1
|
Chen F, Chen Y, Chi Y, Gao T, Zhao Y, Shao H. Diagnosis of invasive pulmonary fungal infections by a real-time panfungal PCR assay in non-neutropenic patients. Medicine (Baltimore) 2023; 102:e36385. [PMID: 38134111 PMCID: PMC10735100 DOI: 10.1097/md.0000000000036385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/09/2023] [Indexed: 12/24/2023] Open
Abstract
This study explored the utility of quantitative real-time panfungal PCR assay in diagnosing invasive pulmonary fungal diseases (IPFD) in non-neutropenic patients. Panfungal PCR assay was performed on respiratory tract specimens from patients whose clinical signs could not exclude fungal infection. At the same time, the samples were subjected to bacterial and fungal culture, microscopic examination and galactomannan antigen (GM) test in order to find the sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) of the 4 diagnostic methods in proven and probable cases. 518 specimens were collected while 63 respiratory tract specimens tested by PCR had positive results. According to diagnostic criteria, 40 patients were diagnosed with IPFD, with 12 proven, 20 probable and 8 possible cases. Among these, 33 patients of PCR results were positive, most of which were from BALF samples (44.12%). 23 cases were caused by Aspergillus species, with Aspergillus fumigatus was the major cause. Other Aspergillus species, including Aspergillus flavus, Aspergillus terreus and Aspergillus nidulans were found in 1 sample respectively. Candida species were found in 5 samples, Pneumocystis jeroveci pneumonia (PJP) in 4 samples and Mucormycosis in 1 sample. An analysis of proven/probable diagnosis showed a sensitivity of 78.13%, specificity of 92.18%, PPV of 39.68% and NPV of 98.46% for PCR and 50%, 85.27%, 35.7%, 95.65% for GM test respectively. The Ct value difference between proven/probable and possible cases had no statistical significance (P = .824). Fungal culture showed a sensitivity of 17.5% while microscopic examination sensitivity of 32.5%. Through stratified analysis, no apparent correlation was found between the Ct value of the PCR assay and GM value (r: 0.223, P = .294). But a conjunction of the 2 tests raised the PPV of Aspergillus to 90%. As shown in this study, the panfungal RT-PCR assay has high sensitivity and consistency with serological test and culture. Its high PPV in the detection of Aspergillus and PJP were also evident.
Collapse
Affiliation(s)
- Feifei Chen
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yubao Chen
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Yin Chi
- NHC Key laboratory of Enteric Pathogenic Microbiology, Jiangsu Provincial Center for Diseases Control and Prevention, Nanjing, China
| | - Tianyi Gao
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Youcai Zhao
- Department of Pathology Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Hongtao Shao
- Department of Gerontology Medicine, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, China
| |
Collapse
|
2
|
Chakrabarti A, Mohamed N, Capparella MR, Townsend A, Sung AH, Yura R, Muñoz P. The role of diagnostics-driven antifungal stewardship in the management of invasive fungal infections: a systematic literature review. Open Forum Infect Dis 2022; 9:ofac234. [PMID: 35873300 PMCID: PMC9297315 DOI: 10.1093/ofid/ofac234] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/10/2022] [Indexed: 12/02/2022] Open
Abstract
Antifungal stewardship (AFS) programs are key to optimizing antifungal use and improving outcomes in patients with invasive fungal infections. Our systematic literature review evaluated the impact of diagnostics in AFS programs by assessing performance and clinical measures. Most eligible studies were from Europe and the United States (n = 12/17). Diagnostic approaches included serum β-1–3-D-glucan test (n/N studies, 7/17), galactomannan test (4/17), computed tomography scan (3/17), magnetic resonance (2/17), matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF MS; 2/17), polymerase chain reaction (1/17), peptide nucleic acid fluorescent in situ hybridization (PNA-FISH) assay (1/17), and other routine methods (9/17). Time to species identification decreased significantly using MALDI-TOF and PNA-FISH (n = 2). Time to targeted therapy and length of empiric therapy also decreased (n = 3). Antifungal consumption decreased by 11.6%–59.0% (7/13). Cost-savings ranged from 13.5% to 50.6% (5/10). Mortality rate (13/16) and length of stay (6/7) also decreased. No negative impact was reported on patient outcomes. Diagnostics-driven interventions can potentially improve AFS measures (antifungal consumption, cost, mortality, and length of stay); therefore, AFS implementation should be encouraged.
Collapse
Affiliation(s)
- Arunaloke Chakrabarti
- Department of Medical Microbiology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | | | | - Andy Townsend
- Correspondence: Andy Townsend, PhD, 2 Valley View Congleton, CW12 4EN ()
| | | | - Renee Yura
- WRD & Medical, Pfizer, Cambridge, Massachusetts, USA
| | - Patricia Muñoz
- Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
- Instituto de Investigación Sanitaria Hospital Gregorio Marañón, Madrid, Spain
- Medicine Department, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
- CIBER Enfermedades Respiratorias – CIBERES (CB06/06/0058), Madrid, Spain
| |
Collapse
|
3
|
Lamoth F, Akan H, Andes D, Cruciani M, Marchetti O, Ostrosky-Zeichner L, Racil Z, Clancy CJ. Assessment of the Role of 1,3-β-d-Glucan Testing for the Diagnosis of Invasive Fungal Infections in Adults. Clin Infect Dis 2021; 72:S102-S108. [PMID: 33709130 DOI: 10.1093/cid/ciaa1943] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Detection of 1,3-β-d-glucan (BDG) in serum has been evaluated for its inclusion as a mycological criterion of invasive fungal infections (IFI) according to EORTC and Mycoses Study Group (MSG) definitions. BDG testing may be useful for the diagnosis of both invasive aspergillosis and invasive candidiasis, when interpreted in conjunction with other clinical/radiological signs and microbiological markers of IFI. However, its performance and utility vary according to patient population (hematologic cancer patients, solid-organ transplant recipients, intensive care unit patients) and pretest likelihood of IFI. The objectives of this article are to provide a systematic review of the performance of BDG testing and to assess recommendations for its use and interpretation in different clinical settings.
Collapse
Affiliation(s)
- F Lamoth
- Infectious Diseases Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Institute of Microbiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - H Akan
- Ankara University, Faculty of Medicine, Cebeci Campus, Hematology Clinical Research Unit, Ankara, Turkey
| | - D Andes
- Department of Medicine and Microbiology and Immunology, University of Wisconsin, Madison, Wisconsin, USA
| | - M Cruciani
- Infectious Diseases Unit, G. Fracastoro Hospital, San Bonifacio, Verona, Italy
| | - O Marchetti
- Infectious Diseases Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Department of Medicine, Ensemble Hospitalier de La Côte, Morges, Switzerland
| | - L Ostrosky-Zeichner
- Division of Infectious Diseases, McGovern Medical School, Houston, Texas, USA
| | - Z Racil
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - C J Clancy
- Division of Infectious Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
4
|
The values of (1,3)-β-D-glucan and galactomannan in cases of invasive fungal rhinosinusitis. Am J Otolaryngol 2021; 42:102871. [PMID: 33412381 DOI: 10.1016/j.amjoto.2020.102871] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/22/2020] [Indexed: 11/20/2022]
Abstract
OBJECTIVE The purpose of the present study was to investigate the values of the serum (1,3)-β-D-glucan test (G test) alone, the galactomannan test (GM test) alone, and their combination in the diagnosis of invasive fungal rhinosinusitis (IFRS). METHODS The present study retrospectively analysed the clinical data of 98 patients who were preliminarily diagnosed with "space-occupying lesions in nose". Of these 98 patients, 88 received the G test, 55 received the GM test, and 45 received both. A pathology analysis was used as the gold standard to diagnose IFRS. All data were analysed using SPSS 19.0. RESULTS The sensitivities (Se) of the G and GM tests alone were 60.0% and 28.6%, respectively, whereas the specificities (Sp) were 92.3% and 93.8%, respectively. Moreover, the positive predictive values (PPV) of the G and GM tests alone were 50.0% and 40.0%, respectively, and the negative predictive values (NPV) were 94.7% and 90.0%, respectively. In addition, the diagnostic odds ratios (DOR) were 18.0 and 6.0, respectively, and the Kappa values were 0.48 (P < 0.05) and 0.25 (P > 0.05), respectively. When the G and GM tests were parallel combined, the Se was 66.7%, the Sp was 92.3%, the PPV was 57.1%, the NPV was 94.7%, the DOR was 24.0, and the Kappa value was 0.55 (P < 0.05). The present study was unable to evaluate the serial diagnosis due to the lack of patients testing positive. CONCLUSIONS The G/GM tests exhibited low Se and PPV when used to diagnose IFRS, while high Sp and NPV. Parallel diagnosis improved the diagnostic Se and DOR values.
Collapse
|
5
|
Ideguchi S, Yamamoto K, Hirayama T, Takazono T, Imamura Y, Miyazaki T, Sakamoto N, Izumikawa K, Yanagihara K, Morimoto S, Mukae H. Diagnostic evaluation of serum (1, 3)-β-d-glucan levels using the Fungitec G-Test MK kit for Pneumocystis jirovecii pneumonia (PCP) in non-HIV patients. Med Mycol 2020; 59:myaa101. [PMID: 33369648 DOI: 10.1093/mmy/myaa101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/24/2020] [Accepted: 11/17/2020] [Indexed: 12/23/2022] Open
Abstract
Pneumocystis jirovecii pneumonia (PCP) is an opportunistic and life-threatening pulmonary infection with an increasing prevalence among individuals who are human immunodeficiency virus (HIV)-negative. Evidence regarding diagnostic testing of PCP in this patient population is insufficient. We evaluated the performance of serum (1, 3)-β-d-glucan (BDG) using the Fungitec G-test MK kit for diagnosing PCP in non-HIV patients. We retrospectively analyzed data from 219 non-HIV adult patients who underwent bronchoscopy and were tested for P. jirovecii DNA by PCR using lavage samples from the lower respiratory tract. Fifty PCP patients and 125 non-PCP patients were included. The most common underlying diseases were malignancies and systemic autoimmune diseases. Using the serum BDG Fungitec G-test MK test to diagnose PCP, the area under the receiver operating characteristic curve (AUC) was 0.924, whereas the modified cut-off value of 36.6 pg/mL had a sensitivity and specificity of 92.0% and 84.8%, respectively. The AUC for patients with systemic autoimmune diseases was 0.873, and the accuracy of serum BDG test declined when using methotrexate (MTX). In conclusion, the serum BDG test was useful for diagnosing PCP in non-HIV patients; however, the results should be carefully interpreted in case of MTX administration. LAY SUMMARY The Fungitec G-test MK kit for measuring serum (1, 3)-β-d-glucan (BDG) levels had a sufficient diagnostic performance for Pneumocystis jirovecii pneumonia (PCP) in human immunodeficiency virus-negative patients. However, the results should be carefully interpreted in case of MTX administration.
Collapse
Affiliation(s)
- Shuhei Ideguchi
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Kazuko Yamamoto
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
- Department of Infection Control and Education Center, Nagasaki University Hospital, Nagasaki, Japan
- Clinical Research Center, National Organization Hospital, Nagasaki Medical Center, Omura, Japan
| | - Tatsuro Hirayama
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Takahiro Takazono
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Yoshifumi Imamura
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Taiga Miyazaki
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Noriho Sakamoto
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Koichi Izumikawa
- Department of Infection Control and Education Center, Nagasaki University Hospital, Nagasaki, Japan
| | - Katsunori Yanagihara
- Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Shimpei Morimoto
- Innovation Platform & Office for Precision Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hiroshi Mukae
- Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| |
Collapse
|
6
|
White SK, Schmidt RL, Walker BS, Hanson KE. (1→3)-β-D-glucan testing for the detection of invasive fungal infections in immunocompromised or critically ill people. Cochrane Database Syst Rev 2020; 7:CD009833. [PMID: 32693433 PMCID: PMC7387835 DOI: 10.1002/14651858.cd009833.pub2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Invasive fungal infections (IFIs) are life-threatening opportunistic infections that occur in immunocompromised or critically ill people. Early detection and treatment of IFIs is essential to reduce morbidity and mortality in these populations. (1→3)-β-D-glucan (BDG) is a component of the fungal cell wall that can be detected in the serum of infected individuals. The serum BDG test is a way to quickly detect these infections and initiate treatment before they become life-threatening. Five different versions of the BDG test are commercially available: Fungitell, Glucatell, Wako, Fungitec-G, and Dynamiker Fungus. OBJECTIVES To compare the diagnostic accuracy of commercially available tests for serum BDG to detect selected invasive fungal infections (IFIs) among immunocompromised or critically ill people. SEARCH METHODS We searched MEDLINE (via Ovid) and Embase (via Ovid) up to 26 June 2019. We used SCOPUS to perform a forward and backward citation search of relevant articles. We placed no restriction on language or study design. SELECTION CRITERIA We included all references published on or after 1995, which is when the first commercial BDG assays became available. We considered published, peer-reviewed studies on the diagnostic test accuracy of BDG for diagnosis of fungal infections in immunocompromised people or people in intensive care that used the European Organization for Research and Treatment of Cancer (EORTC) criteria or equivalent as a reference standard. We considered all study designs (case-control, prospective consecutive cohort, and retrospective cohort studies). We excluded case studies and studies with fewer than ten participants. We also excluded animal and laboratory studies. We excluded meeting abstracts because they provided insufficient information. DATA COLLECTION AND ANALYSIS We followed the standard procedures outlined in the Cochrane Handbook for Diagnostic Test Accuracy Reviews. Two review authors independently screened studies, extracted data, and performed a quality assessment for each study. For each study, we created a 2 × 2 matrix and calculated sensitivity and specificity, as well as a 95% confidence interval (CI). We evaluated the quality of included studies using the Quality Assessment of Studies of Diagnostic Accuracy-Revised (QUADAS-2). We were unable to perform a meta-analysis due to considerable variation between studies, with the exception of Candida, so we have provided descriptive statistics such as receiver operating characteristics (ROCs) and forest plots by test brand to show variation in study results. MAIN RESULTS We included in the review 49 studies with a total of 6244 participants. About half of these studies (24/49; 49%) were conducted with people who had cancer or hematologic malignancies. Most studies (36/49; 73%) focused on the Fungitell BDG test. This was followed by Glucatell (5 studies; 10%), Wako (3 studies; 6%), Fungitec-G (3 studies; 6%), and Dynamiker (2 studies; 4%). About three-quarters of studies (79%) utilized either a prospective or a retrospective consecutive study design; the remainder used a case-control design. Based on the manufacturer's recommended cut-off levels for the Fungitell test, sensitivity ranged from 27% to 100%, and specificity from 0% to 100%. For the Glucatell assay, sensitivity ranged from 50% to 92%, and specificity ranged from 41% to 94%. Limited studies have used the Dynamiker, Wako, and Fungitec-G assays, but individual sensitivities and specificities ranged from 50% to 88%, and from 60% to 100%, respectively. Results show considerable differences between studies, even by manufacturer, which prevented a formal meta-analysis. Most studies (32/49; 65%) had no reported high risk of bias in any of the QUADAS-2 domains. The QUADAS-2 domains that had higher risk of bias included participant selection and flow and timing. AUTHORS' CONCLUSIONS We noted considerable heterogeneity between studies, and these differences precluded a formal meta-analysis. Because of wide variation in the results, it is not possible to estimate the diagnostic accuracy of the BDG test in specific settings. Future studies estimating the accuracy of BDG tests should be linked to the way the test is used in clinical practice and should clearly describe the sampling protocol and the relationship of time of testing to time of diagnosis.
Collapse
Affiliation(s)
- Sandra K White
- Department of Pathology, University of Utah, School of Medicine, Salt Lake City, Utah, USA
| | - Robert L Schmidt
- Department of Pathology, University of Utah, School of Medicine, Salt Lake City, Utah, USA
| | | | - Kimberly E Hanson
- Director, Transplant Infectious Diseases and Immunocompromised Host Service, Section Head, Clinical Microbiology, Director, Medical Microbiology Fellowship Program, University of Utah and ARUP Laboratories, Salt Lake City, Utah, USA
| |
Collapse
|
7
|
Meijer EFJ, Dofferhoff ASM, Hoiting O, Buil JB, Meis JF. Azole-Resistant COVID-19-Associated Pulmonary Aspergillosis in an Immunocompetent Host: A Case Report. J Fungi (Basel) 2020; 6:E79. [PMID: 32517166 PMCID: PMC7344504 DOI: 10.3390/jof6020079] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 12/13/2022] Open
Abstract
COVID-19-associated pulmonary aspergillosis (CAPA) is a recently described disease entity affecting patients with severe pulmonary abnormalities treated in intensive care units. Delays in diagnosis contribute to a delayed start of antifungal therapy. In addition, the emergence of resistance to triazole antifungal agents puts emphasis on early surveillance for azole-resistant Aspergillus species. We present a patient with putative CAPA due to Aspergillus fumigatus with identification of a triazole-resistant isolate during therapy. We underline the challenges faced in the management of these cases, the importance of early diagnosis and need for surveillance given the emergence of triazole resistance.
Collapse
Affiliation(s)
- Eelco F. J. Meijer
- Department of Medical Microbiology, Radboud University Medical Center, 6500HB Nijmegen, The Netherlands; (E.F.J.M.); (J.B.B.)
- Center of Expertise in Mycology Radboudumc/CWZ, 6532 SZ Nijmegen, The Netherlands
- Department of Medical Microbiology and Infectious Diseases, Canisius Wilhelmina Hospital (CWZ), 6532 SZ Nijmegen, The Netherlands;
| | - Anton S. M. Dofferhoff
- Department of Medical Microbiology and Infectious Diseases, Canisius Wilhelmina Hospital (CWZ), 6532 SZ Nijmegen, The Netherlands;
- Department of Internal Medicine, Canisius Wilhelmina Hospital (CWZ), 6532 SZ Nijmegen, The Netherlands
| | - Oscar Hoiting
- Department of Intensive Care Medicine, Canisius Wilhelmina Hospital (CWZ), 6532 SZ Nijmegen, The Netherlands;
| | - Jochem B. Buil
- Department of Medical Microbiology, Radboud University Medical Center, 6500HB Nijmegen, The Netherlands; (E.F.J.M.); (J.B.B.)
- Center of Expertise in Mycology Radboudumc/CWZ, 6532 SZ Nijmegen, The Netherlands
| | - Jacques F. Meis
- Department of Medical Microbiology, Radboud University Medical Center, 6500HB Nijmegen, The Netherlands; (E.F.J.M.); (J.B.B.)
- Center of Expertise in Mycology Radboudumc/CWZ, 6532 SZ Nijmegen, The Netherlands
- Department of Medical Microbiology and Infectious Diseases, Canisius Wilhelmina Hospital (CWZ), 6532 SZ Nijmegen, The Netherlands;
- Bioprocess Engineering and Biotechnology Graduate Program, Federal University of Paraná, Curitiba 81531-970, PR, Brazil
| |
Collapse
|
8
|
|
9
|
Ramírez P, Garnacho-Montero J. [Invasive aspergillosis in critically ill patients]. Rev Iberoam Micol 2019; 35:210-216. [PMID: 30554674 DOI: 10.1016/j.riam.2018.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/11/2018] [Accepted: 07/24/2018] [Indexed: 01/06/2023] Open
Abstract
Critically ill patients without severe immunosuppression make up a population in which invasive aspergillosis (IA) has been identified as an emergent pathology. Chronic treatment with corticosteroids, chronic obstructive pulmonary disease, and liver cirrhosis are repeatedly identified risk factors. However, due to the non-specificity of the symptoms and signs in the critical patient, and the relative low diagnostic capacity of the complementary tests, the diagnosis of the IA is a challenge for the specialist in critical care medicine. The application of diagnostic algorithms adapted to critical patients, in whom activation will depend on the isolation of Aspergillus in a respiratory specimen, is the most efficient diagnostic methodology in this population. Among the diagnostic approaches, the determination of galactomannan in bronchoalveolar fluid is the most useful diagnostic test. Once the suspicion is established, treatment should be started as soon as possible. Voriconazole, amphotericin B, and isavuconazole are the most effective treatments. Although voriconazole and amphotericin B are the drugs with the most scientific evidence, they are related with adverse effects and pharmacokinetic difficulties. Therefore, isavuconazole, which has shown high efficacy and safety in other populations, is a potential alternative of great interest for critically ill patients.
Collapse
Affiliation(s)
- Paula Ramírez
- Servicio de Medicina Intensiva, Hospital Universitario y Politécnico La Fe, Valencia, España.
| | - José Garnacho-Montero
- Unidad Clínica de Cuidados Intensivos, Hospital Universitario Virgen de la Macarena, Sevilla, España
| |
Collapse
|
10
|
|
11
|
Zhang J, Cui N, Wang H, Han W, Li Y, Xiao M, Liu D. Invasive Fungal Disease in Critically Ill Patients at High Risk: Usefulness of Lymphocyte Subtyping. J Intensive Care Med 2018; 35:909-918. [PMID: 30231674 DOI: 10.1177/0885066618800690] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
OBJECTIVES This study aimed to investigate the distinguishing ability of lymphocyte subtyping for diagnosis and prognosis of invasive fungal disease (IFD). METHODS We assessed lymphocyte subtyping and evaluated the quantitative changes in key immunological parameters at intensive care unit (ICU) admission in critically ill patients at high risk and their potential influence on diagnosis and outcome of IFD. The primary outcome was 28-day mortality. RESULTS Among the 124 critically ill patients with mean Candida score 3.89 (0.76), 19 (15.3%) were in the IFD group. CD28+CD8+ T-cell counts (area under the curve [AUC] 0.899, 95% confidence interval [CI], 0.834-0.964, P < .001) had better distinguishing ability than other immune parameters for IFD diagnosis. The cutoff value of CD28+CD8+ T-cell counts at ICU admission for IFD diagnosis was 59.5 cells/mm3, with 83.3% sensitivity and 86.4% specificity. Multivariate logistic regression analysis identified CD28+CD8+ T-cell count <59.5 cells/mm3 (odds ratio 59.7, 95% CI, 7.33-486.9, P < .001) as an independent predictor for IFD diagnosis. CD28+CD8+ T-cell counts could also predict 28-day mortality (AUC 0.656, 95% CI, 0.525-0.788, P = .045). Kaplan-Meier survival analysis provided evidence that natural killer cell count <76.0 cells/mm3 (log-rank test; P = .001), CD8+ T-cell count <321.5 cells/mm3 (log-rank test; P = .04), and CD28+CD8+ T-cell count <129.0 cells/mm3 (log-rank test; P = .02) at ICU admission were associated with lower survival probabilities. CONCLUSION CD28+CD8+ T-cell counts play an important role in early diagnosis of IFD. Low counts are associated with early mortality in critically ill patients at high risk of IFD. Our findings add evidence to the utility of lymphocyte subtyping in a diagnostic algorithm to better define IFD in critically ill patients at high risk.
Collapse
Affiliation(s)
- Jiahui Zhang
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Na Cui
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Hao Wang
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Wen Han
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yuanfei Li
- Department of Critical Care Medicine, Changsha Central Hospital, Changsha, China
| | - Meng Xiao
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases, Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Dawei Liu
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
12
|
Zhang L, Guo Z, Xie S, Zhou J, Chen G, Feng J, Huang Y. The performance of galactomannan in combination with 1,3-β-D-glucan or aspergillus-lateral flow device for the diagnosis of invasive aspergillosis: Evidences from 13 studies. Diagn Microbiol Infect Dis 2018; 93:44-53. [PMID: 30279025 DOI: 10.1016/j.diagmicrobio.2018.08.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 08/03/2018] [Accepted: 08/14/2018] [Indexed: 12/11/2022]
Abstract
Galactomannan (GM), 1,3-β-D-glucan (BDG) and aspergillus-lateral flow device (LFD) are recognized as diagnostic tools for invasive aspergillosis (IA). The combined performance of these assays, however, is inconsistent in various studies. We undertook a meta-analysis of 13 studies involving 1513 patients to evaluate the utility of GM in combination with BDG or LFD for diagnosing IA. The pooled SEN, SPE, PLR, NLR and diagnostic odds ratio (DOR) were calculated and constructed to summarize the overall combined performance. Combining both positive results of GM and BDG assays leaded to the pooled SEN 0.49 (95%CI 0.27-0.72), SPE 0.98 (95%CI 0.94-1.00), PLR 31.68 (95%CI 5.36-187.37), NLR 0.52 (95%CI 0.32-0.84) and DOR 61.23 (95%CI 6.96-538.90). Comparing with GM and BDG assays, both positive results of GM and LFD leaded to high SEN, similar SPE, low PLR and NLR. At least one positive result of GM or LFD conferred great SEN 0.93 and low NLR 0.08. Both positive results of GM and BDG or LFD assay were in favor of confirming the existence of IA. And both negative results of GM and LFD were beneficial to rule out IA. Further studies with sufficient sample size should focus on the diagnostic performance and cost-effectiveness of these combined tests in clinical setting.
Collapse
Affiliation(s)
- Li Zhang
- Clinical microbiology laboratory, Tung Wah Hospital Affiliated to Sun Yat-sen University, Dongguan, Guangdong 523110, China.
| | - Zhusheng Guo
- Clinical microbiology laboratory, Tung Wah Hospital Affiliated to Sun Yat-sen University, Dongguan, Guangdong 523110, China
| | - Shujin Xie
- Clinical microbiology laboratory, Tung Wah Hospital Affiliated to Sun Yat-sen University, Dongguan, Guangdong 523110, China
| | - Jing Zhou
- Clinical microbiology laboratory, Tung Wah Hospital Affiliated to Sun Yat-sen University, Dongguan, Guangdong 523110, China
| | - Guiling Chen
- Clinical microbiology laboratory, Tung Wah Hospital Affiliated to Sun Yat-sen University, Dongguan, Guangdong 523110, China
| | - Jianbo Feng
- Clinical microbiology laboratory, Tung Wah Hospital Affiliated to Sun Yat-sen University, Dongguan, Guangdong 523110, China
| | - Ya Huang
- Clinical microbiology laboratory, Tung Wah Hospital Affiliated to Sun Yat-sen University, Dongguan, Guangdong 523110, China
| |
Collapse
|
13
|
Mohedano del Pozo RB, Rubio Alonso M, Cuétara García MS. Diagnosis of invasive fungal disease in hospitalized patients with chronic obstructive pulmonary disease. Rev Iberoam Micol 2018; 35:117-122. [DOI: 10.1016/j.riam.2017.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/10/2017] [Accepted: 07/19/2017] [Indexed: 01/08/2023] Open
|
14
|
Ullmann AJ, Aguado JM, Arikan-Akdagli S, Denning DW, Groll AH, Lagrou K, Lass-Flörl C, Lewis RE, Munoz P, Verweij PE, Warris A, Ader F, Akova M, Arendrup MC, Barnes RA, Beigelman-Aubry C, Blot S, Bouza E, Brüggemann RJM, Buchheidt D, Cadranel J, Castagnola E, Chakrabarti A, Cuenca-Estrella M, Dimopoulos G, Fortun J, Gangneux JP, Garbino J, Heinz WJ, Herbrecht R, Heussel CP, Kibbler CC, Klimko N, Kullberg BJ, Lange C, Lehrnbecher T, Löffler J, Lortholary O, Maertens J, Marchetti O, Meis JF, Pagano L, Ribaud P, Richardson M, Roilides E, Ruhnke M, Sanguinetti M, Sheppard DC, Sinkó J, Skiada A, Vehreschild MJGT, Viscoli C, Cornely OA. Diagnosis and management of Aspergillus diseases: executive summary of the 2017 ESCMID-ECMM-ERS guideline. Clin Microbiol Infect 2018; 24 Suppl 1:e1-e38. [PMID: 29544767 DOI: 10.1016/j.cmi.2018.01.002] [Citation(s) in RCA: 860] [Impact Index Per Article: 143.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/02/2018] [Accepted: 01/03/2018] [Indexed: 02/06/2023]
Abstract
The European Society for Clinical Microbiology and Infectious Diseases, the European Confederation of Medical Mycology and the European Respiratory Society Joint Clinical Guidelines focus on diagnosis and management of aspergillosis. Of the numerous recommendations, a few are summarized here. Chest computed tomography as well as bronchoscopy with bronchoalveolar lavage (BAL) in patients with suspicion of pulmonary invasive aspergillosis (IA) are strongly recommended. For diagnosis, direct microscopy, preferably using optical brighteners, histopathology and culture are strongly recommended. Serum and BAL galactomannan measures are recommended as markers for the diagnosis of IA. PCR should be considered in conjunction with other diagnostic tests. Pathogen identification to species complex level is strongly recommended for all clinically relevant Aspergillus isolates; antifungal susceptibility testing should be performed in patients with invasive disease in regions with resistance found in contemporary surveillance programmes. Isavuconazole and voriconazole are the preferred agents for first-line treatment of pulmonary IA, whereas liposomal amphotericin B is moderately supported. Combinations of antifungals as primary treatment options are not recommended. Therapeutic drug monitoring is strongly recommended for patients receiving posaconazole suspension or any form of voriconazole for IA treatment, and in refractory disease, where a personalized approach considering reversal of predisposing factors, switching drug class and surgical intervention is also strongly recommended. Primary prophylaxis with posaconazole is strongly recommended in patients with acute myelogenous leukaemia or myelodysplastic syndrome receiving induction chemotherapy. Secondary prophylaxis is strongly recommended in high-risk patients. We strongly recommend treatment duration based on clinical improvement, degree of immunosuppression and response on imaging.
Collapse
Affiliation(s)
- A J Ullmann
- Department of Infectious Diseases, Haematology and Oncology, University Hospital Würzburg, Würzburg, Germany; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - J M Aguado
- Infectious Diseases Unit, University Hospital Madrid, Madrid, Spain; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - S Arikan-Akdagli
- Department of Medical Microbiology, Hacettepe University Medical School, Ankara, Turkey; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - D W Denning
- The National Aspergillosis Centre, Wythenshawe Hospital, Mycology Reference Centre Manchester, Manchester University NHS Foundation Trust, ECMM Excellence Centre of Medical Mycology, Manchester, UK; The University of Manchester, Manchester, UK; Manchester Academic Health Science Centre, Manchester, UK; European Confederation of Medical Mycology (ECMM)
| | - A H Groll
- Department of Paediatric Haematology/Oncology, Centre for Bone Marrow Transplantation, University Children's Hospital Münster, Münster, Germany; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - K Lagrou
- Department of Microbiology and Immunology, ECMM Excellence Centre of Medical Mycology, University Hospital Leuven, Leuven, Belgium; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - C Lass-Flörl
- Institute of Hygiene, Microbiology and Social Medicine, ECMM Excellence Centre of Medical Mycology, Medical University Innsbruck, Innsbruck, Austria; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - R E Lewis
- Infectious Diseases Clinic, Sant'Orsola-Malpighi Hospital, University of Bologna, Bologna, Italy; ESCMID Fungal Infection Study Group (EFISG)
| | - P Munoz
- Department of Medical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; CIBER Enfermedades Respiratorias - CIBERES (CB06/06/0058), Madrid, Spain; Medicine Department, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - P E Verweij
- Department of Medical Microbiology, Radboud University Medical Centre, Centre of Expertise in Mycology Radboudumc/CWZ, ECMM Excellence Centre of Medical Mycology, Nijmegen, Netherlands; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - A Warris
- MRC Centre for Medical Mycology, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - F Ader
- Department of Infectious Diseases, Hospices Civils de Lyon, Lyon, France; Inserm 1111, French International Centre for Infectious Diseases Research (CIRI), Université Claude Bernard Lyon 1, Lyon, France; European Respiratory Society (ERS)
| | - M Akova
- Department of Medicine, Section of Infectious Diseases, Hacettepe University Medical School, Ankara, Turkey; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - M C Arendrup
- Department Microbiological Surveillance and Research, Statens Serum Institute, Copenhagen, Denmark; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - R A Barnes
- Department of Medical Microbiology and Infectious Diseases, Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK; European Confederation of Medical Mycology (ECMM)
| | - C Beigelman-Aubry
- Department of Diagnostic and Interventional Radiology, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne, Switzerland; European Respiratory Society (ERS)
| | - S Blot
- Department of Internal Medicine, Ghent University, Ghent, Belgium; Burns, Trauma and Critical Care Research Centre, University of Queensland, Brisbane, Australia; European Respiratory Society (ERS)
| | - E Bouza
- Department of Medical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; CIBER Enfermedades Respiratorias - CIBERES (CB06/06/0058), Madrid, Spain; Medicine Department, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - R J M Brüggemann
- Radboud Centre for Infectious Diseases, Radboud University Medical Centre, Centre of Expertise in Mycology Radboudumc/CWZ, ECMM Excellence Centre of Medical Mycology, Nijmegen, Netherlands; ESCMID Fungal Infection Study Group (EFISG)
| | - D Buchheidt
- Medical Clinic III, University Hospital Mannheim, Mannheim, Germany; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - J Cadranel
- Department of Pneumology, University Hospital of Tenon and Sorbonne, University of Paris, Paris, France; European Respiratory Society (ERS)
| | - E Castagnola
- Infectious Diseases Unit, Istituto Giannina Gaslini Children's Hospital, Genoa, Italy; ESCMID Fungal Infection Study Group (EFISG)
| | - A Chakrabarti
- Department of Medical Microbiology, Postgraduate Institute of Medical Education & Research, Chandigarh, India; European Confederation of Medical Mycology (ECMM)
| | - M Cuenca-Estrella
- Instituto de Salud Carlos III, Madrid, Spain; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - G Dimopoulos
- Department of Critical Care Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, Medical School, Athens, Greece; European Respiratory Society (ERS)
| | - J Fortun
- Infectious Diseases Service, Ramón y Cajal Hospital, Madrid, Spain; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - J-P Gangneux
- Univ Rennes, CHU Rennes, Inserm, Irset (Institut de Recherche en santé, environnement et travail) - UMR_S 1085, Rennes, France; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - J Garbino
- Division of Infectious Diseases, University Hospital of Geneva, Geneva, Switzerland; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - W J Heinz
- Department of Infectious Diseases, Haematology and Oncology, University Hospital Würzburg, Würzburg, Germany; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - R Herbrecht
- Department of Haematology and Oncology, University Hospital of Strasbourg, Strasbourg, France; ESCMID Fungal Infection Study Group (EFISG)
| | - C P Heussel
- Diagnostic and Interventional Radiology, Thoracic Clinic, University Hospital Heidelberg, Heidelberg, Germany; European Confederation of Medical Mycology (ECMM)
| | - C C Kibbler
- Centre for Medical Microbiology, University College London, London, UK; European Confederation of Medical Mycology (ECMM)
| | - N Klimko
- Department of Clinical Mycology, Allergy and Immunology, North Western State Medical University, St Petersburg, Russia; European Confederation of Medical Mycology (ECMM)
| | - B J Kullberg
- Radboud Centre for Infectious Diseases, Radboud University Medical Centre, Centre of Expertise in Mycology Radboudumc/CWZ, ECMM Excellence Centre of Medical Mycology, Nijmegen, Netherlands; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - C Lange
- International Health and Infectious Diseases, University of Lübeck, Lübeck, Germany; Clinical Infectious Diseases, Research Centre Borstel, Leibniz Center for Medicine & Biosciences, Borstel, Germany; German Centre for Infection Research (DZIF), Tuberculosis Unit, Hamburg-Lübeck-Borstel-Riems Site, Lübeck, Germany; European Respiratory Society (ERS)
| | - T Lehrnbecher
- Division of Paediatric Haematology and Oncology, Hospital for Children and Adolescents, Johann Wolfgang Goethe-University, Frankfurt, Germany; European Confederation of Medical Mycology (ECMM)
| | - J Löffler
- Department of Infectious Diseases, Haematology and Oncology, University Hospital Würzburg, Würzburg, Germany; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - O Lortholary
- Department of Infectious and Tropical Diseases, Children's Hospital, University of Paris, Paris, France; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - J Maertens
- Department of Haematology, ECMM Excellence Centre of Medical Mycology, University Hospital Leuven, Leuven, Belgium; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - O Marchetti
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland; Department of Medicine, Ensemble Hospitalier de la Côte, Morges, Switzerland; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - J F Meis
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Centre of Expertise in Mycology Radboudumc/CWZ, ECMM Excellence Centre of Medical Mycology, Nijmegen, Netherlands; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - L Pagano
- Department of Haematology, Universita Cattolica del Sacro Cuore, Roma, Italy; European Confederation of Medical Mycology (ECMM)
| | - P Ribaud
- Quality Unit, Pôle Prébloc, Saint-Louis and Lariboisière Hospital Group, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - M Richardson
- The National Aspergillosis Centre, Wythenshawe Hospital, Mycology Reference Centre Manchester, Manchester University NHS Foundation Trust, ECMM Excellence Centre of Medical Mycology, Manchester, UK; The University of Manchester, Manchester, UK; Manchester Academic Health Science Centre, Manchester, UK; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - E Roilides
- Infectious Diseases Unit, 3rd Department of Paediatrics, Faculty of Medicine, Aristotle University School of Health Sciences, Thessaloniki, Greece; Hippokration General Hospital, Thessaloniki, Greece; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - M Ruhnke
- Department of Haematology and Oncology, Paracelsus Hospital, Osnabrück, Germany; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - M Sanguinetti
- Institute of Microbiology, Fondazione Policlinico Universitario A. Gemelli - Università Cattolica del Sacro Cuore, Rome, Italy; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - D C Sheppard
- Division of Infectious Diseases, Department of Medicine, Microbiology and Immunology, McGill University, Montreal, Canada; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - J Sinkó
- Department of Haematology and Stem Cell Transplantation, Szent István and Szent László Hospital, Budapest, Hungary; ESCMID Fungal Infection Study Group (EFISG)
| | - A Skiada
- First Department of Medicine, Laiko Hospital, National and Kapodistrian University of Athens, Athens, Greece; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - M J G T Vehreschild
- Department I of Internal Medicine, ECMM Excellence Centre of Medical Mycology, University Hospital of Cologne, Cologne, Germany; Centre for Integrated Oncology, Cologne-Bonn, University of Cologne, Cologne, Germany; German Centre for Infection Research (DZIF) partner site Bonn-Cologne, Cologne, Germany; European Confederation of Medical Mycology (ECMM)
| | - C Viscoli
- Ospedale Policlinico San Martino and University of Genova (DISSAL), Genova, Italy; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM)
| | - O A Cornely
- First Department of Medicine, Laiko Hospital, National and Kapodistrian University of Athens, Athens, Greece; German Centre for Infection Research (DZIF) partner site Bonn-Cologne, Cologne, Germany; CECAD Cluster of Excellence, University of Cologne, Cologne, Germany; Clinical Trials Center Cologne, University Hospital of Cologne, Cologne, Germany; ESCMID Fungal Infection Study Group (EFISG); European Confederation of Medical Mycology (ECMM); ESCMID European Study Group for Infections in Compromised Hosts (ESGICH).
| |
Collapse
|
15
|
Lamoth F, Calandra T. Early diagnosis of invasive mould infections and disease. J Antimicrob Chemother 2017; 72:i19-i28. [PMID: 28355464 DOI: 10.1093/jac/dkx030] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Invasive mould infections (IMIs), such as invasive aspergillosis or mucormycosis, are a major cause of death in patients with haematological cancer and in patients receiving long-term immunosuppressive therapy. Early diagnosis and prompt initiation of antifungal therapy are crucial steps in the management of patients with IMI. The diagnosis of IMI remains a major challenge, with an increased spectrum of fungal pathogens and a diversity of clinical and radiological presentations within the expanding spectrum of immunocompromised hosts. Diagnosis is difficult to establish and is expressed on a scale of probability (proven, probable and possible). Imaging (CT scan), microbiological tools (direct examination, culture, PCR, fungal biomarkers) and histopathology are the pillars of the diagnostic work-up of IMI. None of the currently available diagnostic tests provides sufficient sensitivity and specificity alone, so the optimal approach relies on a combination of multiple diagnostic strategies, including imaging, fungal biomarkers (galactomannan and 1,3-β-d-glucan) and molecular tools. In recent years, the development of PCR for filamentous fungi (primarily Aspergillus or Mucorales) and the progress made in the standardization of fungal PCR technology, may lead to future advances in the field. The appropriate diagnostic approach for IMI should be individualized to each centre, taking into account the local epidemiology of IMI and the availability of diagnostic tests.
Collapse
Affiliation(s)
- Frédéric Lamoth
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland.,Institute of Microbiology, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Thierry Calandra
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
16
|
A prospective study of fungal biomarkers to improve management of invasive fungal diseases in a mixed specialty critical care unit. J Crit Care 2017; 40:119-127. [PMID: 28384600 DOI: 10.1016/j.jcrc.2017.03.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/03/2017] [Accepted: 03/29/2017] [Indexed: 01/11/2023]
Abstract
PURPOSE The diagnosis of invasive fungal diseases (IFD) in critical care patients (CrCP) is difficult. The study investigated the performance of a set of biomarkers for diagnosis of IFD in a mixed specialty critical care unit (CrCU). METHODS A prospective observational study in patients receiving critical care for ≥7days was performed. Serum samples were tested for the presence of: (1-3) - β-d-glucan (BDG), galactomannan (GM), and Aspergillus fumigatus DNA. GM antigen detection was also performed on bronchoalveolar lavage (BAL) samples. The patients were classified using published definitions for IFD and a diagnostic algorithm for invasive pulmonary aspergillosis. Performance parameters of the assays were determined. RESULTS In patients with proven and probable IFD, the sensitivity, specificity, PPV and NPV of a single positive BDG were 63%, 83%, 65% and 83% respectively. Specificity increased to 86% with 2 consecutive positive results. The mean BDG value of patients with proven and probable IFD was significantly higher compared to those with fungal colonization and no IFD (p value<0.0001). CONCLUSION New diagnostic criteria which incorporate these biomarkers, in particular BDG, and host factors unique to critical care patients should enhance diagnosis of IFD and positively impact antifungal stewardship programs.
Collapse
|
17
|
Yan X, Zong F, Kong H, Wang Y, Zhao X, Liu W, Wang Z, Xie W. Pulmonary Fungal Diseases in Immunocompetent Hosts: A Single-Center Retrospective Analysis of 35 Subjects. Mycopathologia 2016; 181:513-21. [PMID: 27177455 DOI: 10.1007/s11046-016-9999-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 03/08/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND Pulmonary fungal disease is an emerging issue in immunocompetent patients, for whom the characteristics are only partially understood. METHODS We conducted a single-center retrospective study of histologically verified pulmonary fungal disease in Eastern China from 2006 to 2014 to understand the demographics, clinical manifestations, therapeutic approaches, and factors associated with prognosis in this population. All cases were diagnosed according to the 2008 European Organization for the Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infection Diseases Mycoses Study Group definition criteria. RESULTS A total of 112 cases of pulmonary fungal diseases were enrolled (35 proven, 16 probable, 61 possible), and we analyzed the 35 patients with histologically proven pulmonary fungal diseases in this study. The main fungal species identified were Aspergillus (51.4 %), Cryptococcus (22.9 %), and Mucor (2.4 %). Treatment consisted of antifungal therapeutic agents (54.3 %), surgery and postsurgical agents (25.7 %), or surgery alone (14.3 %). The overall crude mortality rate was 14.3 %, and the mortality due to pulmonary fungal infections was 2.9 %. Significant predictors of mortality by univariate analysis were hypoalbuminemia (P = 0.005), cancer (P = 0.008), and positive culture (P = 0.044). Additionally, hypoalbuminemia was the only risk factor for mortality by multivariate analysis (RR = 7.56, 95 % CI 1.38-41.46). CONCLUSION Pulmonary fungal disease in immunocompetent patients, with Aspergillus as the most common identified species, had a prognosis that was influenced by the level of serum albumin.
Collapse
Affiliation(s)
- XiaoPei Yan
- Department of Respirology, First People's Hospital of Changzhou, Changzhou, 213000, China
| | - Feng Zong
- Department of Geriatrics, First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | - Hui Kong
- Department of Respirology, First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Road, Nanjing, 210029, China
| | - YanLi Wang
- Department of Respirology, First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Road, Nanjing, 210029, China
| | - XinYun Zhao
- Department of Respirology, First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Road, Nanjing, 210029, China
| | - WenRui Liu
- Department of Respirology, First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Road, Nanjing, 210029, China
| | - ZaiLiang Wang
- Department of Respirology, First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Road, Nanjing, 210029, China
| | - WeiPing Xie
- Department of Respirology, First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Road, Nanjing, 210029, China.
| |
Collapse
|
18
|
Leeflang MMG, Debets‐Ossenkopp YJ, Wang J, Visser CE, Scholten RJPM, Hooft L, Bijlmer HA, Reitsma JB, Zhang M, Bossuyt PMM, Vandenbroucke‐Grauls CM. Galactomannan detection for invasive aspergillosis in immunocompromised patients. Cochrane Database Syst Rev 2015; 2015:CD007394. [PMID: 26716951 PMCID: PMC6483812 DOI: 10.1002/14651858.cd007394.pub2] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Invasive aspergillosis is the most common life-threatening opportunistic invasive mycosis in immunocompromised patients. A test for invasive aspergillosis should neither be too invasive nor too great a burden for the already weakened patient. The serum galactomannan enzyme-linked immunosorbent assay (ELISA) seems to have the potential to meet both requirements. OBJECTIVES To obtain summary estimates of the diagnostic accuracy of galactomannan detection in serum for the diagnosis of invasive aspergillosis. SEARCH METHODS We searched MEDLINE, EMBASE and Web of Science with both MeSH terms and text words for both aspergillosis and the sandwich ELISA. We checked the reference lists of included studies and review articles for additional studies. We conducted the searches in February 2014. SELECTION CRITERIA We included cross-sectional studies, case-control designs and consecutive series of patients assessing the diagnostic accuracy of galactomannan detection for the diagnosis of invasive aspergillosis in patients with neutropenia or patients whose neutrophils are functionally compromised. The reference standard was composed of the criteria given by the European Organization for Research and Treatment of Cancer (EORTC) and the Mycoses Study Group (MSG). DATA COLLECTION AND ANALYSIS Two review authors independently assessed quality and extracted data. We carried out meta-analysis using the bivariate method. We investigated sources of heterogeneity by adding potential sources of heterogeneity to the model as covariates. MAIN RESULTS We included 54 studies in the review (50 in the meta-analyses), containing 5660 patients, of whom 586 had proven or probable invasive aspergillosis. When using an optical density index (ODI) of 0.5 as a cut-off value, the sensitivity of the test was 82% (73% to 90%) and the specificity was 81% (72% to 90%). At a cut-off value of 1.0 ODI, the sensitivity was 72% (65% to 80%) and the specificity was 88% (84% to 92%). At a cut-off value of 1.5 ODI, the sensitivity was 61% (47% to 75%) and the specificity was 93% (89% to 97%). None of the potential sources of heterogeneity had a statistically significant effect on either sensitivity or specificity. AUTHORS' CONCLUSIONS If we used the test at a cut-off value of 0.5 ODI in a population of 100 patients with a disease prevalence of 9% (overall median prevalence), two patients who have invasive aspergillosis would be missed (sensitivity 82%, 18% false negatives), and 17 patients would be treated unnecessarily or referred unnecessarily for further testing (specificity 81%, 19% false negatives). If we used the test at a cut-off value of 1.5 in the same population, that would mean that four invasive aspergillosis patients would be missed (sensitivity 61%, 39% false negatives), and six patients would be treated or referred for further testing unnecessarily (specificity 93%, 7% false negatives). These numbers should, however, be interpreted with caution because the results were very heterogeneous.
Collapse
Affiliation(s)
- Mariska MG Leeflang
- Academic Medical Center, University of AmsterdamDepartment of Clinical Epidemiology, Biostatistics and BioinformaticsP.O. Box 22700AmsterdamNetherlands1100 DE
| | - Yvette J Debets‐Ossenkopp
- VU University Medical CenterDepartment of Medical Microbiology and Infection ControlPO Box 7057AmsterdamNetherlands1007 MB
| | - Junfeng Wang
- Academic Medical CenterDepartment of Clinical Epidemiology, Biostatistics and BioinformaticsMeibergdreef 9AmsterdamNetherlands1105 AZ
| | - Caroline E Visser
- Academic Medical CentreDepartment of Medical MicrobiologyAmsterdamNetherlands
| | - Rob JPM Scholten
- Julius Center for Health Sciences and Primary Care / University Medical Center UtrechtCochrane NetherlandsRoom Str. 6.126P.O. Box 85500UtrechtNetherlands3508 GA
| | - Lotty Hooft
- Julius Center for Health Sciences and Primary Care / University Medical Center UtrechtCochrane NetherlandsRoom Str. 6.126P.O. Box 85500UtrechtNetherlands3508 GA
| | - Henk A Bijlmer
- Bronovo HospitalDepartment of Clinical Microbiology and Infection ControlThe HagueNetherlands
| | - Johannes B Reitsma
- University Medical Center UtrechtJulius Center for Health Sciences and Primary CarePO Box 85500UtrechtNetherlands3508 GA Utrecht
| | - Mingming Zhang
- West China Hospital, Sichuan UniversityChinese Cochrane Centre, Chinese Evidence‐Based Medicine CentreNo. 37, Guo Xue XiangChengduSichuanChina610041
| | - Patrick MM Bossuyt
- Academic Medical Center, University of AmsterdamDepartment of Clinical Epidemiology, Biostatistics and BioinformaticsP.O. Box 22700AmsterdamNetherlands1100 DE
| | | | | |
Collapse
|
19
|
Ambasta A, Carson J, Church DL. The use of biomarkers and molecular methods for the earlier diagnosis of invasive aspergillosis in immunocompromised patients. Med Mycol 2015; 53:531-57. [DOI: 10.1093/mmy/myv026] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 04/08/2015] [Indexed: 12/15/2022] Open
|
20
|
Predictors of Candida spp. as causative agents of catheter-related bloodstream infections. Diagn Microbiol Infect Dis 2014; 80:200-3. [DOI: 10.1016/j.diagmicrobio.2014.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 08/06/2014] [Accepted: 08/11/2014] [Indexed: 11/19/2022]
|
21
|
Farina C, Lombardi G, Andreoni S, Manso E, Perin S, Panellis D, Fazii P, Conte M, Sanna S, Pini P, Blasi E. Routine Use of a Protease Zymogen-Based Colorimetric Assay for the Detection of Beta-Glucan and its Role in Clinical Practice. Int J Immunopathol Pharmacol 2014; 27:661-8. [DOI: 10.1177/039463201402700424] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The detection of Aspergillus antigen (galactomannan) is considered a reliable marker for the diagnosis of invasive aspergillosis (IA), yet the sensibility and specificity of the assays commonly employed in routine are not optimal. The aim of the present study was to investigate whether the detection of another panfungal antigen, the (1,3)-b-D-glucan could have an auxiliary role in the identification of patients with IA. The study was carried out on 63 sera belonging to patients who had been screened for galactomannan, according to the clinical suspect of IA. Our data show that the positive galactomannan results were not confirmed by positive (1,3)-b-D-glucan results in patients receiving therapy with beta-lactam antibiotics associated with tazobactam, whereas in all the other cases, with the exception of four, the results of the (1,3)-b-D-glucan test were confirmatory of the galactomannan results.
Collapse
Affiliation(s)
- C. Farina
- Microbiology and Virology Laboratory, Azienda Ospedaliera “Papa Giovanni XXIII”, Bergamo, Italy
- Medical Mycology Committee (CoSM), Associazione Microbiologi Clinici Italiani (AMCLI), Milano, Italy
| | - G. Lombardi
- Medical Mycology Committee (CoSM), Associazione Microbiologi Clinici Italiani (AMCLI), Milano, Italy
- Microbiology and Virology Laboratory, Azienda Ospedaliera “Ospedale Niguarda Ca'Granda”, Milano, Italy
| | - S. Andreoni
- Medical Mycology Committee (CoSM), Associazione Microbiologi Clinici Italiani (AMCLI), Milano, Italy
- Microbiology Laboratory, Azienda Ospedaliero-Universitaria “Ospedale Maggiore della Carità”, Novara, Italy
| | - E. Manso
- Medical Mycology Committee (CoSM), Associazione Microbiologi Clinici Italiani (AMCLI), Milano, Italy
- Microbiology and Chemical Analysis Laboratory, Azienda Ospedaliero-Universitaria “Ospedali Riuniti”, Ancona, Italy
| | - S. Perin
- Microbiology and Virology Laboratory, Azienda Ospedaliera “Ospedale San Carlo Borromeo”, Milano, Italy
| | - D. Panellis
- Microbiology Laboratory, Azienda Ospedaliero-Universitaria “Federico II”, Naples, Italy
| | - P. Fazii
- Medical Mycology Committee (CoSM), Associazione Microbiologi Clinici Italiani (AMCLI), Milano, Italy
- Clinical Microbiology and Virology Laboratory, Presidio Ospedaliero “Ospedale Santo Spirito”, Pescara, Italy
| | - M. Conte
- Medical Mycology Committee (CoSM), Associazione Microbiologi Clinici Italiani (AMCLI), Milano, Italy
- Microbiology and Virology Laboratory, Azienda Ospedaliera Specialistica dei Colli “Monaldi-Cotugno-CTO”, Naples, Italy
| | - S. Sanna
- Medical Mycology Committee (CoSM), Associazione Microbiologi Clinici Italiani (AMCLI), Milano, Italy
- Microbiology Institute, Azienda Ospedaliero-Universitaria di Sassari, Sassari, Italy
| | - P. Pini
- “Department of Diagnostics, Clinical and Public Health Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - E. Blasi
- Medical Mycology Committee (CoSM), Associazione Microbiologi Clinici Italiani (AMCLI), Milano, Italy
- “Department of Diagnostics, Clinical and Public Health Medicine, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
22
|
|
23
|
Koulenti D, Vogelaers D, Blot S. What's new in invasive pulmonary aspergillosis in the critically ill. Intensive Care Med 2014; 40:723-6. [PMID: 24647810 PMCID: PMC7095093 DOI: 10.1007/s00134-014-3254-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 02/25/2014] [Indexed: 12/29/2022]
Affiliation(s)
- Despoina Koulenti
- 2nd Department of Critical Care Medicine, Attikon University Hospital, Athens, Greece
| | | | | |
Collapse
|
24
|
Scudeller L, Viscoli C, Menichetti F, del Bono V, Cristini F, Tascini C, Bassetti M, Viale P. An Italian consensus for invasive candidiasis management (ITALIC). Infection 2013; 42:263-79. [PMID: 24272916 DOI: 10.1007/s15010-013-0558-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2013] [Accepted: 11/04/2013] [Indexed: 12/16/2022]
Abstract
INTRODUCTION Invasive candidiasis (IC) has primarily been studied in intensive care unit (ICU) patients, although, in reality, a vast majority of these infections occur outside of the ICU. The recent publication of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) guidelines also deal with the non-ICU population, but many uncertainties remain on the management of IC, particularly in non-critically ill patients. METHODS The Italian Society of Antimicrobial Therapy, Società Italiana di Terapia Antimicrobica (SITA), produced practical, hospital-wide recommendations on the management of Candida infection in non-immunocompromised patients in the hospital ward. RESULTS AND DISCUSSION Our focus is on patient stratification in terms of risk factors for IC and of clinical severity, emphasising a high index of suspicion to ensure early diagnosis, early treatment and de-escalation when a patient is clinically stable, in order to optimise resource allocation.
Collapse
Affiliation(s)
- L Scudeller
- Clinical Epidemiology Unit, Scientific Direction, IRCCS Policlinico San Matteo Foundation, P.le Golgi 2, 27100, Pavia, Italy,
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
ÉPICO project. Development of educational recommendations using the DELPHI technique on invasive candidiasis in non-neutropenic critically ill adult patients. ACTA ACUST UNITED AC 2013; 60:e1-e18. [PMID: 23911095 DOI: 10.1016/j.redar.2013.05.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 05/14/2013] [Indexed: 12/29/2022]
Abstract
BACKGROUND Although there has been an improved management of invasive candidiasis in the last decade, controversial issues still remain, especially in the diagnostic and therapeutic approaches. AIMS We sought to identify the core clinical knowledge and to achieve high level agreement recommendations required to care for critically ill adult patients with invasive candidiasis. METHODS A prospective Spanish survey reaching consensus by the DELPHI technique was made. It was anonymously conducted by electronic mail in a first term to 25 national multidisciplinary experts in invasive fungal infections from five national scientific societies, including intensivists, anesthesiologists, microbiologists, pharmacologists and infectious diseases specialists, who answered to 47 questions prepared by a coordination group after a strict review of the literature in the last five years. The educational objectives spanned five categories, including epidemiology, diagnostic tools, prediction rules, and treatment and de-escalation approaches. The level of agreement achieved among the panel experts in each item should exceed 75% to be selected. In a second term, after extracting recommendations from the selected items, a face to face meeting was performed where more than 80 specialists in a second round were invited to validate the preselected recommendations. RESULTS In the first term, 20 recommendations were preselected (Epidemiology 4, Scores 3, Diagnostic tools 4, Treatment 6 and De-escalation approaches 3). After the second round, the following 12 were validated: (1) Epidemiology (2 recommendations): think about candidiasis in your Intensive Care Unit (ICU) and do not forget that non-Candida albicans-Candida species also exist. (2) Diagnostic tools (4 recommendations): blood cultures should be performed under suspicion every 2-3 days and, if positive, every 3 days until obtaining the first negative result. Obtain sterile fluid and tissue, if possible (direct examination of the sample is important). Use non-culture based methods as microbiological tools, whenever possible. Determination of antifungal susceptibility is mandatory. (3) Scores (1 recommendation): as screening tool, use the Candida Score and determine multicolonization in high risk patients. (4) Treatment (4 recommendations): start early. Choose echinocandins. Withdraw any central venous catheter. Fundoscopy is needed. (5) De-escalation (1 recommendation): only applied when knowing susceptibility determinations and after 3 days of clinical stability. The higher rate of agreement was achieved in the optimization of microbiological tools and the withdrawal of the catheter, whereas the lower rate corresponded to de-escalation therapy and the use of scores. CONCLUSIONS The management of invasive candidiasis in ICU patients requires the application of a broad range of knowledge and skills that we summarize in our recommendations. These recommendations may help to identify the potential patients, standardize their global management and improve their outcomes, based on the DELPHI methodology.
Collapse
|
26
|
Pemán J, Zaragoza R. Combined use of nonculture-based lab techniques in the diagnosis and management of critically ill patients with invasive fungal infections. Expert Rev Anti Infect Ther 2013; 10:1321-30. [PMID: 23241189 DOI: 10.1586/eri.12.128] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Invasive fungal infections are associated with high morbidity and mortality in critically ill patients due, in part, to diagnostic difficulties in the early stages. Nonculture-based techniques such as (1,3)-β-d-glucan, galactomannan, mannan and antimannan antibodies, Candida albicans germ tube-specific antibodies or fungal DNA are required for earlier diagnosis, prognostic information and monitoring outcome. A decision-tree algorithm based on the combination of nonculture-based techniques is suggested to optimize the diagnosis and evolution of critically ill patients at risk of invasive mycoses. The use of (1,3)-β-d-glucan and blood cultures twice a week is proposed; if positive, treatment initiation is recommended alongside the performance of the nonculture-based microbiological tool depending on suspected mycoses and the availability of techniques.
Collapse
Affiliation(s)
- Javier Pemán
- Servicio de Microbiología, Hospital Universitario y Politécnico La Fe, Valencia, Spain.
| | | |
Collapse
|
27
|
[Épico project: Development of educational recommendations using the DELPHI technique on invasive candidiasis in non-neutropenic critically ill adult patients. Grupo Proyecto Épico]. Rev Iberoam Micol 2013; 30:135-49. [PMID: 23764554 DOI: 10.1016/j.riam.2013.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 05/15/2013] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Although there has been an improved management of invasive candidiasis in the last decade, controversial issues still remain, especially in the diagnostic and therapeutic approaches. AIMS We sought to identify the core clinical knowledge and to achieve high level agreement recommendations required to care for critically ill adult patients with invasive candidiasis. METHODS A prospective Spanish survey reaching consensus by the DELPHI technique was made. It was anonymously conducted by electronic mail in a first term to 25 national multidisciplinary experts in invasive fungal infections from five national scientific societies, including intensivists, anesthesiologists, microbiologists, pharmacologists and infectious diseases specialists, who answered to 47 questions prepared by a coordination group after a strict review of the literature in the last five years. The educational objectives spanned five categories, including epidemiology, diagnostic tools, prediction rules, and treatment and de-escalation approaches. The level of agreement achieved among the panel experts in each item should exceed 75% to be selected. In a second term, after extracting recommendations from the selected items, a face to face meeting was performed where more than 80 specialists in a second round were invited to validate the preselected recommendations. RESULTS In the first term, 20 recommendations were preselected (Epidemiology 4, Scores 3, Diagnostic tools 4, Treatment 6 and De-escalation approaches 3). After the second round, the following 12 were validated: (1) Epidemiology (2 recommendations): think about candidiasis in your Intensive Care Unit (ICU) and do not forget that non-Candida albicans-Candida species also exist. (2) Diagnostic tools (4 recommendations): blood cultures should be performed under suspicion every 2-3 days and, if positive, every 3 days until obtaining the first negative result. Obtain sterile fluid and tissue, if possible (direct examination of the sample is important). Use non-culture based methods as microbiological tools, whenever possible. Determination of antifungal susceptibility is mandatory. (3) Scores (1 recommendation): as screening tool, use the Candida Score and determine multicolonization in high risk patients. (4) Treatment (4 recommendations): start early. Choose echinocandins. Withdraw any central venous catheter. Fundoscopy is needed. (5) De-escalation (1 recommendation): only applied when knowing susceptibility determinations and after 3 days of clinical stability. The higher rate of agreement was achieved in the optimization of microbiological tools and the withdrawal of the catheter, whereas the lower rate corresponded to de-escalation therapy and the use of scores. CONCLUSIONS The management of invasive candidiasis in ICU patients requires the application of a broad range of knowledge and skills that we summarize in our recommendations. These recommendations may help to identify the potential patients, standardize their global management and improve their outcomes, based on the DELPHI methodology.
Collapse
|
28
|
Pemán J, Zaragoza R. [Towards an early diagnosis of invasive candidiasis in the critically ill patient]. Rev Iberoam Micol 2013; 29:71-5. [PMID: 22463780 DOI: 10.1016/j.riam.2012.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The management of invasive fungal infections in critically ill patients, from diagnosis to selection of the therapeutic protocol, is often a challenge. Early diagnosis and treatment are associated with a better prognosis, but apart from cases with positive cultures from blood or fluid/tissue biopsy, diagnosis is neither sensitive nor specific, and there is a need for specific markers in these diseases. Serodiagnostic assays such as mannan antigen, mannan antibodies, Candida albicans germ-tube antibodies or (1→3)-β-D-glucan detection, and molecular techniques for the detection of fungal-specific DNA have been developed with promising results in critical care settings. One of the main features in diagnosis is the evaluation of risk factors for infection, which will identify patients in need of preemptive or empirical treatment. Clinical scores were built from those risk factors. The combination of prediction rules and non-culture microbiological tools could be currently be the key to improving the diagnosis and prognosis of invasive fungal infections in critically ill patients.
Collapse
Affiliation(s)
- Javier Pemán
- Servicio de Microbiología, Hospital Universitario y Politécnico La Fe, Valencia, España.
| | | |
Collapse
|
29
|
Zaragoza R, Llinares P, Maseda E, Ferrer R, Rodríguez A. Épico Project. Development of educational recommendations using the DELPHI technique on invasive candidiasis in non-neutropenic critically ill adult patients. Rev Iberoam Micol 2013; 30:135-49. [PMID: 23727234 DOI: 10.1016/j.riam.2013.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 05/15/2013] [Indexed: 10/26/2022] Open
Abstract
BACKGROUND Although there has been an improved management of invasive candidiasis in the last decade, controversial issues still remain, especially in the diagnostic and therapeutic approaches. AIMS We sought to identify the core clinical knowledge and to achieve high level agreement recommendations required to care for critically ill adult patients with invasive candidiasis. METHODS A prospective Spanish survey reaching consensus by the DELPHI technique was made. It was anonymously conducted by electronic mail in a first term to 25 national multidisciplinary experts in invasive fungal infections from five national scientific societies, including intensivists, anesthesiologists, microbiologists, pharmacologists and infectious diseases specialists, who answered to 47 questions prepared by a coordination group after a strict review of the literature in the last five years. The educational objectives spanned five categories, including epidemiology, diagnostic tools, prediction rules, and treatment and de-escalation approaches. The level of agreement achieved among the panel experts in each item should exceed 75% to be selected. In a second term, after extracting recommendations from the selected items, a face to face meeting was performed where more than 80 specialists in a second round were invited to validate the preselected recommendations. RESULTS In the first term, 20 recommendations were preselected (Epidemiology 4, Scores 3, Diagnostic tools 4, Treatment 6 and De-escalation approaches 3). After the second round, the following 12 were validated: (1) Epidemiology (2 recommendations): think about candidiasis in your Intensive Care Unit (ICU) and do not forget that non-Candida albicans-Candida species also exist. (2) Diagnostic tools (4 recommendations): blood cultures should be performed under suspicion every 2-3 days and, if positive, every 3 days until obtaining the first negative result. Obtain sterile fluid and tissue, if possible (direct examination of the sample is important). Use non-culture based methods as microbiological tools, whenever possible. Determination of antifungal susceptibility is mandatory. (3) Scores (1 recommendation): as screening tool, use the Candida Score and determine multicolonization in high risk patients. (4) Treatment (4 recommendations): start early. Choose echinocandins. Withdraw any central venous catheter. Fundoscopy is needed. (5) De-escalation (1 recommendation): only applied when knowing susceptibility determinations and after 3 days of clinical stability. The higher rate of agreement was achieved in the optimization of microbiological tools and the withdrawal of the catheter, whereas the lower rate corresponded to de-escalation therapy and the use of scores. CONCLUSIONS The management of invasive candidiasis in ICU patients requires the application of a broad range of knowledge and skills that we summarize in our recommendations. These recommendations may help to identify the potential patients, standardize their global management and improve their outcomes, based on the DELPHI methodology.
Collapse
Affiliation(s)
- Rafael Zaragoza
- Servicio de Medicina Intensiva, Hospital Universitario Dr. Peset, Valencia, Spain.
| | | | | | | | | | | |
Collapse
|
30
|
Serum (1→3)-β-D-glucan levels in HIV-infected individuals are associated with immunosuppression, inflammation, and cardiopulmonary function. J Acquir Immune Defic Syndr 2013; 61:462-8. [PMID: 22972021 DOI: 10.1097/qai.0b013e318271799b] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Translocation of gastrointestinal bacteria in HIV-infected individuals is associated with systemic inflammation, HIV progression, mortality, and comorbidities. HIV-infected individuals are also susceptible to fungal infection and colonization, but whether fungal translocation occurs and influences HIV progression or comorbidities is unknown. METHODS Serum (1→3)-β-D-glucan (BG) was measured by a Limulus Amebocyte Lysate assay (Fungitell) in 132 HIV-infected outpatients. Selected plasma cytokines and markers of peripheral T-cell activation were measured. Pulmonary function testing and Doppler echocardiography were performed. Relationship of high (≥40 pg/mL) and low (<40 pg/mL) levels of BG with HIV-associated variables, inflammation markers, and pulmonary function and pulmonary hypertension measures were determined. RESULTS Forty-eight percent of patients had detectable BG, and 16.7% had high levels. Individuals with high BG were more likely to have CD4 counts less than 200 cells/μL (31.8% vs. 8.4%, P = 0.002), had higher log10 HIV viral levels (2.85 vs. 2.13 log copies/mL, P = 0.004), and were less likely to use antiretroviral therapy (68.2% vs. 90.0%, P = 0.006). Plasma IL-8 (P = 0.033), TNF-α (P = 0.029), and CD8CD38 (P = 0.046) and CD8HLA-DR (P = 0.029) were also increased with high levels. Abnormalities in diffusing capacity (P = 0.041) and in pulmonary artery pressures (P = 0.006 for pulmonary artery systolic pressure and 0.013 for tricuspid regurgitant velocity) were more common in those with high BG. CONCLUSIONS We found evidence of peripheral fungal cell wall polysaccharides in an HIV-infected cohort. We also demonstrated an association between high serum BG, HIV-associated immunosuppression, inflammation, and cardiopulmonary comorbidity. These results implicate a new class of pathogen in HIV-associated microbial translocation and suggest a role in HIV progression and comorbidities.
Collapse
|
31
|
|
32
|
Invasive aspergillosis in a renal transplant recipient successfully treated with interferon-gamma. Case Rep Transplant 2012; 2012:493758. [PMID: 23259133 PMCID: PMC3504275 DOI: 10.1155/2012/493758] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 08/27/2012] [Indexed: 12/04/2022] Open
Abstract
Invasive aspergillosis is a serious complication of solid organ transplantation. An early diagnosis is hampered by the lack of reliable serum markers and, even if appropriately diagnosed and treated with current antifungal agents, has a high mortality rate. We report a case of invasive pulmonary and cerebral aspergillosis in a renal transplant patient treated with IFN-γ in conjunction with combination anti-fungal therapy for six weeks in whom complete resolution of the fungal infection was achieved. Renal function remained intact throughout the treatment period. Surveillance CT scans of the chest and head showed resolution of prior disease but revealed a new left upper lobe mass four months after completion of treatment with IFN-γ. Biopsy of the lesion was positive for primary lung adenocarcinoma, for which she underwent left upper lobe resection. The pathology report confirmed clear surgical margins and lymph nodes and no evidence of fungal hyphae. IFN-γ should be considered early in the management of invasive aspergillosis in renal transplant patients. To date, allograft rejection has not been encountered.
Collapse
|