration model, the focus of sarcopenia research should combine neuroscience with the study of the original myocyte and satellite cells. Although a complete mechanism underlying the development of sarcopenia has yet to be elucidated, we propose that the primary trigger of sarcopenia could be gliogenic in origin based on the close relationship between the glia, neurons and non-neural cells, for example, the motor unit and its associated glia in both the central nervous system (CNS) and the peripheral nervous system (PNS). In addition to muscle cells, both of the neural cells are affected by aging.
Collapse
Affiliation(s)
- Ping Kwan
- ST013a, Department of Rehabilitation Sciences, Hong Kong Polytechnic University, Hong Kong.
| |
Collapse
|
6
|
Abstract
Sarcopenia is an aging-associated condition, which is currently characterized by the loss of muscle mass and muscle strength. However, there is no consensus regarding its characterization hitherto. As the world older adult population is on the rise, the impact of sarcopenia becomes greater. Due to the lack of effective treatments, sarcopenia is still a persisting problem among the global older adults and should not be overlooked. As a result, it is vital to investigate deeper into the mechanism underlying the pathogenesis of sarcopenia in order to develop more effective therapeutic interventions and to inscribe a more uniform characterization. The etiology of sarcopenia is currently found to be multifactorial, and most of the pharmacological researches are focused on the muscular factors in aging. Although the complete mechanism underlying the development of sarcopenia is still waiting to be elucidated, we propose in this article that the primary trigger of sarcopenia may be neurogenic in origin based on the intimate relationship between the nervous and muscular system, namely, the motor neuron and its underlying muscle fibers. Both of them are affected by the cellular environment and their physiological activity.
Collapse
|
7
|
Jorquera G, Altamirano F, Contreras-Ferrat A, Almarza G, Buvinic S, Jacquemond V, Jaimovich E, Casas M. Cav1.1 controls frequency-dependent events regulating adult skeletal muscle plasticity. J Cell Sci 2013; 126:1189-98. [PMID: 23321639 DOI: 10.1242/jcs.116855] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
An important pending question in neuromuscular biology is how skeletal muscle cells decipher the stimulation pattern coming from motoneurons to define their phenotype as slow or fast twitch muscle fibers. We have previously shown that voltage-gated L-type calcium channel (Cav1.1) acts as a voltage sensor for activation of inositol (1,4,5)-trisphosphate [Ins(1,4,5)P₃]-dependent Ca(2+) signals that regulates gene expression. ATP released by muscle cells after electrical stimulation through pannexin-1 channels plays a key role in this process. We show now that stimulation frequency determines both ATP release and Ins(1,4,5)P₃ production in adult skeletal muscle and that Cav1.1 and pannexin-1 colocalize in the transverse tubules. Both ATP release and increased Ins(1,4,5)P₃ was seen in flexor digitorum brevis fibers stimulated with 270 pulses at 20 Hz, but not at 90 Hz. 20 Hz stimulation induced transcriptional changes related to fast-to-slow muscle fiber phenotype transition that required ATP release. Addition of 30 µM ATP to fibers induced the same transcriptional changes observed after 20 Hz stimulation. Myotubes lacking the Cav1.1-α1 subunit released almost no ATP after electrical stimulation, showing that Cav1.1 has a central role in this process. In adult muscle fibers, ATP release and the transcriptional changes produced by 20 Hz stimulation were blocked by both the Cav1.1 antagonist nifedipine (25 µM) and by the Cav1.1 agonist (-)S-BayK 8644 (10 µM). We propose a new role for Cav1.1, independent of its calcium channel activity, in the activation of signaling pathways allowing muscle fibers to decipher the frequency of electrical stimulation and to activate specific transcriptional programs that define their phenotype.
Collapse
Affiliation(s)
- Gonzalo Jorquera
- Centro de Estudios Moleculares de Célula, ICBM, Facultad de Medicina, Universidad de Chile, Independencia 1027-8380453, Santiago, Chile
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Mravec B. The brain as a target for development of new class of drugs for the treatment of somatic diseases. Expert Opin Ther Targets 2012; 16:433-7. [DOI: 10.1517/14728222.2012.668532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
9
|
Toyoda K, Uchida K, Matsuki N, Sakai H, Kitagawa M, Saito M, Sasaki J, Nakayama H. Inflammatory Myopathy with Severe Tongue Atrophy in Pembroke Welsh Corgi Dogs. J Vet Diagn Invest 2010; 22:876-85. [DOI: 10.1177/104063871002200605] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A disease characterized by tongue and facial muscle atrophy has been recognized sporadically among Pembroke Welsh Corgi (PWC) dogs in Japan. The present study describes the pathologic findings of this canine syndrome. Histopathologic examinations were performed in 2 dogs, including a case of muscular biopsy. Identification and characterization of autoantibodies were attempted by fluorescent antibody test (FAT) and Western blot (WB) by using sera from 7 PWC dogs with typical clinical features, 6 PWC dogs with other clinical signs, and 2 from other breeds with polymyositis. Clinically, the 7 affected PWC dogs exhibited dysphagia with severe tongue atrophy, facial muscular atrophy, and occasional walking difficulty. Histopathologic examinations of the 2 dogs with clinical symptoms revealed moderate to severe inflammatory lesions characterized by lymphohistiocytic infiltration and muscular atrophy in the tongue and/or femoral muscles. The tongue lesions were very severe and accompanied by diffuse fatty infiltration. There were no major lesions in the nervous tissues examined. By FAT, an autoantibody against the cross striation of skeletal muscle was detected in sera from 5 affected PWC dogs. By using WB analysis, the autoantibodies recognized a 42-kDa molecule in striated muscle but not in the nervous tissues. All of the findings indicated that the unique disease of PWC dogs might be generalized inflammatory myopathy, whereas the detailed etiology concerning the dominant involvement of tongue muscles and the role of the autoantibody in the canine disease remain to be clarified.
Collapse
Affiliation(s)
| | | | | | - Hideo Sakai
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo; Isahaya Pet Clinic, Isahaya, Nagasaki, Japan
| | - Masato Kitagawa
- Laboratory Comprehensive Veterinary Clinical Studies, Department of Veterinary Medicine, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa, Japan
| | - Miyoko Saito
- Department of Veterinary Surgery, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
| | - Jun Sasaki
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo; Isahaya Pet Clinic, Isahaya, Nagasaki, Japan
- Department of Veterinary Pathology, Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan
| | | |
Collapse
|
10
|
Casas M, Figueroa R, Jorquera G, Escobar M, Molgó J, Jaimovich E. IP(3)-dependent, post-tetanic calcium transients induced by electrostimulation of adult skeletal muscle fibers. ACTA ACUST UNITED AC 2010; 136:455-67. [PMID: 20837675 PMCID: PMC2947059 DOI: 10.1085/jgp.200910397] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Tetanic electrical stimulation induces two separate calcium signals in rat skeletal myotubes, a fast one, dependent on Cav 1.1 or dihydropyridine receptors (DHPRs) and ryanodine receptors and related to contraction, and a slow signal, dependent on DHPR and inositol trisphosphate receptors (IP3Rs) and related to transcriptional events. We searched for slow calcium signals in adult muscle fibers using isolated adult flexor digitorum brevis fibers from 5–7-wk-old mice, loaded with fluo-3. When stimulated with trains of 0.3-ms pulses at various frequencies, cells responded with a fast calcium signal associated with muscle contraction, followed by a slower signal similar to one previously described in cultured myotubes. Nifedipine inhibited the slow signal more effectively than the fast one, suggesting a role for DHPR in its onset. The IP3R inhibitors Xestospongin B or C (5 µM) also inhibited it. The amplitude of post-tetanic calcium transients depends on both tetanus frequency and duration, having a maximum at 10–20 Hz. At this stimulation frequency, an increase of the slow isoform of troponin I mRNA was detected, while the fast isoform of this gene was inhibited. All three IP3R isoforms were present in adult muscle. IP3R-1 was differentially expressed in different types of muscle fibers, being higher in a subset of fast-type fibers. Interestingly, isolated fibers from the slow soleus muscle did not reveal the slow calcium signal induced by electrical stimulus. These results support the idea that IP3R-dependent slow calcium signals may be characteristic of distinct types of muscle fibers and may participate in the activation of specific transcriptional programs of slow and fast phenotype.
Collapse
Affiliation(s)
- Mariana Casas
- Centro de Estudios Moleculares de la Célula, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
11
|
NFAT isoforms control activity-dependent muscle fiber type specification. Proc Natl Acad Sci U S A 2009; 106:13335-40. [PMID: 19633193 DOI: 10.1073/pnas.0812911106] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The intracellular signals that convert fast and slow motor neuron activity into muscle fiber type specific transcriptional programs have only been partially defined. The calcium/calmodulin-dependent phosphatase calcineurin (Cn) has been shown to mediate the transcriptional effects of motor neuron activity, but precisely how 4 distinct muscle fiber types are composed and maintained in response to activity is largely unknown. Here, we show that 4 nuclear factor of activated T cell (NFAT) family members act coordinately downstream of Cn in the specification of muscle fiber types. We analyzed the role of NFAT family members in vivo by transient transfection in skeletal muscle using a loss-of-function approach by RNAi. Our results show that, depending on the applied activity pattern, different combinations of NFAT family members translocate to the nucleus contributing to the transcription of fiber type specific genes. We provide evidence that the transcription of slow and fast myosin heavy chain (MyHC) genes uses different combinations of NFAT family members, ranging from MyHC-slow, which uses all 4 NFAT isoforms, to MyHC-2B, which only uses NFATc4. Our data contribute to the elucidation of the mechanisms whereby activity can modulate the phenotype and performance of skeletal muscle.
Collapse
|
12
|
Kim JA, Laney C, Curry J, Unguez GA. Expression of myogenic regulatory factors in the muscle-derived electric organ of Sternopygus macrurus. ACTA ACUST UNITED AC 2008; 211:2172-84. [PMID: 18552307 DOI: 10.1242/jeb.016592] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In most groups of electric fish, the current-producing cells of electric organs (EOs) derive from striated muscle fibers but retain some phenotypic characteristics of their precursor muscle cells. Given the role of the MyoD family of myogenic regulatory factors (MRFs) in the transcriptional activation of the muscle program in vertebrates, we examined their expression in the electrocytes of the gymnotiform Sternopygus macrurus. We estimated the number of MRF genes in the S. macrurus genome and our Southern blot analyses revealed a single MyoD, myogenin, myf5 and MRF4 gene. Quantitative RT-PCR showed that muscle and EO transcribe all MRF genes. With the exception of MyoD, the endogenous levels of myogenin, myf5 and MRF4 transcripts in electrocytes were greater than those detected in muscle fibers. These data indicate that MRF expression levels are not sufficient to predict the level to which the muscle program is manifested. Qualitative expression analysis of MRF co-regulators MEF2C, Id1 and Id2 also revealed these genes not to be unique to either muscle or EO, and detected similar expression patterns in the two tissues. Therefore, the partial muscle program of the EO is not associated with a partial expression of MRFs or with apparent distinct levels of some MRF co-factors. In addition, electrical inactivation by spinal cord transection (ST) resulted in the up-regulation of some muscle proteins in electrocytes without an accompanying increase in MRF transcript levels or notable changes in the co-factors MEF2C, Id1 and Id2. These findings suggest that the neural regulation of the skeletal muscle program via MRFs in S. macrurus might differ from that of their mammalian counterparts. Together, these data further our understanding of the molecular processes involved in the plasticity of the vertebrate skeletal muscle program that brings about the muscle-like phenotype of the non-contractile electrogenic cells in S. macrurus.
Collapse
Affiliation(s)
- Jung A Kim
- Department of Biology, New Mexico State University, Las Cruces, NM 88003, USA
| | | | | | | |
Collapse
|
13
|
Larkin LM, Van der Meulen JH, Dennis RG, Kennedy JB. Functional evaluation of nerve-skeletal muscle constructs engineered in vitro. In Vitro Cell Dev Biol Anim 2006; 42:75-82. [PMID: 16759152 DOI: 10.1290/0509064.1] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Previously, we have engineered three-dimensional (3-D) skeletal muscle constructs that generate force and display a myosin heavy-chain (MHC) composition of fetal muscle. The purpose of this study was to evaluate the functional characteristics of 3-D skeletal muscle constructs cocultured with fetal nerve explants. We hypothesized that coculture of muscle constructs with neural cells would produce constructs with increased force and adult MHC isoforms. Following introduction of embryonic spinal cord explants to a layer of confluent muscle cells, the neural tissue integrated with the cultured muscle cells to form 3-D muscle constructs with extensions. Immunohistochemical labeling indicated that the extensions were neural tissue and that the junctions between the nerve extensions and the muscle constructs contained clusters of acetylcholine receptors. Compared to muscles cultured without nerve explants, constructs formed from nerve- muscle coculture showed spontaneous contractions with an increase in frequency and force. Upon field stimulation, both twitch (2-fold) and tetanus (1.7-fold) were greater in the nerve-muscle coculture system. Contractions could be elicited by electrically stimulating the neural extensions, although smaller forces are produced than with field stimulation. Severing the extension eliminated the response to electrical stimulation, excluding field stimulation as a contributing factor. Nerve- muscle constructs showed a tendency to have higher contents of adult and lower contents of fetal MHC isoforms, but the differences were not significant. In conclusion, we have successfully engineered a 3-D nerve-muscle construct that displays functional neuromuscular junctions and can be electrically stimulated to contract via the neural extensions projecting from the construct.
Collapse
Affiliation(s)
- Lisa M Larkin
- Department of Biomedical Engineering, Division of Geriatric Medicine, Muscle Mechanics Laboratory, Institute of Gerontology, University of Michigan, Ann Arbor, Michigan 48109-2007, USA.
| | | | | | | |
Collapse
|
14
|
Ceasing of muscle function with aging: is it the consequence of intrinsic muscle degeneration or a secondary effect of neuronal impairments? Eur Rev Aging Phys Act 2006. [DOI: 10.1007/s11556-006-0011-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Abstract
Aging is associated with a significant decline in neuromuscular function leading to an eventual loss of independence and mobility of senescent people. Age-related sarcopenia, characterised by a reduction in muscle mass and strength, is considered one of the most striking features of aging at the level of the skeletal muscle. Morphological alterations in skeletal muscle can be considered as one of the consequences responsible for muscle weakness in the aged population. Beyond 60 years of age, human muscle undergoes a process of continuous denervation and reinnervation, due to an accelerating loss of motor units. It appears evident that phenotypic alterations in muscle depend on the motor drives provided by the nervous system. Because the peripheral nerves, the neuromuscular junction and motor neurons exhibit degenerative features during advanced age, sarcopenia does not seem to intrinsically develop, but is rather a secondary effect of impaired neuronal function. It is therefore recommended that elderly subjects undergo an exercise program that is aimed towards the improvement of coordinative skills and of muscle strength.
Collapse
|
15
|
D'Andrea M, Pisaniello A, Serra C, Senni MI, Castaldi L, Molinaro M, Bouché M. Protein kinase C theta co-operates with calcineurin in the activation of slow muscle genes in cultured myogenic cells. J Cell Physiol 2006; 207:379-88. [PMID: 16419034 DOI: 10.1002/jcp.20585] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Adult skeletal muscle fibers can be divided into fast and slow twitch subtypes on the basis of specific contractile and metabolic properties, and on distinctive patterns of muscle gene expression. The calcium, calmodulin-dependent protein phosphatase, calcineurin, stimulates slow fiber-specific genes (myoglobin (Mb), troponin I slow) in cultured skeletal muscle cells, as well as in transgenic mice, through the co-operation of peroxisome-proliferation-activator receptor gamma co-activator 1alpha (PGC1alpha) myocyte enhancer factor 2 (MEF2), and nuclear factor of activated T cells (NFAT) transcription factors. Specific protein kinase C isoforms have been shown to functionally co-operate with calcineurin in different cellular models. We investigated whether specific protein kinase C isoforms are involved in calcineurin-induced slow skeletal muscle gene expression. By pharmacological inhibition or exogenous expression of mutant forms, we show that protein kinase C theta (the protein kinase C isoform predominantly expressed in skeletal muscle) is required and co-operates with calcineurin in the activation of the Mb promoter, as well as in the induction of slow isoforms of myosin and troponin I expression, in cultured muscle cells. This co-operation acts primarily regulating MEF2 activity, as shown by using reporter gene expression driven by the Mb promoter mutated in the specific binding sites. MEF2 activity on the Mb promoter is known to be dependent on both PGC1alpha and inactivation of histone deacetylases (HDACs) activity. We show in this study that protein kinase C theta is required for, even though it does not co-operate in, PGC1alpha-dependent Mb activation. Importantly, protein kinase C theta regulates the HDAC5 nucleus/cytoplasm location. We conclude that protein kinase C theta ensures maximal activation of MEF2, by regulating both MEF2 transcriptional complex formation and HDACs nuclear export.
Collapse
Affiliation(s)
- M D'Andrea
- Department of Histology and Medical Embryology, University of Rome "La Sapienza,", Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
16
|
Golding JD, Rigley MacDonald ST, Juurlink BHJ, Rosser BWC. The effect of glutamine on locomotor performance and skeletal muscle myosins following spinal cord injury in rats. J Appl Physiol (1985) 2006; 101:1045-52. [PMID: 16778003 DOI: 10.1152/japplphysiol.00428.2006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Following initial spinal cord injury (SCI), a cascade of pathological events, including oxidative stress, leads to secondary injury. Glutathione (GSH) plays a critical role in oxidant scavenging. Maintenance of GSH concentrations after SCI lessens secondary injury and improves recovery. Since glutamine promotes GSH synthesis, this nonessential amino acid was examined for therapeutic potential. Denervation alters the expression of myosin heavy chain (MHC) isoforms within skeletal muscles. The hypotheses of this study were that glutamine administration to SCI rats would lead to improved functional recovery and more preserved MHC phenotypes in representative locomotor muscles. Male Wistar rats were divided into four groups: healthy, sham with laminectomy, laminectomized SCI untreated, and laminectomized SCI treated with glutamine. Functional performance was measured weekly for 6 wk using Basso-Beattie-Bresnahan scale and angle board methods. MHC composition of rat soleus and extensor digitorum longus muscles was determined using SDS-PAGE. Glutamine-treated rats had significantly higher angle board scores (P < 0.001) and Basso-Beattie-Bresnahan scores (P < 0.01) than untreated SCI rats. Soleus of healthy rats contained 94% type 1 myosin isoform. Treated rats maintained 68%, which was significantly (P < 0.001) greater than 28% in untreated rats. The extensor digitorum longus of healthy rats contained 55% type 2b myosin. There was a significant (P < 0.001) decrease in this isoform following SCI, but no significant difference between treated and untreated groups. There were strong correlations between higher functional scores and more preserved MHC phenotypes. Our findings suggest glutamine improves functional recovery and helps preserve myosin profile by reducing secondary SCI, thereby maintaining more nerves.
Collapse
Affiliation(s)
- Jamie D Golding
- Department of Anatomy and Cell Biology, College of Medicine, University of Saskatchewan, Rm. A315 Health Science Bldg., 107 Wiggins Road, Saskatoon, Saskatchewan, Canada S7N 5E5
| | | | | | | |
Collapse
|
17
|
Magnusson C, Högklint L, Libelius R, Tågerud S. Expression of mRNA for plasminogen activators and protease nexin-1 in innervated and denervated mouse skeletal muscle. J Neurosci Res 2001; 66:457-63. [PMID: 11746363 DOI: 10.1002/jnr.10000] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Plasminogen activators (urokinase-type, u-PA and tissue-type, t-PA) are serine proteases that have been suggested to play important roles in synaptic remodeling. The enzymatic activity of u-PA in particular has previously been shown to increase dramatically after denervation of skeletal muscle. Using (32)P-labeled riboprobes and Northern blots the expression of mRNA for u-PA, t-PA and the inhibitor protease nexin-1 (PN-1) has been studied in innervated and 1-10-days denervated hind-limb muscle from mouse. Using RNA extracted from innervated and 6-days-denervated mouse hemidiaphragm muscles the expression of these mRNAs has also been investigated in synaptic and extrasynaptic muscle regions. For both u-PA and t-PA the observed autoradiographic signals were similar for RNA extracted from innervated and denervated leg muscles. The signals were also similar for RNA extracted from perisynaptic and extrasynaptic regions of hemidiaphragm muscle but u-PA signals were lower in denervated than in innervated hemidiaphragm. No such difference was observed for t-PA. PN-1 mRNA levels were also found to decrease after denervation in the hemidiaphragm but no substantial decrease was observed in denervated hind-limb muscles. No difference was observed between PN-1 expression in perisynaptic and extrasynaptic regions. The effect of denervation on PA enzymatic activity in skeletal muscle is therefore likely to be mediated at some post-transcriptional level.
Collapse
Affiliation(s)
- C Magnusson
- Department of Chemistry and Biomedical Sciences, University of Kalmar, Sweden
| | | | | | | |
Collapse
|