1
|
Hassan STS. Editorial of the Special Issue "Molecular Medicine Applications in Infectious Diseases: Latest Innovations". Int J Mol Sci 2023; 24:15899. [PMID: 37958882 PMCID: PMC10647289 DOI: 10.3390/ijms242115899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 10/26/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
The integration of molecular approaches in medicine allows for a more precise understanding of the mechanisms underlying infectious diseases, paving the way for targeted therapies, personalized medicine, and the development of new diagnostic tools [...].
Collapse
Affiliation(s)
- Sherif T S Hassan
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500 Prague, Czech Republic
| |
Collapse
|
2
|
Nichols ZE, Geddes CD. Sample Preparation and Diagnostic Methods for a Variety of Settings: A Comprehensive Review. Molecules 2021; 26:5666. [PMID: 34577137 PMCID: PMC8470389 DOI: 10.3390/molecules26185666] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 11/16/2022] Open
Abstract
Sample preparation is an essential step for nearly every type of biochemical analysis in use today. Among the most important of these analyses is the diagnosis of diseases, since their treatment may rely greatly on time and, in the case of infectious diseases, containing their spread within a population to prevent outbreaks. To address this, many different methods have been developed for use in the wide variety of settings for which they are needed. In this work, we have reviewed the literature and report on a broad range of methods that have been developed in recent years and their applications to point-of-care (POC), high-throughput screening, and low-resource and traditional clinical settings for diagnosis, including some of those that were developed in response to the coronavirus disease 2019 (COVID-19) pandemic. In addition to covering alternative approaches and improvements to traditional sample preparation techniques such as extractions and separations, techniques that have been developed with focuses on integration with smart devices, laboratory automation, and biosensors are also discussed.
Collapse
Affiliation(s)
- Zach E. Nichols
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Drive, Baltimore, MD 21250, USA;
- Institute of Fluorescence, University of Maryland, Baltimore County, 701 E Pratt Street, Baltimore, MD 21270, USA
| | - Chris D. Geddes
- Department of Chemistry and Biochemistry, University of Maryland, Baltimore County, 1000 Hilltop Drive, Baltimore, MD 21250, USA;
- Institute of Fluorescence, University of Maryland, Baltimore County, 701 E Pratt Street, Baltimore, MD 21270, USA
| |
Collapse
|
3
|
Molecularly Imprinted Polymers and Surface Imprinted Polymers Based Electrochemical Biosensor for Infectious Diseases. SENSORS 2020; 20:s20040996. [PMID: 32069788 PMCID: PMC7071405 DOI: 10.3390/s20040996] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/10/2020] [Accepted: 02/11/2020] [Indexed: 01/08/2023]
Abstract
Owing to their merits of simple, fast, sensitive, and low cost, electrochemical biosensors have been widely used for the diagnosis of infectious diseases. As a critical element, the receptor determines the selectivity, stability, and accuracy of the electrochemical biosensors. Molecularly imprinted polymers (MIPs) and surface imprinted polymers (SIPs) have great potential to be robust artificial receptors. Therefore, extensive studies have been reported to develop MIPs/SIPs for the detection of infectious diseases with high selectivity and reliability. In this review, we discuss mechanisms of recognition events between imprinted polymers with different biomarkers, such as signaling molecules, microbial toxins, viruses, and bacterial and fungal cells. Then, various preparation methods of MIPs/SIPs for electrochemical biosensors are summarized. Especially, the methods of electropolymerization and micro-contact imprinting are emphasized. Furthermore, applications of MIPs/SIPs based electrochemical biosensors for infectious disease detection are highlighted. At last, challenges and perspectives are discussed.
Collapse
|
4
|
Pashchenko O, Shelby T, Banerjee T, Santra S. A Comparison of Optical, Electrochemical, Magnetic, and Colorimetric Point-of-Care Biosensors for Infectious Disease Diagnosis. ACS Infect Dis 2018; 4:1162-1178. [PMID: 29860830 PMCID: PMC6736529 DOI: 10.1021/acsinfecdis.8b00023] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Each year, infectious diseases are responsible for millions of deaths, most of which occur in the rural areas of developing countries. Many of the infectious disease diagnostic tools used today require a great deal of time, a laboratory setting, and trained personnel. Due to this, the need for effective point-of-care (POC) diagnostic tools is greatly increasing with an emphasis on affordability, portability, sensitivity, specificity, timeliness, and ease of use. In this Review, we discuss the various diagnostic modalities that have been utilized toward this end and are being further developed to create POC diagnostic technologies, and we focus on potential effectiveness in resource-limited settings. The main modalities discussed herein are optical-, electrochemical-, magnetic-, and colorimetric-based modalities utilized in diagnostic technologies for infectious diseases. Each of these modalities feature pros and cons when considering application in POC settings but, overall, reveal a promising outlook for the future of this field of technological development.
Collapse
Affiliation(s)
- Oleksandra Pashchenko
- Department of Chemistry, Pittsburg State University, 1701 South Broadway Street, Pittsburg, Kansas, 66762
| | - Tyler Shelby
- Department of Chemistry, Pittsburg State University, 1701 South Broadway Street, Pittsburg, Kansas, 66762
| | - Tuhina Banerjee
- Department of Chemistry, Pittsburg State University, 1701 South Broadway Street, Pittsburg, Kansas, 66762
| | - Santimukul Santra
- Department of Chemistry, Pittsburg State University, 1701 South Broadway Street, Pittsburg, Kansas, 66762
| |
Collapse
|
5
|
Soares CT, Trombone APF, Fachin LRV, Rosa PS, Ghidella CC, Ramalho RF, Pinilla MG, Carvalho AF, Carrara DN, Soares FA, Belone AFF. Differential Expression of MicroRNAs in Leprosy Skin Lesions. Front Immunol 2017; 8:1035. [PMID: 28970833 PMCID: PMC5609578 DOI: 10.3389/fimmu.2017.01035] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 08/10/2017] [Indexed: 12/19/2022] Open
Abstract
Leprosy, a chronic infectious disease caused by Mycobacterium leprae, is a major public health problem in poor and developing countries of the Americas, Africa, and Asia. MicroRNAs (miRNAs), which are small non-coding RNAs (18–24 nucleotides), play an important role in regulating cell and tissue homeostasis through translational downregulation of messenger RNAs (mRNAs). Deregulation of miRNA expression is important for the pathogenesis of various neoplastic and non-neoplastic diseases and has been the focus of many publications; however, studies on the expression of miRNAs in leprosy are rare. Herein, an extensive evaluation of differentially expressed miRNAs was performed on leprosy skin lesions using microarrays. Leprosy patients, classified according to Ridley and Jopling’s classification or reactional states (R1 and R2), and healthy controls (HCs) were included. Punch biopsies were collected from the borders of leprosy lesions (10 tuberculoid, 10 borderline tuberculoid, 10 borderline borderline, 10 borderline lepromatous, 4 lepromatous, 14 R1, and 9 R2) and from 9 HCs. miRNA expression profiles were obtained using the Agilent Microarray platform with miRBase, which consists of 1,368 Homo sapiens (hsa)-miRNA candidates. TaqMan quantitative real-time reverse transcription polymerase chain reaction (RT-PCR) was used to validate differentially expressed miRNAs. Sixty-four differentially expressed miRNAs, including 50 upregulated and 14 downregulated (fold change ≥2.0, p-value ≤ 0.05) were identified after comparing samples from patients to those of controls. Twenty differentially expressed miRNAs were identified exclusively in the reactional samples (14 type 1 and 6 type 2). Eight miRNAs were validated by RT-PCR, including seven upregulated (hsa-miR-142-3p, hsa-miR-142-5p, hsa-miR-146b-5p, hsa-miR-342-3p, hsa-miR-361-3p, hsa-miR-3653, and hsa-miR-484) and one downregulated (hsa-miR-1290). These miRNAs were differentially expressed in leprosy and several other diseases, especially those related to the immune response. Moreover, the integration of analysis of validated mi/mRNAs obtained from the same samples allowed target pairs opposite expression pattern of hsa-miRNA-142-3p and AKR1B10, hsa-miRNA-342-3p and FAM180b, and hsa-miRNA-484 and FASN. This study identified several miRNAs that might play an important role in the molecular pathogenesis of the disease. Moreover, these deregulated miRNAs and their respective signaling pathways might be useful as therapeutic markers, therapeutic targets, which could help in the development of drugs to treat leprosy.
Collapse
Affiliation(s)
- Cleverson T Soares
- Department of Anatomic Pathology, Instituto Lauro de Souza Lima, São Paulo, Brazil
| | - Ana P F Trombone
- Department of Health Science, Universidade do Sagrado Coração, São Paulo, Brazil
| | - Luciana R V Fachin
- Department of Anatomic Pathology, Instituto Lauro de Souza Lima, São Paulo, Brazil
| | - Patricia S Rosa
- Division of Research and Education, Instituto Lauro de Souza Lima, São Paulo, Brazil
| | - Cássio C Ghidella
- Ambulatory of Leprosy, Jardim Guanabara Health Center, Rondonópolis, Brazil
| | - Rodrigo F Ramalho
- Laboratory of Genomics and Molecular Biology, CIPE, A.C. Camargo Cancer Center, São Paulo, Brazil
| | - Mabel G Pinilla
- Laboratory of Genomics and Molecular Biology, CIPE, A.C. Camargo Cancer Center, São Paulo, Brazil.,Department of Medical Technology, School of Medicine, University of Concepción, Concepción, Chile
| | - Alex F Carvalho
- Laboratory of Genomics and Molecular Biology, CIPE, A.C. Camargo Cancer Center, São Paulo, Brazil.,Department of Preventive Veterinary Medicine, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Dirce N Carrara
- Laboratory of Genomics and Molecular Biology, CIPE, A.C. Camargo Cancer Center, São Paulo, Brazil
| | - Fernando A Soares
- Department of Anatomic Pathology, A.C. Camargo Cancer Center, São Paulo, Brazil
| | - Andrea F F Belone
- Department of Anatomic Pathology, Instituto Lauro de Souza Lima, São Paulo, Brazil
| |
Collapse
|
6
|
Henihan G, Schulze H, Corrigan DK, Giraud G, Terry JG, Hardie A, Campbell CJ, Walton AJ, Crain J, Pethig R, Templeton KE, Mount AR, Bachmann TT. Label- and amplification-free electrochemical detection of bacterial ribosomal RNA. Biosens Bioelectron 2016; 81:487-494. [PMID: 27016627 DOI: 10.1016/j.bios.2016.03.037] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/09/2016] [Accepted: 03/17/2016] [Indexed: 01/13/2023]
Abstract
Current approaches to molecular diagnostics rely heavily on PCR amplification and optical detection methods which have restrictions when applied to point of care (POC) applications. Herein we describe the development of a label-free and amplification-free method of pathogen detection applied to Escherichia coli which overcomes the bottleneck of complex sample preparation and has the potential to be implemented as a rapid, cost effective test suitable for point of care use. Ribosomal RNA is naturally amplified in bacterial cells, which makes it a promising target for sensitive detection without the necessity for prior in vitro amplification. Using fluorescent microarray methods with rRNA targets from a range of pathogens, an optimal probe was selected from a pool of probe candidates identified in silico. The specificity of probes was investigated on DNA microarray using fluorescently labeled 16S rRNA target. The probe yielding highest specificity performance was evaluated in terms of sensitivity and a LOD of 20 pM was achieved on fluorescent glass microarray. This probe was transferred to an EIS end point format and specificity which correlated to microarray data was demonstrated. Excellent sensitivity was facilitated by the use of uncharged PNA probes and large 16S rRNA target and investigations resulted in an LOD of 50 pM. An alternative kinetic EIS assay format was demonstrated with which rRNA could be detected in a species specific manner within 10-40min at room temperature without wash steps.
Collapse
Affiliation(s)
- Grace Henihan
- Division of Infection and Pathway Medicine, College of Medicine and Veterinary Medicine, The University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, Scotland, UK
| | - Holger Schulze
- Division of Infection and Pathway Medicine, College of Medicine and Veterinary Medicine, The University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, Scotland, UK
| | - Damion K Corrigan
- Division of Infection and Pathway Medicine, College of Medicine and Veterinary Medicine, The University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, Scotland, UK; School of Chemistry, The University of Edinburgh, Joseph Black Building, The King's Buildings, West Mains Road, Edinburgh EH9 3JJ, Scotland, UK
| | - Gerard Giraud
- School of Physics and Astronomy, The University of Edinburgh, The King's Buildings, West Mains Road, Edinburgh EH9 3JZ, Scotland, UK
| | - Jonathan G Terry
- Institute for Integrated Micro and Nano Systems, School of Engineering, The University of Edinburgh, Alexander Crum Brown Road, Edinburgh EH9 3FF, Scotland, UK
| | - Alison Hardie
- Department of Laboratory Medicine, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, Scotland, UK
| | - Colin J Campbell
- School of Chemistry, The University of Edinburgh, Joseph Black Building, The King's Buildings, West Mains Road, Edinburgh EH9 3JJ, Scotland, UK
| | - Anthony J Walton
- Institute for Integrated Micro and Nano Systems, School of Engineering, The University of Edinburgh, Alexander Crum Brown Road, Edinburgh EH9 3FF, Scotland, UK
| | - Jason Crain
- School of Physics and Astronomy, The University of Edinburgh, The King's Buildings, West Mains Road, Edinburgh EH9 3JZ, Scotland, UK; National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW, UK
| | - Ronald Pethig
- Institute for Integrated Micro and Nano Systems, School of Engineering, The University of Edinburgh, Alexander Crum Brown Road, Edinburgh EH9 3FF, Scotland, UK
| | - Kate E Templeton
- Division of Infection and Pathway Medicine, College of Medicine and Veterinary Medicine, The University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, Scotland, UK; Department of Laboratory Medicine, Royal Infirmary of Edinburgh, Edinburgh EH16 4SA, Scotland, UK
| | - Andrew R Mount
- School of Chemistry, The University of Edinburgh, Joseph Black Building, The King's Buildings, West Mains Road, Edinburgh EH9 3JJ, Scotland, UK
| | - Till T Bachmann
- Division of Infection and Pathway Medicine, College of Medicine and Veterinary Medicine, The University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, Scotland, UK.
| |
Collapse
|
7
|
Belone ADFF, Rosa PS, Trombone APF, Fachin LRV, Guidella CC, Ura S, Barreto JA, Pinilla MG, de Carvalho AF, Carraro DM, Soares FA, Soares CT. Genome-Wide Screening of mRNA Expression in Leprosy Patients. Front Genet 2015; 6:334. [PMID: 26635870 PMCID: PMC4653304 DOI: 10.3389/fgene.2015.00334] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 11/05/2015] [Indexed: 11/13/2022] Open
Abstract
Leprosy, an infectious disease caused by Mycobacterium leprae, affects millions of people worldwide. However, little is known regarding its molecular pathophysiological mechanisms. In this study, a comprehensive assessment of human mRNA was performed on leprosy skin lesions by using DNA chip microarrays, which included the entire spectrum of the disease along with its reactional states. Sixty-six samples from leprotic lesions (10TT, 10BT, 10BB, 10BL, 4LL, 14R1, and 10R2) and nine skin biopsies from healthy individuals were used as controls (CC) (ages ranged from 06 to 83 years, 48 were male and 29 female). The evaluation identified 1580 differentially expressed mRNAs [Fold Change (FC) ≥ 2.0, p ≤ 0.05] in diseased lesions vs. healthy controls. Some of these genes were observed in all forms of the disease (CD2, CD27, chit1, FA2H, FAM26F, GZMB, MMP9, SLAMF7, UBD) and others were exclusive to reactional forms (Type "1" reaction: GPNMB, IL1B, MICAL2, FOXQ1; Type "2" reaction: AKR1B10, FAM180B, FOXQ1, NNMT, NR1D1, PTX3, TNFRSF25). In literature, these mRNAs have been associated with numerous pathophysiological processes and signaling pathways and are present in a large number of diseases. The role of these mRNAs maybe studied in the context of developing new diagnostic markers and therapeutic targets for leprosy.
Collapse
Affiliation(s)
- Andrea de Faria F Belone
- Department of Anatomic Pathology, Instituto Lauro de Souza Lima São Paulo, Brazil ; Department of Anatomic Pathology, A.C. Camargo Cancer Center São Paulo, Brazil
| | - Patrícia S Rosa
- Division of Research and Education, Instituto Lauro de Souza Lima São Paulo, Brazil
| | - Ana P F Trombone
- Department of Health Science, Universidade do Sagrado Coração São Paulo, Brazil
| | - Luciana R V Fachin
- Department of Anatomic Pathology, Instituto Lauro de Souza Lima São Paulo, Brazil
| | - Cássio C Guidella
- Ambulatory of Leprosy, Jardim Guanabara Health Center Rondonópolis, Brazil
| | - Somei Ura
- Division of Research and Education, Instituto Lauro de Souza Lima São Paulo, Brazil
| | - Jaison A Barreto
- Division of Dermathology, Instituto Lauro de Souza Lima São Paulo, Brazil
| | - Mabel G Pinilla
- Laboratory of Genomics and Molecular Biology, CIPE, A.C. Camargo Cancer Center Sao Paulo, Brazil
| | - Alex F de Carvalho
- Laboratory of Genomics and Molecular Biology, CIPE, A.C. Camargo Cancer Center Sao Paulo, Brazil
| | - Dirce M Carraro
- Laboratory of Genomics and Molecular Biology, CIPE, A.C. Camargo Cancer Center Sao Paulo, Brazil
| | - Fernando A Soares
- Department of Anatomic Pathology, A.C. Camargo Cancer Center São Paulo, Brazil
| | - Cleverson T Soares
- Department of Anatomic Pathology, Instituto Lauro de Souza Lima São Paulo, Brazil
| |
Collapse
|
8
|
Silva JM, Vandermeulen G, Oliveira VG, Pinto SN, Rodrigues C, Salgado A, Afonso CA, Viana AS, Jérôme C, Silva LC, Graca L, Préat V, Florindo HF. Development of functionalized nanoparticles for vaccine delivery to dendritic cells: a mechanistic approach. Nanomedicine (Lond) 2015; 9:2639-56. [PMID: 25529568 DOI: 10.2217/nnm.14.135] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
AIM Produce biodegradable nanoparticles to target antigen-presenting cells (APCs) and evaluate their potential to be used as a vaccine delivery system. MATERIALS & METHODS Untargeted PEGylated poly(d,l-lactic-co-glycolide)-based nanoparticles and mannose-grafted nanoparticles were formulated and physicochemically characterized. Immortalized and primary APCs were used to study nanoparticle internalization patterns. The endocytic pathways and intracellular trafficking followed by nanoparticles were also investigated. RESULTS & DISCUSSION Nanoparticles displayed mannose residues available for binding at the nanoparticle surface. Different nanoparticle internalization patterns by immortalized and primary APCs were verified. Macropinocytosis, clathrin-mediated endocytosis, caveolin- and lipid raft-dependent endocytosis are involved in nanoparticles internalization. Nanoparticles demonstrate both endolysosomal and cytosolic localizations and a tendency to accumulate nearby the endoplasmic reticulum. CONCLUSION The developed nanoparticles might drive antigens to be presented through MHC class I and II molecules to both CD8(+) and CD4(+) T cells, favoring a complete and coordinated immune response.
Collapse
Affiliation(s)
- Joana M Silva
- Faculdade de Farmácia, Universidade de Lisboa, Instituto de Investigação do Medicamento (iMed.ULisboa), Lisbon, Portugal
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Wang L, Han Y, Zhou S, Wang G, Guan X. Nanopore biosensor for label-free and real-time detection of anthrax lethal factor. ACS APPLIED MATERIALS & INTERFACES 2014; 6:7334-7339. [PMID: 24806593 PMCID: PMC4039345 DOI: 10.1021/am500749p] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 05/07/2014] [Indexed: 05/29/2023]
Abstract
We report a label-free real-time nanopore sensing method for the detection of anthrax lethal factor, a component of the anthrax toxin, by using a complementary single-stranded DNA as a molecular probe. The method is rapid and sensitive: sub-nanomolar concentrations of the target anthrax lethal factor DNA could be detected in ∼1 min. Further, our method is selective, which can differentiate the target DNA from other single-stranded DNA molecules at the single-base resolution. This sequence-specific detection approach should find useful application in the development of nanopore sensors for the detection of other pathogens.
Collapse
Affiliation(s)
| | | | | | | | - Xiyun Guan
- Tel: 01-312-567-8922. Fax: 01-312-567-3494. E-mail:
| |
Collapse
|
10
|
Sin MLY, Mach KE, Wong PK, Liao JC. Advances and challenges in biosensor-based diagnosis of infectious diseases. Expert Rev Mol Diagn 2014; 14:225-44. [PMID: 24524681 DOI: 10.1586/14737159.2014.888313] [Citation(s) in RCA: 199] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Rapid diagnosis of infectious diseases and timely initiation of appropriate treatment are critical determinants that promote optimal clinical outcomes and general public health. Conventional in vitro diagnostics for infectious diseases are time-consuming and require centralized laboratories, experienced personnel and bulky equipment. Recent advances in biosensor technologies have potential to deliver point-of-care diagnostics that match or surpass conventional standards in regards to time, accuracy and cost. Broadly classified as either label-free or labeled, modern biosensors exploit micro- and nanofabrication technologies and diverse sensing strategies including optical, electrical and mechanical transducers. Despite clinical need, translation of biosensors from research laboratories to clinical applications has remained limited to a few notable examples, such as the glucose sensor. Challenges to be overcome include sample preparation, matrix effects and system integration. We review the advances of biosensors for infectious disease diagnostics and discuss the critical challenges that need to be overcome in order to implement integrated diagnostic biosensors in real world settings.
Collapse
Affiliation(s)
- Mandy L Y Sin
- Department of Urology, Stanford University School of Medicine , Stanford, CA 94305-5118 , USA
| | | | | | | |
Collapse
|